AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Synergistic piezoelectricity enhanced BaTiO3/polyacrylonitrile elastomer-based highly sensitive pressure sensor for intelligent sensing and posture recognition applications

Junbin Yu§( )Shuai Xian§Zhenpeng ZhangXiaojuan HouJian HeJiliang MuWenping GengXiaojun QiaoLe ZhangXiujian Chou( )
Science and Technology on Electronic Test and Measurement Laboratory, North University of China, Taiyuan 030051, China

§ Junbin Yu and Shuai Xian contributed equally to this work.

Show Author Information

Graphical Abstract

An all-in-one highly sensitive pressure sensor is reported by using the synergistic piezoelectricity of BaTiO3 (BTO) and polyacrylonitrile (PAN). With the help of home-made circuit system and intelligent algorithm, the developed sensor realizes the intelligent sensing and recognition for various motion

Abstract

Designing stretchable and skin-conformal self-powered sensors for intelligent sensing and posture recognition is challenging. Here, based on a multi-force mixing and vulcanization process, as well as synergistically piezoelectricity of BaTiO3 and polyacrylonitrile, an all-in-one, stretchable, and self-powered elastomer-based piezo-pressure sensor (ASPS) with high sensitivity is reported. The ASPS presents excellent sensitivity (0.93 V/104 Pa of voltage and 4.92 nA/104 Pa of current at a pressure of 10–200 kPa) and high durability (over 10,000 cycles). Moreover, the ASPS exhibits a wide measurement range, good linearity, rapid response time, and stable frequency response. All components were fabricated using silicone, affording satisfactory skin-conformality for sensing postures. Through cooperation with a homemade circuit and artificial intelligence algorithm, an information processing strategy was proposed to realize intelligent sensing and recognition. The home-made circuit achieves the acquisition and wireless transmission of ASPS signals (transmission distance up to 50 m), and the algorithm realizes the classification and identification of ASPS signals (accuracy up to 99.5%). This study proposes not only a novel fabrication method for developing self-powered sensors, but also a new information processing strategy for intelligent sensing and recognition, which offers significant application potential in human–machine interaction, physiological analysis, and medical research.

Electronic Supplementary Material

Video
12274_2022_5084_MOESM1_ESM.mp4
12274_2022_5084_MOESM2_ESM.mp4
12274_2022_5084_MOESM3_ESM.mp4
Download File(s)
12274_2022_5084_MOESM1_ESM.pdf (1.9 MB)

References

[1]

Chen, X. L.; Parida, K.; Wang, J. X.; Xiong, J. Q.; Lin, M. F.; Shao, J. Y.; Lee, P. S. A stretchable and transparent nanocomposite nanogenerator for self-powered physiological monitoring. ACS Appl. Mater. Interfaces 2017, 9, 42200–42209.

[2]

Ma, Y. N.; Liu, N. S.; Li, L. Y.; Hu, X. K.; Zou, Z. G.; Wang, J. B.; Luo, S. J.; Gao, Y. H. A highly flexible and sensitive piezoresistive sensor based on MXene with greatly changed interlayer distances. Nat. Commun. 2017, 8, 1207.

[3]

Cao, Y. L.; Guo, Y. B.; Chen, Z. X.; Yang, W. F.; Li, K. R.; He, X. Y.; Li, J. M. Highly sensitive self-powered pressure and strain sensor based on crumpled MXene film for wireless human motion detection. Nano Energy 2022, 92, 106689.

[4]

Li, C.; Cong, S.; Tian, Z. N.; Song, Y. Z.; Yu, L. H.; Lu, C.; Shao, Y. L.; Li, J.; Zou, G. F.; Rümmeli, M. H. et al. Flexible perovskite solar cell-driven photo-rechargeable lithium-ion capacitor for self-powered wearable strain sensors. Nano Energy 2019, 60, 247–256.

[5]

Hong, G. S.; Lieber, C. M. Novel electrode technologies for neural recordings. Nat. Rev. Neurosci. 2019, 20, 330–345.

[6]

Kozai, T. D. Y.; Jaquins-Gerstl, A. S.; Vazquez, A. L.; Michael, A. C.; Cui, X. T. Brain tissue responses to neural implants impact signal sensitivity and intervention strategies. ACS Chem. Neurosci. 2015, 6, 48–67.

[7]

Yu, L. H.; Yi, Y. Y.; Yao, T.; Song, Y. Z.; Chen, Y. R.; Li, Q. C.; Xia, Z.; Wei, N.; Tian, Z. N.; Nie, B. Q. et al. All VN-graphene architecture derived self-powered wearable sensors for ultrasensitive health monitoring. Nano Res. 2019, 12, 331–338.

[8]

Kou, L.; Huang, T. Q.; Zheng, B. N.; Han, Y.; Zhao, X. L.; Gopalsamy, K.; Sun, H. Y.; Gao, C. Coaxial wet-spun yarn supercapacitors for high-energy density and safe wearable electronics. Nat. Commun. 2014, 5, 3754.

[9]

Ren, J.; Zhang, Y.; Bai, W. Y.; Chen, X. L.; Zhang, Z. T.; Fang, X.; Weng, W.; Wang, Y. G.; Peng, H. S. Elastic and wearable wire-shaped lithium-ion battery with high electrochemical performance. Angew. Chem., Int. Ed. 2014, 53, 7958.

[10]

Yu, H.; Li, N.; Zhao, N. How far are we from achieving self-powered flexible health monitoring systems: An energy perspective. Adv. Energy Mater. 2021, 11, 2002646.

[11]

Kim, K.; Choi, J. Y.; Kim, T.; Cho, S. H.; Chung, H. J. A role for graphene in silicon-based semiconductor devices. Nature 2011, 479, 338–344.

[12]

Vivien, L.; Osmond, J.; Fédéli, J. M.; Marris-Morini, D.; Crozat, P.; Damlencourt, J. F.; Cassan, E.; Lecunff, Y.; Laval, S. 42 GHz p.i.n Germanium photodetector integrated in a silicon-on-insulator waveguide. Opt. Express 2009, 17, 6252–6257.

[13]

Shi, J. D.; Fang, Y. Flexible and implantable microelectrodes for chronically stable neural interfaces. Adv. Mater. 2019, 31, 1804895.

[14]

Tat, T.; Libanori, A.; Au, C.; Yau, A.; Chen, J. Advances in triboelectric nanogenerators for biomedical sensing. Biosens. Bioelectron. 2021, 171, 112714.

[15]

Zhou, X. R.; Parida, K.; Halevi, O.; Liu, Y. Z.; Xiong, J. Q.; Magdassi, S.; Lee, P. S. All 3D-printed stretchable piezoelectric nanogenerator with non-protruding kirigami structure. Nano Energy 2020, 72, 104676.

[16]

Zhang, Y. Z.; Wu, M. J.; Zhu, Q. Y.; Wang, F. Y.; Su, H. X.; Li, H.; Diao, C. L.; Zheng, H. W.; Wu, Y. H.; Wang, Z. L. Performance enhancement of flexible piezoelectric nanogenerator via doping and rational 3D structure design for self-powered mechanosensational system. Adv. Funct. Mater. 2019, 29, 1904259.

[17]

Li, Q.; Liu, J.; Yang, B.; Lu, L. J.; Yi, Z. R.; Tian, Y. W.; Liu, J. Q. Highly sensitive surface acoustic wave flexible strain sensor. IEEE Electron Device Lett. 2019, 40, 961–964.

[18]

Li, B. M.; Ju, B.; Zhou, Y.; Knowles, C. G.; Rosenberg, Z.; Flewwellin, T. J.; Kose, F.; Jur, J. S. Airbrushed PVDF-TrFE fibrous sensors for E-textiles. ACS Appl. Electron. Mater. 2021, 3, 5307–5326.

[19]

Park, D. Y.; Joe, D. J.; Kim, D. H.; Park, H.; Han, J. H.; Jeong, C. K.; Park, H.; Park, J. G.; Joung, B.; Lee, K. J. Self-powered real-time arterial pulse monitoring using ultrathin epidermal piezoelectric sensors. Adv. Mater. 2017, 29, 1702308.

[20]

Tian, G.; Deng, W. L.; Gao, Y. Y.; Xiong, D.; Yan, C.; He, X. B.; Yang, T.; Jin, L.; Chu, X.; Zhang, H. T. et al. Rich lamellar crystal baklava-structured PZT/PVDF piezoelectric sensor toward individual table tennis training. Nano Energy 2019, 59, 574–581.

[21]

Luo, C. X.; Hu, S. H.; Xia, M. J.; Li, P. W.; Hu, J.; Li, G.; Jiang, H. B.; Zhang, W. D. A flexible lead-free BaTiO3/PDMS/C composite nanogenerator as a piezoelectric energy harvester. Energy Technol. 2018, 6, 922–927.

[22]

Kim, G. H.; Hong, S. M.; Seo, Y. Piezoelectric properties of poly(vinylidene fluoride) and carbon nanotube blends: β-phase development. Phys. Chem. Chem. Phys. 2009, 11, 10506–10512.

[23]

Lei, T. P.; Yu, L. K.; Zheng, G. F.; Wang, L. Y.; Wu, D. Z.; Sun, D. H. Electrospinning-induced preferred dipole orientation in PVDF fibers. J. Mater. Sci. 2015, 50, 4342–4347.

[24]

Sun, Y.; Liu, Y.; Zheng, Y. D.; Li, Z. J.; Fan, J.; Wang, L.; Liu, X. Q.; Liu, J.; Shou, W. Enhanced energy harvesting ability of ZnO/PAN hybrid piezoelectric nanogenerators. ACS Appl. Mater. Interfaces 2020, 12, 54936–54945.

[25]

Wang, Q. Q.; Du, Y. Z.; Feng, Q.; Huang, F. L.; Lu, K. Y.; Liu, J. Y.; Wei, Q. F. Nanostructures and surface nanomechanical properties of polyacrylonitrile/graphene oxide composite nanofibers by electrospinning. J. Appl. Polymer Sci. 2013, 128, 1152–1157.

[26]

Minagawa, M.; Miyano, K.; Takahashi, M.; Yoshii, F. Infrared characteristic absorption bands of highly isotactic poly(acrylonitrile). Macromolecules 1988, 21, 2387–2391.

[27]

Hobson, R. J.; Windle, A. H. Crystalline structure of atactic polyacrylonitrile. Macromolecules 1993, 26, 6903–6907.

[28]

Wang, W. Y.; Zheng, Y. D.; Jin, X.; Sun, Y.; Lu, B. B.; Wang, H. X.; Fang, J.; Shao, H.; Lin, T. Unexpectedly high piezoelectricity of electrospun polyacrylonitrile nanofiber membranes. Nano Energy 2019, 56, 588–594.

[29]

Rizzo, P.; Auriemma, F.; Guerra, G.; Petraccone, V.; Corradini, P. Conformational disorder in the pseudohexagonal form of atactic polyacrylonitrile. Macromolecules 1996, 29, 8852–8861.

[30]

Minagawa, M.; Taira, T.; Yabuta, Y.; Nozaki, K.; Yoshii, F. An anomalous tacticity-crystallinity relationship:  A WAXD study of stereoregular isotactic (83-25) poly(acrylonitrile) powder prepared by urea clathrate polymerization. Macromolecules 2001, 34, 3679–3683.

[31]

Yuan, L. J.; Fan, W.; Yang, X.; Ge, S. B.; Xia, C. L.; Foong, S. Y.; Liew, R. K.; Wang, S. J.; Van Le, Q.; Lam, S. S. Piezoelectric PAN/BaTiO3 nanofiber membranes sensor for structural health monitoring of real-time damage detection in composite. Compos. Commun. 2021, 25, 100680.

[32]

Qi, Y.; Kim, J.; Nguyen, T. D.; Lisko, B.; Purohit, P. K.; McAlpine, M. C. Enhanced piezoelectricity and stretchability in energy harvesting devices fabricated from buckled PZT ribbons. Nano Lett. 2011, 11, 1331–1336.

[33]

Palosaari, J.; Leinonen, M.; Hannu, J.; Juuti, J.; Jantunen, H. Energy harvesting with a cymbal type piezoelectric transducer from low frequency compression. J. Electroceram. 2012, 28, 214–219.

[34]

Li, W. B.; Wu, N.; Zhong, J. W.; Zhong, Q. Z.; Zhao, S.; Wang, B.; Cheng, X. F.; Li, S. L.; Liu, K.; Hu, B. et al. Theoretical study of cellular piezoelectret generators. Adv. Funct. Mater. 2016, 26, 1964–1974.

[35]

Yang, T.; Pan, H.; Tian, G.; Zhang, B. B.; Xiong, D.; Gao, Y.; Yan, C.; Chu, X.; Chen, N. J.; Zhong, S. et al. Hierarchically structured PVDF/ZnO core–shell nanofibers for self-powered physiological monitoring electronics. Nano Energy 2020, 72, 104706.

[36]

Yang, Y.; Pan, H.; Xie, G. Z.; Jiang, Y. D.; Chen, C. X.; Su, Y. J.; Wang, Y.; Tai, H. L. Flexible piezoelectric pressure sensor based on polydopamine-modified BaTiO3/PVDF composite film for human motion monitoring. Sens. Actuators A:Phys. 2020, 301, 111789.

[37]

Liu, Q. J.; Jin, L.; Zhang, P.; Zhang, B. B.; Li, Y. X.; Xie, S.; Li, X. H. Nanofibrous grids assembled orthogonally from direct-written piezoelectric fibers as self-powered tactile sensors. ACS Appl. Mater. Interfaces 2021, 13, 10623–10631.

[38]

Jiang, J.; Tu, S. J.; Fu, R. F.; Li, J. J.; Hu, F.; Yan, B.; Gu, Y. C.; Chen, S. Flexible piezoelectric pressure tactile sensor based on electrospun BaTiO3/poly(vinylidene fluoride) nanocomposite membrane. ACS Appl. Mater. Interfaces 2020, 12, 33989–33998.

[39]

Wang, J.; Jiang, J. F.; Zhang, C. C.; Sun, M. Y.; Han, S. W.; Zhang, R. T.; Liang, N.; Sun, D. H.; Liu, H. Energy-efficient, fully flexible, high-performance tactile sensor based on piezotronic effect: Piezoelectric signal amplified with organic field-effect transistors. Nano Energy 2020, 76, 105050.

[40]

Zhu, M. L.; Shi, Q. F.; He, T. Y.; Yi, Z. R.; Ma, Y. M.; Yang, B.; Chen, T.; Lee, C. Self-powered and self-functional cotton sock using piezoelectric and triboelectric hybrid mechanism for healthcare and sports monitoring. ACS Nano 2019, 13, 1940–1952.

[41]

Fuh, Y. K.; Huang, Z. M.; Wang, B. S.; Li, S. C. Self-powered active sensor with concentric topography of piezoelectric fibers. Nanoscale Res. Lett. 2017, 12, 44.

Nano Research
Pages 5490-5502
Cite this article:
Yu J, Xian S, Zhang Z, et al. Synergistic piezoelectricity enhanced BaTiO3/polyacrylonitrile elastomer-based highly sensitive pressure sensor for intelligent sensing and posture recognition applications. Nano Research, 2023, 16(4): 5490-5502. https://doi.org/10.1007/s12274-022-5084-x
Topics:

5613

Views

106

Crossref

108

Web of Science

106

Scopus

1

CSCD

Altmetrics

Received: 12 August 2022
Revised: 12 September 2022
Accepted: 20 September 2022
Published: 09 November 2022
© Tsinghua University Press 2022
Return