AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Highly durable machine-learned waterproof electronic glove based on low-cost thermal transfer printing for amphibious wearable applications

Shengshun Duan1,§Jiayi Wang2,§Yong Lin2Jianlong Hong1Yucheng Lin1Yier Xia1Yinghui Li1Di Zhu1Wei Lei1Wenming Su2Baoping Wang1Zheng Cui2Wei Yuan2( )Jun Wu1( )
Joint International Research Laboratory of Information Display and Visualization, School of Electronic Science and Engineering, Southeast University, Nanjing 210096, China
Printable Electronics Research Centre, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China

§ Shengshun Duan and Jiayi Wang contributed equally to this work.

Show Author Information

Graphical Abstract

A system-level waterproof washable electronic glove (E-glove) is reported, which is of low cost, light weight, and scalable for mass production, assisted by an improved neural network architecture, which implements environment-adaptive learning and inference for hand gesture with 100% accuracy. The amphibious remote vehicle navigation via hand gestures is also demonstrated.

Abstract

Gesture recording, modeling, and understanding based on a robust electronic glove (E-glove) are of great significance for efficient human-machine cooperation in harsh environments. However, such robust edge-intelligence interfaces remain challenging as existing E-gloves are limited in terms of integration, waterproofness, scalability, and interface stability between different components. Here, we report on the design, manufacturing, and application scenarios for a waterproof E-glove, which is of low cost, lightweight, and scalable for mass production, as well as environmental robustness, waterproofness, and washability. An improved neural network architecture is proposed to implement environment-adaptive learning and inference for hand gestures, which achieves an amphibious recognition accuracy of 100% in 26 categories by analyzing 2,600 hand gesture patterns. We demonstrate that the E-glove can be used for amphibious remote vehicle navigation via hand gestures, potentially opening the way for efficient human-human and human-machine cooperation in harsh environments.

Electronic Supplementary Material

Video
12274_2022_5077_MOESM2_ESM.mp4
12274_2022_5077_MOESM3_ESM.mp4
12274_2022_5077_MOESM4_ESM.mp4
12274_2022_5077_MOESM5_ESM.mp4
12274_2022_5077_MOESM6_ESM.mp4
Download File(s)
12274_2022_5077_MOESM1_ESM.pdf (2.6 MB)

References

[1]

Wen, F.; Zhang, Z. X.; He, T. Y. Y.; Lee, C. AI enabled sign language recognition and VR space bidirectional communication using triboelectric smart glove. Nat. Commun. 2021, 12, 5378.

[2]

Lan, N.; Hao, M. Z.; Niu, C. M.; Cui, H.; Wang, Y.; Zhang, T.; Fang, P.; Chou, C. H. Next-generation prosthetic hand: From biomimetic to biorealistic. Research 2021, 2021, 4675326.

[3]

Zhou, Z. H.; Chen, K.; Li, X. S.; Zhang, S. L.; Wu, Y. F.; Zhou, Y. H.; Meng, K. Y.; Sun, C. C.; He, Q.; Fan, W. J. et al. Sign-to-speech translation using machine-learning-assisted stretchable sensor arrays. Nat. Electron. 2020, 3, 571–578.

[4]

Yu, J. R.; Yang, X. X.; Sun, Q. J. Piezo/tribotronics toward smart flexible sensors. Adv. Intell. Syst. 2020, 2, 1900175.

[5]

Wen, F.; Sun, Z. D.; He, T. Y. Y.; Shi, Q. F.; Zhu, M. L.; Zhang, Z. X.; Li, L. H.; Zhang, T.; Lee, C. Machine learning glove using self-powered conductive superhydrophobic triboelectric textile for gesture recognition in VR/AR applications. Adv. Sci. 2020, 7, 2000261.

[6]

Kim, K. K.; Ha, I.; Kim, M.; Choi, J.; Won, P.; Jo, S.; Ko, S. H. A deep-learned skin sensor decoding the epicentral human motions. Nat. Commun. 2020, 11, 2149.

[7]

Kumar, K. S.; Chen, P. Y.; Ren, H. L. A review of printable flexible and stretchable tactile sensors. Research 2019, 2019, 3018568.

[8]

Deng, W. L.; Yang, T.; Jin, L.; Yan, C.; Huang, H. C.; Chu, X.; Wang, Z. X.; Xiong, D.; Tian, G.; Gao, Y. Y. et al. Cowpea-structured PVDF/ZnO nanofibers based flexible self-powered piezoelectric bending motion sensor towards remote control of gestures. Nano Energy 2019, 55, 516–525.

[9]

Wang, S. H.; Oh, J. Y.; Xu, J.; Tran, H.; Bao, Z. N. Skin-inspired electronics: An emerging paradigm. Acc. Chem. Res. 2018, 51, 1033–1045.

[10]

Liu, M. W.; Zhang, Y. J.; Wang, J. C.; Qin, N.; Yang, H.; Sun, K.; Hao, J.; Shu, L.; Liu, J. R.; Chen, Q. et al. A star–nose-like tactile–olfactory bionic sensing array for robust object recognition in non-visual environments. Nat. Commun. 2022, 13, 79.

[11]

Wang, M.; Yan, Z.; Wang, T.; Cai, P. Q.; Gao, S. Y.; Zeng, Y.; Wan, C. J.; Wang, H.; Pan, L.; Yu, J. C. et al. Gesture recognition using a bioinspired learning architecture that integrates visual data with somatosensory data from stretchable sensors. Nat. Electron. 2020, 3, 563–570.

[12]

Liu, K.; Chen, C.; Jafari, R.; Kehtarnavaz, N. Fusion of inertial and depth sensor data for robust hand gesture recognition. IEEE Sens. J. 2014, 14, 1898–1903.

[13]

Zhao, H. X.; Zhou, Y. L.; Cao, S. T.; Wang, Y. F.; Zhang, J. X.; Feng, S. X.; Wang, J. C.; Li, D. C.; Kong, D. S. Ultrastretchable and washable conductive microtextiles by coassembly of silver nanowires and elastomeric microfibers for epidermal human–machine interfaces. ACS Mater. Lett. 2021, 3, 912–920.

[14]

Hughes, J.; Spielberg, A.; Chounlakone, M.; Chang, G.; Matusik, W.; Rus, D. A simple, inexpensive, wearable glove with hybrid resistive-pressure sensors for computational sensing, proprioception, and task identification. Adv. Intell. Syst. 2020, 2, 2000002.

[15]

Kadumudi, F. B.; Hasany, M.; Pierchala, M. K.; Jahanshahi, M.; Taebnia, N.; Mehrali, M.; Mitu, C. F.; Shahbazi, M. A.; Zsurzsan, T. G.; Knott, A. et al. The manufacture of unbreakable bionics via multifunctional and self-healing silk-graphene hydrogels. Adv. Mater. 2021, 33, 2100047.

[16]

Duan, S. S.; Yang, H. Y.; Hong, J. L.; Li, Y. H.; Lin, Y. C.; Zhu, D.; Lei, W.; Wu, J. A skin-beyond tactile sensor as interfaces between the prosthetics and biological systems. Nano Energy 2022, 102, 107665.

[17]

Duan, S. S.; Lin, Y. C.; Wang, Z. H.; Tang, J. Y.; Li, Y. H.; Zhu, D.; Wu, J.; Tao, L.; Choi, C. H.; Sun, L. T. et al. Conductive porous MXene for bionic, wearable, and precise gesture motion sensors. Research 2021, 2021, 9861467.

[18]

Sundaram, S.; Kellnhofer, P.; Li, Y. Z.; Zhu, J. Y.; Torralba, A.; Matusik, W. Learning the signatures of the human grasp using a scalable tactile glove. Nature 2019, 569, 698–702.

[19]

Matsuhisa, N.; Inoue, D.; Zalar, P.; Jin, H.; Matsuba, Y.; Itoh, A.; Yokota, T.; Hashizume, D.; Someya, T. Printable elastic conductors by in situ formation of silver nanoparticles from silver flakes. Nat. Mater. 2017, 16, 834–840.

[20]

Zheng, W.; Xie, Y. X.; Zhang, B. H.; Zhou, J.; Zhang, J. T. Dexterous robotic grasping of delicate fruits aided with a multi-sensory e-glove and manual grasping analysis for damage-free manipulation. Comput. Electron. Agric. 2021, 190, 106472.

[21]

Carneiro, M. R.; Tavakoli, M. Wearable pressure mapping through piezoresistive C-PU foam and tailor-made stretchable e-textile. IEEE Sens. J. 2021, 21, 27374–27384.

[22]

Kim, M. K.; Parasuraman, R. N.; Wang, L.; Park, Y.; Kim, B.; Lee, S. J.; Lu, N. S.; Min, B. C.; Lee, C. H. Soft-packaged sensory glove system for human-like natural interaction and control of prosthetic hands. NPG Asia Mater. 2019, 11, 43.

[23]

He, Z. L.; Zhou, G. H.; Byun, J. H.; Lee, S. K.; Um, M. K.; Park, B.; Kim, T.; Lee, S. B.; Chou, T. W. Highly stretchable multi-walled carbon nanotube/thermoplastic polyurethane composite fibers for ultrasensitive, wearable strain sensors. Nanoscale 2019, 11, 5884–5890.

[24]

Eom, J.; Jaisutti, R.; Lee, H.; Lee, W.; Heo, J. S.; Lee, J. Y.; Park, S. K.; Kim, Y. H. Highly sensitive textile strain sensors and wireless user-interface devices using all-polymeric conducting fibers. ACS Appl. Mater. Interfaces 2017, 9, 10190–10197.

[25]

Li, G. Z.; Liu, S. Q.; Wang, L. Q.; Zhu, R. Skin-inspired quadruple tactile sensors integrated on a robot hand enable object recognition. Sci. Robot. 2020, 5, eabc8134.

[26]

Liu, L. P.; Jiao, Z. B.; Zhang, J. Q.; Wang, Y. C.; Zhang, C. C.; Meng, X. C.; Jiang, X. H.; Niu, S. C.; Han, Z. W.; Ren, L. Q. Bioinspired, superhydrophobic, and paper-based strain sensors for wearable and underwater applications. ACS Appl. Mater. Interfaces 2021, 13, 1967–1978.

[27]

Duan, S. S.; Lin, Y. C.; Zhang, C. Y.; Li, Y. H.; Zhu, D.; Wu, J.; Lei, W. Machine-learned, waterproof MXene fiber-based glove platform for underwater interactivities. Nano Energy 2022, 91, 106650.

[28]

Choi, Y.; Kang, K.; Son, D.; Shin, M. Molecular rationale for the design of instantaneous, strain-tolerant polymeric adhesive in a stretchable underwater human–machine interface. ACS Nano 2022, 16, 1368–1380.

[29]

Liu, X.; Zhang, Q.; Gao, G. H. Solvent-resistant and nonswellable hydrogel conductor toward mechanical perception in diverse liquid media. ACS Nano 2020, 14, 13709–13717.

[30]

Dai, Z. Y.; Chen, G.; Ding, S.; Lin, J.; Li, S. B.; Xu, Y.; Zhou, B. P. Facile formation of hierarchical textures for flexible, translucent, and durable superhydrophobic film. Adv. Funct. Mater. 2021, 31, 2008574.

[31]

Duan, S. S.; Wang, B. H.; Lin, Y. C.; Li, Y. H.; Zhu, D.; Wu, J.; Xia, J.; Lei, W.; Wang, B. P. Waterproof mechanically robust multifunctional conformal sensors for underwater interactive human–machine interfaces. Adv. Intell. Syst. 2021, 3, 2100056.

[32]

Ji, S. B.; Wan, C. J.; Wang, T.; Li, Q. S.; Chen, G.; Wang, J. W.; Liu, Z. Y.; Yang, H.; Liu, X. J.; Chen, X. D. Water-resistant conformal hybrid electrodes for aquatic endurable electrocardiographic monitoring. Adv. Mater. 2020, 32, 2001496.

[33]

Cao, Y.; Tan, Y. J.; Li, S.; Lee, W. W.; Guo, H. C.; Cai, Y. Q.; Wang, C.; Tee, B. C. K. Self-healing electronic skins for aquatic environments. Nat. Electron. 2019, 2, 75–82.

[34]

Tang, X. Y.; Yang, W. D.; Yin, S. R.; Tai, G. J.; Su, M.; Yang, J.; Shi, H. F.; Wei, D. P.; Yang, J. Controllable graphene wrinkle for a high-performance flexible pressure sensor. ACS Appl. Mater. Interfaces 2021, 13, 20448–20458.

[35]

Meng, K. Y.; Xiao, X.; Liu, Z. X.; Shen, S.; Tat, T.; Wang, Z. H.; Lu, C. Y.; Ding, W. B.; He, X. M.; Yang, J. et al. Kirigami-inspired pressure sensors for wearable dynamic cardiovascular monitoring. Adv. Mater. 2022, 34, 2202478.

[36]

Li, P.; Xie, L.; Su, M.; Wang, P. S.; Yuan, W.; Dong, C. H.; Yang, J. Skin-inspired large area iontronic pressure sensor with ultra-broad range and high sensitivity. Nano Energy 2022, 101, 107571.

[37]

Tai, G. J.; Wei, D. P.; Su, M.; Li, P.; Xie, L.; Yang, J. Force-sensitive interface engineering in flexible pressure sensors: A review. Sensors 2022, 22, 2652.

[38]

Ding, C.; Wang, J. Y.; Yuan, W.; Zhou, X. J.; Lin, Y.; Zhu, G. Q.; Li, J.; Zhong, T.; Su, W. M.; Cui, Z. Durability study of thermal transfer printed textile electrodes for wearable electronic applications. ACS Appl. Mater. Interfaces 2022, 14, 29144–29155.

[39]

Niu, B.; Yang, S.; Hua, T.; Tian, X.; Koo, M. Facile fabrication of highly conductive, waterproof, and washable e-textiles for wearable applications. Nano Res. 2021, 14, 1043–1052.

[40]

Yang, Y. N.; Shi, L. J.; Cao, Z. R.; Wang, R. R.; Sun, J. Strain sensors with a high sensitivity and a wide sensing range based on a Ti3C2Tx (MXene) nanoparticle-nanosheet hybrid network. Adv. Funct. Mater. 2019, 29, 1807882.

[41]

Cheng, Y.; Wang, R. R.; Sun, J.; Gao, L. A stretchable and highly sensitive graphene-based fiber for sensing tensile strain, bending, and torsion. Adv. Mater. 2015, 27, 7365–7371.

[42]

Li, Y. Q.; Zhu, W. B.; Yu, X. G.; Huang, P.; Fu, S. Y.; Hu, N.; Liao, K. Multifunctional wearable device based on flexible and conductive carbon sponge/polydimethylsiloxane composite. ACS Appl. Mater. Interfaces 2016, 8, 33189–33196.

[43]

Oberoi, S.; Sonawane, D.; Kumar, P. Effect of strain rate and filler size on mechanical behavior of a Cu filled elastomer based composite. Compos. Sci. Technol. 2016, 127, 185–192.

[44]

Zhou, W. P.; Yu, Y. C.; Bai, S.; Hu, A. M. Laser direct writing of waterproof sensors inside flexible substrates for wearable electronics. Opt. Laser Technol. 2021, 135, 106694.

[45]

Englehart, K.; Hudgins, B. A robust, real-time control scheme for multifunction myoelectric control. IEEE Trans. Biomed. Eng. 2003, 50, 848–854.

[46]

Smith, L. H.; Hargrove, L. J.; Lock, B. A.; Kuiken, T. A. Determining the optimal window length for pattern recognition-based myoelectric control: Balancing the competing effects of classification error and controller delay. IEEE Trans. Neural Syst. Rehabil. Eng. 2011, 19, 186–192.

[47]

Moin, A.; Zhou, A.; Rahimi, A.; Menon, A.; Benatti, S.; Alexandrov, G.; Tamakloe, S.; Ting, J.; Yamamoto, N.; Khan, Y. et al. A wearable biosensing system with in-sensor adaptive machine learning for hand gesture recognition. Nat. Electron. 2021, 4, 54–63.

Nano Research
Pages 5480-5489
Cite this article:
Duan S, Wang J, Lin Y, et al. Highly durable machine-learned waterproof electronic glove based on low-cost thermal transfer printing for amphibious wearable applications. Nano Research, 2023, 16(4): 5480-5489. https://doi.org/10.1007/s12274-022-5077-9
Topics:

3065

Views

13

Crossref

19

Web of Science

12

Scopus

0

CSCD

Altmetrics

Received: 09 August 2022
Revised: 15 September 2022
Accepted: 18 September 2022
Published: 13 December 2022
© Tsinghua University Press 2022
Return