Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
In one-dimensional semiconductors such as conjugated polymers and semiconducting single-walled carbon nanotubes (s-SWCNTs), injected charge carriers (electrons or holes) can have profound impacts on both electronic conductivity and optical spectra, even at low carrier densities. Understanding charge-related spectral features is a key fundamental challenge with important technological implications. Here, we employ a systematic suite of experimental and theoretical tools to understand the mid-infrared charge signatures of heavily p-type doped polymer-wrapped s-SWCNTs. Across a broad range of nanotube diameters, we find that hole charge carriers induce strong Fano anti-resonances in mid-infrared transmission spectra that correspond to defect-related (D-band) and in-plane tangential (G-band) Raman-active vibrational modes, along with anti-resonances arising from infrared (IR)-active polymer and SWCNT modes. We employ 13C isotope-labeled s-SWCNTs and a removable wrapping polymer to clarify the relative intensities, energies, and sources of all observed anti-resonances. Simulations performed with the “amplitude mode model” are used to quantitatively reproduce Raman spectra and also help to explain the outsized intensity of the D-band anti-resonance, relative to the G-band, observed for both moderately and degenerately doped s-SWCNTs. The results provide a framework for future studies of ground- and excited-state charge carriers in s-SWCNTs and a variety of low-dimensional materials.
Habisreutinger, S. N.; Blackburn, J. L. Carbon nanotubes in high-performance perovskite photovoltaics and other emerging optoelectronic applications. J. Appl. Phys. 2021, 129, 010903.
Massetti, M.; Jiao, F.; Ferguson, A. J.; Zhao, D.; Wijeratne, K.; Würger, A.; Blackburn, J. L.; Crispin, X.; Fabiano, S. Unconventional thermoelectric materials for energy harvesting and sensing applications. Chem. Rev. 2021, 121, 12465–12547.
Peng, L. M.; Zhang, Z. Y.; Qiu, C. G. Carbon nanotube digital electronics. Nat. Electron. 2019, 2, 499–505.
Hao, J.; Nanayakkara, S. U.; Tervo, E. J.; Blackburn, J. L.; Ferguson, A. J. High-performance carbon nanotube electronic ratchets. Energy Environ. Sci. 2021, 14, 5457–5468.
Zorn, N. F.; Zaumseil, J. Charge transport in semiconducting carbon nanotube networks. Appl. Phys. Rev. 2021, 8, 041318.
Eckstein, K. H.; Hirsch, F.; Martel, R.; Hertel, T. Infrared study of charge carrier confinement in doped (6,5) carbon nanotubes. J. Phys. Chem. C 2021, 125, 5700–5707.
Park, J.; Reid, O. G.; Blackburn, J. L.; Rumbles, G. Photoinduced spontaneous free-carrier generation in semiconducting single-walled carbon nanotubes. Nat. Commun. 2015, 6, 8809.
Burdanova, M. G.; Tsapenko, A. P.; Kharlamova, M. V.; Kauppinen, E. I.; Gorshunov, B. P.; Kono, J.; Lloyd-Hughes, J. A review of the terahertz conductivity and photoconductivity of carbon nanotubes and heteronanotubes. Adv. Opt. Mater. 2021, 9, 2101042.
Eckstein, K. H.; Oberndorfer, F.; Achsnich, M. M.; Schöppler, F.; Hertel, T. Quantifying doping levels in carbon nanotubes by optical spectroscopy. J. Phys. Chem. C 2019, 123, 30001–30006.
Mansour, A. E.; Lungwitz, D.; Schultz, T.; Arvind, M.; Valencia, A. M.; Cocchi, C.; Opitz, A.; Neher, D.; Koch, N. The optical signatures of molecular-doping induced polarons in poly(3-Hexylthiophene-2,5-diyl): Individual polymer chains versus aggregates. J. Mater. Chem. C 2020, 8, 2870–2879.
Spano, F. C. The spectral signatures of frenkel polarons in H- and J-aggregates. Acc. Chem. Res. 2010, 43, 429–439.
Zaumseil, J. Semiconducting single-walled carbon nanotubes or very rigid conjugated polymers: A comparison. Adv. Electron. Mater. 2019, 5, 1800514.
Horovitz, B. Infrared activity of peierls systems and application to polyacetylene. Solid State Commun. 1982, 41, 729–734.
Vardeny, Z.; Ehrenfreund, E.; Brafman, O.; Horovitz, B. Resonant Raman scattering from amplitude modes in trans-(CH)x and -(CD)x. Phys. Rev. Lett. 1983, 51, 2326–2329.
Vardeny, Z. Photoinduced Ir-active vibrations in trans-(CD)x: A three-mode system. Phys. Rev. Lett. 1983, 51, 1221.
Vardeny, Z.; Orenstein, J.; Baker, G. L. Photoinduced infrared activity in polyacetylene. Phys. Rev. Lett. 1983, 50, 2032–2035.
Brafman, O.; Vardeny, Z.; Ehrenfreund, E. Isotope effect in resonant Raman scattering and induced IR spectra of trans-polyacetylene. Solid State Commun. 1985, 53, 615–619.
Vardeny, Z.; Ehrenfreund, E.; Brafman, O.; Horovitz, B. Classification of disorder and extrinsic order in polymers by resonant Raman scattering. Phys. Rev. Lett. 1985, 54, 75–78.
Horovitz, B.; Vardeny, Z.; Ehrenfreund, E.; Brafman, O. Raman scattering from charge-density waves and application to polyacetylene. J. Phys. C: Solid State Phys. 1986, 19, 7291–7305.
Ehrenfreund, E.; Vardeny, Z.; Brafman, O.; Horovitz, B. Amplitude and phase modes in trans-polyacetylene: Resonant Raman scattering and induced infrared activity. Phys. Rev. B 1987, 36, 1535–1553.
Ozaki, M.; Ehrenfreund, E.; Benner, R. E.; Barton, T. J.; Yoshino, K.; Vardeny, Z. V. Dispersion of resonant Raman scattering in π-conjugated polymers: Role of the even parity excitons. Phys. Rev. Lett. 1997, 79, 1762–1765.
Österbacka, R.; Jiang, X. M.; An, C. P.; Horovitz, B.; Vardeny, Z. V. Photoinduced quantum interference antiresonances in π-conjugated polymers. Phys. Rev. Lett. 2002, 88, 226401.
Baniya, S.; Vardeny, S. R.; Lafalce, E.; Peygambarian, N.; Vardeny, Z. V. Amplitude-mode spectroscopy of charge excitations in PTB7 π-conjugated donor-acceptor copolymer for photovoltaic applications. Phys. Rev. Appl. 2017, 7, 064031.
Lapointe, F.; Gaufrès, É.; Tremblay, I.; Tang, N. Y. W.; Martel, R.; Desjardins, P. Fano resonances in the midinfrared spectra of single-walled carbon nanotubes. Phys. Rev. Lett. 2012, 109, 097402.
Lapointe, F.; Rousseau, B.; Aymong, V.; Nguyen, M.; Biron, M.; Gaufrès, E.; Choubak, S.; Han, Z.; Bouchiat, V.; Desjardins, P. et al. Antiresonances in the mid-infrared vibrational spectrum of functionalized graphene. J. Phys. Chem. C 2017, 121, 9053–9062.
Ferguson, A. J.; Reid, O. G.; Nanayakkara, S. U.; Ihly, R.; Blackburn, J. L. Efficiency of charge-transfer doping in organic semiconductors probed with quantitative microwave and direct-current conductance. J. Phys. Chem. Lett. 2018, 9, 6864–6870.
Hao, J.; Kim, Y. H.; Habisreutinger, S. N.; Harvey, S. P.; Miller, E. M.; Foradori, S. M.; Arnold, M. S.; Song, Z. N.; Yan, Y. F.; Luther, J. M. et al. Low-energy room-temperature optical switching in mixed-dimensionality nanoscale perovskite heterojunctions. Sci. Adv. 2021, 7, eabf1959.
Matsunaga, R.; Matsuda, K.; Kanemitsu, Y. Observation of charged excitons in hole-doped carbon nanotubes using photoluminescence and absorption spectroscopy. Phys. Rev. Lett. 2011, 106, 037404.
Arias, D. H.; Sulas-Kern, D. B.; Hart, S. M.; Kang, H. S.; Hao, J.; Ihly, R.; Johnson, J. C.; Blackburn, J. L.; Ferguson, A. J. Effect of nanotube coupling on exciton transport in polymer-free monochiral semiconducting carbon nanotube networks. Nanoscale 2019, 11, 21196–21206.
Blackburn, J. L. Semiconducting single-walled carbon nanotubes in solar energy harvesting. ACS Energy Lett. 2017, 2, 1598–1613.
MacLeod, B. A.; Stanton, N. J.; Gould, I. E.; Wesenberg, D.; Ihly, R.; Owczarczyk, Z. R.; Hurst, K. E.; Fewox, C. S.; Folmar, C. N.; Hughes, K. H. et al. Large N- and P-type thermoelectric power factors from doped semiconducting single-walled carbon nanotube thin films. Energy Environ. Sci. 2017, 10, 2168–2179.
Blackburn, J. L.; Kang, S. D.; Roos, M. J.; Norton-Baker, B.; Miller, E. M.; Ferguson, A. J. Intrinsic and extrinsically limited thermoelectric transport within semiconducting single-walled carbon nanotube networks. Adv. Electron. Mater. 2019, 5, 1800910.
Gregory, S. A.; Hanus, R.; Atassi, A.; Rinehart, J. M.; Wooding, J. P.; Menon, A. K.; Losego, M. D.; Snyder, G. J.; Yee, S. K. Quantifying charge carrier localization in chemically doped semiconducting polymers. Nat. Mater. 2021, 20, 1414–1421.
Norton-Baker, B.; Ihly, R.; Gould, I. E.; Avery, A. D.; Owczarczyk, Z. R.; Ferguson, A. J.; Blackburn, J. L. Polymer-free carbon nanotube thermoelectrics with improved charge carrier transport and power factor. ACS Energy Lett. 2016, 1, 1212–1220.
Engtrakul, C.; Davis, M. F.; Mistry, K.; Larsen, B. A.; Dillon, A. C.; Heben, M. J.; Blackburn, J. L. Solid-state 13C nmr assignment of carbon resonances on metallic and semiconducting single-walled carbon nanotubes. J. Am. Chem. Soc. 2010, 132, 9956–9957.
Zhou, J.; Dong, J. M. Infrared properties of single-walled carbon nanotubes calculated from first principles. J. Appl. Phys. 2010, 107, 024306.
Pekker, Á.; Botos, Á.; Rusznyák, Á.; Koltai, J.; Kürti, J.; Kamarás, K. Vibrational signatures in the infrared spectra of single- and double-walled carbon nanotubes and their diameter dependence. J. Phys. Chem. Lett. 2011, 2, 2079–2082.
Dobardžić, E.; Milošević, I.; Nikolić, B.; Vuković, T.; Damnjanović, M. Single-wall carbon nanotubes phonon spectra: Symmetry-based calculations. Phys. Rev. B 2003, 68, 045408.
Avery, A. D.; Zhou, B. H.; Lee, J.; Lee, E. S.; Miller, E. M.; Ihly, R.; Wesenberg, D.; Mistry, K. S.; Guillot, S. L.; Zink, B. L. et al. Tailored semiconducting carbon nanotube networks with enhanced thermoelectric properties. Nat. Energy 2016, 1, 16033.
Kahmann, S.; Rios, J. M. S.; Zink, M.; Allard, S.; Scherf, U.; Dos Santos, M. C.; Brabec, C. J.; Loi, M. A. Excited-state interaction of semiconducting single-walled carbon nanotubes with their wrapping polymers. J. Phys. Chem. Lett. 2017, 8, 5666–5672.
Zólyomi, V.; Kürti, J.; Grüneis, A.; Kuzmany, H. Origin of the fine structure of the Raman D band in single-wall carbon nanotubes. Phys. Rev. Lett. 2003, 90, 157401.