AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Much enhanced electromagnetic wave absorbing properties from the synergistic effect of graphene/γ-graphyne heterostructure in both gigahertz and terahertz band ranges

Zhiwei ZhangZhuo LiLun XiaRuofeng WangYishu CaoZheng ChengYi Huang( )
National Institute for Advanced Materials, Tianjin Key Laboratory of Metal and Molecule Based Material Chemistry, Key Laboratory of Functional Polymer Materials, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Materials Science and Engineering, Nankai University, Tianjin 300350, China
Show Author Information

Graphical Abstract

This work provides encouraging findings, which are also instructive for the potential advantages of graphyne-based materials as highly efficient electromagnetic wave (EMW) absorbers in both gigahertz and terahertz band ranges.

Abstract

Exploring advanced electromagnetic wave (EMW) absorbers is one of the most feasible ways to solve the increasing electromagnetic pollution in both military and civil fields. In this work, γ-graphyne (γ-GY) is synthesized by a mechanochemical route using CaC2 and hexabromobenzene (PhBr6). Then three-dimensional (3D) reduced graphene oxide/γ-GY (RGO/GY) heterostructures are prepared through facile solvothermal self-assembly and subsequent thermal reduction. The influences of calcination temperature and the content of γ-GY of the composite on EMW absorption performance are fully investigated. The minimum reflection loss (RL) value of the RGO/GY composite foam is −71.73 dB at 10.48 GHz with the matching thickness of 3.54 mm, and the effective absorption bandwidth (EAB) less than −10 dB is 7.36 GHz. Moreover, excellent terahertz (THz) absorption property is also obtained at 0.2–1.6 THz. The RL of 84.08 dB is acquired, and the EAB covers 100% of the entire measured bandwidth. In addition, the composite is also a promising anticorrosive EMW absorber. This work provides encouraging findings, which are also instructive for the potential advantages of graphyne-based materials as highly efficient EMW absorbers in both gigahertz and terahertz band ranges.

Electronic Supplementary Material

Download File(s)
12274_2022_5093_MOESM1_ESM.pdf (936.7 KB)

References

[1]

Gu, W. H.; Lv, J.; Quan, B.; Liang, X. H.; Zhang, B. S.; Ji, G. B. Achieving MOF-derived one-dimensional porous ZnO/C nanofiber with lightweight and enhanced microwave response by an electrospinning method. J. Alloys Compd. 2019, 806, 983–991.

[2]

Liang, L. Y.; Yang, R. S.; Han, G. J.; Feng, Y. Z.; Zhao, B.; Zhang, R.; Wang, Y. M.; Liu, C. T. Enhanced electromagnetic wave-absorbing performance of magnetic nanoparticles-anchored 2D Ti3C2Tx MXene. ACS Appl. Mater. Interfaces 2020, 12, 2644–2654.

[3]

Yang, N.; Luo, Z. X.; Zhu, G. R.; Chen, S. C.; Wang, X. L.; Wu, G.; Wang, Y. Z. Ultralight three-dimensional hierarchical cobalt nanocrystals/N-doped CNTs/carbon sponge composites with a hollow skeleton toward superior microwave absorption. ACS Appl. Mater. Interfaces 2019, 11, 35987–35998.

[4]

Qiu, Y.; Lin, Y.; Yang, H. B.; Wang, L.; Wang, M. Q.; Wen, B. Hollow Ni/C microspheres derived from Ni-metal organic framework for electromagnetic wave absorption. Chem. Eng. J. 2020, 383, 123207.

[5]

Li, J.; Miao, P.; Chen, K. J.; Cao, J. W.; Liang, J.; Tang, Y. S.; Kong, J. Highly effective electromagnetic wave absorbing prismatic Co/C nanocomposites derived from cubic metal–organic framework. Compos. Part B Eng. 2020, 182, 107613.

[6]

Wang, S. J.; Li, D. S.; Zhou, Y.; Jiang, L. Hierarchical Ti3C2Tx MXene/Ni chain/ZnO array hybrid nanostructures on cotton fabric for durable self-cleaning and enhanced microwave absorption. ACS Nano 2020, 14, 8634–8645.

[7]

Deng, B. W.; Xiang, Z.; Xiong, J.; Liu, Z. C.; Yu, L. Z.; Lu, W. Sandwich-like Fe&TiO2@C nanocomposites derived from MXene/Fe-MOFs hybrids for electromagnetic absorption. Nano-Micro Lett. 2020, 12, 55.

[8]

Chen, Q. L.; Li, L. Y.; Wang, Z. L.; Ge, Y. C.; Zhou, C. S.; Yi, J. H. Synthesis and enhanced microwave absorption performance of CIP@SiO2@Mn0.6Zn0.4Fe2O4 ferrite composites. J. Alloys Compd. 2019, 779, 720–727.

[9]

Liu, P. J.; Yao, Z. J.; Zhou, J. T.; Yang, Z. H.; Kong, L. B. Small magnetic Co-doped NiZn ferrite/graphene nanocomposites and their dual-region microwave absorption performance. J. Mater. Chem. C 2016, 4, 9738–9749.

[10]

Li, Z. J.; Hou, Z. L.; Song, W. L.; Liu, X. D.; Cao, W. Q.; Shao, X. H.; Cao, M. S. Unusual continuous dual absorption peaks in Ca-doped BiFeO3 nanostructures for broadened microwave absorption. Nanoscale 2016, 8, 10415–10424.

[11]

Jeon, S.; Kim, J.; Kim, K. H. Microwave absorption properties of graphene oxide capsulated carbonyl iron particles. Appl. Surf. Sci. 2019, 475, 1065–1069.

[12]

Zuo, Y. X.; Su, X. R.; Li, X. W.; Yao, Z. J.; Yu, T. T.; Zhou, J. T.; Li, J.; Lu, J.; Ding, J. Multimaterial 3D-printing of graphene/Li0.35Zn0.3Fe2.35O4 and graphene/carbonyl iron composites with superior microwave absorption properties and adjustable bandwidth. Carbon 2020, 167, 62–74.

[13]

Jiang, Y.; Chen, Y.; Liu, Y. J.; Sui, G. X. Lightweight spongy bone-like graphene@SiC aerogel composites for high-performance microwave absorption. Chem. Eng. J. 2018, 337, 522–531.

[14]

Shao, G.; Liang, J. F.; Zhao, W. Y.; Zhao, B.; Liu, W.; Wang, H. L.; Fan, B. B.; Xu, H. L.; Lu, H. X.; Wang, Y. G. et al. Co decorated polymer-derived SiCN ceramic aerogel composites with ultrabroad microwave absorption performance. J. Alloys Compd. 2020, 813, 152007.

[15]

Liu, Q. H.; Cao, Q.; Bi, H.; Liang, C. Y.; Yuan, K. P.; She, W.; Yang, Y. J.; Che, R. C. CoNi@SiO2@TiO2 and CoNi@Air@TiO2 microspheres with strong wideband microwave absorption. Adv. Mater. 2016, 28, 486–490.

[16]

Wang, Z. C.; Wei, R. B.; Gu, J. W.; Liu, H.; Liu, C. T.; Luo, C. J.; Kong, J.; Shao, Q.; Wang, N.; Guo, Z. et al. Ultralight, highly compressible and fire-retardant graphene aerogel with self-adjustable electromagnetic wave absorption. Carbon 2018, 139, 1126–1135.

[17]

Zhang, K. L.; Zhang, J. Y.; Hou, Z. L.; Bi, S.; Zhao, Q. L. Multifunctional broadband microwave absorption of flexible graphene composites. Carbon 2019, 141, 608–617.

[18]

Wang, H. G.; Meng, F. B.; Huang, F.; Jing, C. F.; Li, Y.; Wei, W.; Zhou, Z. W. Interface modulating CNTs@PANi hybrids by controlled unzipping of the walls of CNTs to achieve tunable high-performance microwave absorption. ACS Appl. Mater. Interfaces 2019, 11, 12142–12153.

[19]

Sun, H.; Che, R. C.; You, X.; Jiang, Y. S.; Yang, Z. B.; Deng, J.; Qiu, L. B.; Peng, H. S. Cross-stacking aligned carbon-nanotube films to tune microwave absorption frequencies and increase absorption intensities. Adv. Mater. 2014, 26, 8120–8125.

[20]

Li, W. X.; Qi, H. X.; Guo, F.; Du, Y. E.; Song, N. J.; Liu, Y. Y.; Chen, Y. Q. Co nanoparticles supported on cotton-based carbon fibers: A novel broadband microwave absorbent. J. Alloys Compd. 2019, 772, 760–769.

[21]

Liu, L. Y.; Yang, S.; Hu, H. Y.; Zhang, T. L.; Yuan, Y.; Li, Y. B.; He, X. D. Lightweight and efficient microwave-absorbing materials based on loofah-sponge-derived hierarchically porous carbons. ACS Sustainable Chem. Eng. 2019, 7, 1228–1238.

[22]

Baughman, R. H.; Eckhardt, H.; Kertesz, M. Structure property predictions for new planar forms of carbon: Layered phases containing sp2 and sp atoms. J. Chem. Phys. 1987, 87, 6687–6699.

[23]

Li, G. X.; Li, Y. L.; Liu, H. B.; Guo, Y. B.; Li, Y. J.; Zhu, D. B. Architecture of graphdiyne nanoscale films. Chem. Commun. 2010, 46, 3256–3258.

[24]

Gao, X.; Liu, H. B.; Wang, D.; Zhang, J. Graphdiyne: Synthesis, properties, and applications. Chem. Soc. Rev. 2019, 48, 908–936.

[25]

Li, Y. J.; Liu, Q. N.; Li, W. F.; Meng, H.; Lu, Y. Z.; Li, C. X. Synthesis and supercapacitor application of alkynyl carbon materials derived from CaC2 and polyhalogenated hydrocarbons by interfacial mechanochemical reactions. ACS Appl. Mater. Interfaces 2017, 9, 3895–3901.

[26]

Li, Q. D.; Yang, C. F.; Wu, L. L.; Wang, H.; Cui, X. L. Converting benzene into γ-graphyne and its enhanced electrochemical oxygen evolution performance. J. Mater. Chem. A 2019, 7, 5981–5990.

[27]

Yang, C. F.; Li, Y.; Chen, Y.; Li, Q. D.; Wu, L. L.; Cui, X. L. Mechanochemical synthesis of γ-graphyne with enhanced lithium storage performance. Small 2019, 15, 1804710.

[28]

Ding, W.; Sun, M. X.; Gao, B. W.; Liu, W. Z.; Ding, Z. P.; Anandan, S. A ball-milling synthesis of N-graphyne with controllable nitrogen doping sites for efficient electrocatalytic oxygen evolution and supercapacitors. Dalton Trans. 2020, 49, 10958–10969.

[29]

Zhang, S. C.; Yin, C.; Kang, Z.; Wu, P. W.; Wu, J.; Zhang, Z.; Liao, Q. L.; Zhang, J.; Zhang, Y. Graphdiyne nanowall for enhanced photoelectrochemical performance of Si heterojunction photoanode. ACS Appl. Mater. Interfaces 2019, 11, 2745–2749.

[30]

Wang, Y. Q.; Wang, H. G.; Ye, J. H.; Shi, L. Y.; Feng, X. Magnetic CoFe alloy@C nanocomposites derived from ZnCo-MOF for electromagnetic wave absorption. Chem. Eng. J. 2020, 383, 123096.

[31]

Liao, Q.; He, M.; Zhou, Y. M.; Nie, S. X.; Wang, Y. J.; Hu, S. C.; Yang, H. Y.; Li, H. F.; Tong, Y. Highly cuboid-shaped heterobimetallic metal–organic frameworks derived from porous Co/ZnO/C microrods with improved electromagnetic wave absorption capabilities. ACS Appl. Mater. Interfaces 2018, 10, 29136–29144.

[32]

Zuo, Z. C.; Shang, H.; Chen, Y. H.; Li, J. F.; Liu, H. B.; Li, Y. J.; Li, Y. L. A facile approach for graphdiyne preparation under atmosphere for an advanced battery anode. Chem. Commun. 2017, 53, 8074–8077.

[33]

Wu, N. N.; Liu, C.; Xu, D. M.; Liu, J. R.; Liu, W.; Shao, Q.; Guo, Z. H. Enhanced electromagnetic wave absorption of three-dimensional porous Fe3O4/C composite flowers. ACS Sustainable Chem. Eng. 2018, 6, 12471–12480.

[34]

Li, Y.; Liu, X. F.; Nie, X. Y.; Yang, W. W.; Wang, Y. D.; Yu, R. H.; Shui, J. L. Multifunctional organic–inorganic hybrid aerogel for self-cleaning, heat-insulating, and highly efficient microwave absorbing material. Adv. Funct. Mater. 2019, 29, 1807624.

[35]

Zeng, M.; Cao, Q.; Liu, J.; Guo, B. Y.; Hao, X. Z.; Liu, Q. W.; Liu, X. F.; Sun, X.; Zhang, X. X.; Yu, R. H. Hierarchical cobalt selenides as highly efficient microwave absorbers with tunable frequency response. ACS Appl. Mater. Interfaces 2020, 12, 1222–1231.

[36]

Che, R. C.; Peng, L. M.; Duan, X. F.; Chen, Q.; Liang, X. L. Microwave absorption enhancement and complex permittivity and permeability of Fe encapsulated within carbon nanotubes. Adv. Mater. 2004, 16, 401–405.

[37]

Zhou, C. L.; Wang, X. X.; Luo, H.; Deng, L. W.; Wang, S.; Wei, S.; Zheng, Y. W.; Jia, Q.; Liu, J. Q. Interfacial design of sandwich-like CoFe@Ti3C2Tx composites as high efficient microwave absorption materials. Appl. Surf. Sci. 2019, 494, 540–550.

[38]

Zhou, C. L.; Wang, X. X.; Luo, H.; Deng, L. W.; Wei, S.; Zheng, Y. W.; Jia, Q.; Liu, J. Q. Rapid and direct growth of bipyramid TiO2 from Ti3C2Tx MXene to prepare Ni/TiO2/C heterogeneous composites for high-performance microwave absorption. Chem. Eng. J. 2020, 383, 123095.

[39]

Wang, F. Y.; Sun, Y. Q.; Li, D. R.; Zhong, B.; Wu, Z. G.; Zuo, S. Y.; Yan, D.; Zhuo, R. F.; Feng, J. J.; Yan, P. X. Microwave absorption properties of 3D cross-linked Fe/C porous nanofibers prepared by electrospinning. Carbon 2018, 134, 264–273.

[40]

Wu, Y.; Shu, R. W.; Zhang, J. B.; Wan, Z. L.; Shi, J. J.; Liu, Y.; Zhao, G. M.; Zheng, M. D. Oxygen vacancies regulated microwave absorption properties of reduced graphene oxide/multi-walled carbon nanotubes/cerium oxide ternary nanocomposite. J. Alloys Compd. 2020, 819, 152944.

[41]

Shu, R. W.; Wan, Z. L.; Zhang, J. B.; Wu, Y.; Liu, Y.; Shi, J. J.; Zheng, M. D. Facile design of three-dimensional nitrogen-doped reduced graphene oxide/multi-walled carbon nanotube composite foams as lightweight and highly efficient microwave absorbers. ACS Appl. Mater. Interfaces 2020, 12, 4689–4698.

[42]

Liu, Y.; Jia, Z. R.; Zhan, Q. Q.; Dong, Y. H.; Xu, Q. M.; Wu, G. L. Magnetic manganese-based composites with multiple loss mechanisms towards broadband absorption. Nano Res. 2022, 15, 5590–5600.

[43]

Wang, G. Z.; Gao, Z.; Tang, S. W.; Chen, C. Q.; Duan, F. F.; Zhao, S. C.; Lin, S. W.; Feng, Y. H.; Zhou, L.; Qin, Y. Microwave absorption properties of carbon nanocoils coated with highly controlled magnetic materials by atomic layer deposition. ACS Nano 2012, 6, 11009–11017.

[44]

Tang, M.; Zhang, J. Y.; Bi, S.; Hou, Z. L.; Shao, X. H.; Zhan, K. T.; Cao, M. S. Ultrathin topological insulator absorber: Unique dielectric behavior of Bi2Te3 nanosheets based on conducting surface states. ACS Appl. Mater. Interfaces 2019, 11, 33285–33291.

[45]

Li, Z. N.; Han, X. J.; Ma, Y.; Liu, D. W.; Wang, Y. H.; Xu, P.; Li, C. L.; Du, Y. C. MOFs-derived hollow Co/C microspheres with enhanced microwave absorption performance. ACS Sustainable Chem. Eng. 2018, 6, 8904–8913.

[46]

Wang, R. L.; He, M.; Zhou, Y. M.; Nie, S. X.; Wang, Y. J.; Liu, W. Q.; He, Q.; Wu, W. T.; Bu, X. H.; Yang, X. M. Metal–organic frameworks self-templated cubic hollow Co/N/C@MnO2 composites for electromagnetic wave absorption. Carbon 2020, 156, 378–388.

[47]

Xu, Z. J.; He, M.; Zhou, Y. M.; Nie, S. X.; Wang, Y. J.; Huo, Y.; Kang, Y. F.; Wang, R. L.; Xu, R.; Peng, H. et al. Spider web-like carbonized bacterial cellulose/MoSe2 nanocomposite with enhanced microwave attenuation performance and tunable absorption bands. Nano Res. 2021, 14, 738–746.

[48]

Ur Rehman, S.; Wang, J. M.; Luo, Q. H.; Sun, M. Z.; Jiang, L.; Han, Q.; Liu, J. C.; Bi, H. Starfish-like C/CoNiO2 heterostructure derived from ZIF-67 with tunable microwave absorption properties. Chem. Eng. J. 2019, 373, 122–130.

[49]

Wang, S. Y.; Ke, X.; Zhong, S. T.; Lai, Y. R.; Qian, D. L.; Wang, Y. P.; Wang, Q. H.; Jiang, W. Bimetallic zeolitic imidazolate frameworks-derived porous carbon-based materials with efficient synergistic microwave absorption properties: The role of calcining temperature. RSC Adv. 2017, 7, 46436–46444.

[50]

Jiang, Y.; Xie, X.; Chen, Y.; Liu, Y. J.; Yang, R.; Sui, G. X. Hierarchically structured cellulose aerogels with interconnected MXene networks and their enhanced microwave absorption properties. J. Mater. Chem. C 2018, 6, 8679–8687.

[51]

Zhang, X.; Wang, H. H.; Hu, R.; Huang, C. Y.; Zhong, W. J.; Pan, L. M.; Feng, Y. B.; Qiu, T.; Zhang, C. F.; Yang, J. Novel solvothermal preparation and enhanced microwave absorption properties of Ti3C2Tx MXene modified by in situ coated Fe3O4 nanoparticles. Appl. Surf. Sci. 2019, 484, 383–391.

[52]

Bai, T. T.; Guo, Y.; Liu, H.; Song, G.; Zhang, D. B.; Wang, Y. M.; Mi, L. W.; Guo, Z. H.; Liu, C. T.; Shen, C. Y. Achieving enhanced electromagnetic shielding and absorption capacity of cellulose-derived carbon aerogels via tuning the carbonization temperature. J. Mater. Chem. C 2020, 8, 5191–5201.

[53]

Qiu, X.; Wang, L. X.; Zhu, H. L.; Guan, Y. K.; Zhang, Q. T. Lightweight and efficient microwave absorbing materials based on walnut shell-derived nano-porous carbon. Nanoscale 2017, 9, 7408–7418.

[54]

Huang, X. G.; Qiao, M.; Lu, X. C.; Li, Y. F.; Ma, Y. B.; Kang, B.; Quan, B.; Ji, G. B. Evolution of dielectric loss-dominated electromagnetic patterns in magnetic absorbers for enhanced microwave absorption performances. Nano Res. 2021, 14, 4006–4013.

[55]

Li, C.; Li, Z. H.; Qi, X. S.; Gong, X.; Chen, Y. L.; Peng, Q.; Deng, C. Y.; Jing, T.; Zhong, W. A generalizable strategy for constructing ultralight three-dimensional hierarchical network heterostructure as high-efficient microwave absorber. J. Colloid Interface Sci. 2022, 605, 13–22.

[56]

Zhang, J. J.; Li, Z. H.; Qi, X. S.; Gong, X.; Xie, R.; Deng, C. Y.; Zhong, W.; Du, Y. W. Constructing flower-like core@shell MoSe2-based nanocomposites as a novel and high-efficient microwave absorber. Compos. Part B Eng. 2021, 222, 109067.

[57]

Li, C.; Qi, X. S.; Gong, X.; Peng, Q.; Chen, Y. L.; Xie, R.; Zhong, W. Magnetic–dielectric synergy and interfacial engineering to design yolk–shell structured CoNi@void@C and CoNi@void@C@MoS2 nanocomposites with tunable and strong wideband microwave absorption. Nano Res. 2022, 15, 6761–6771.

[58]

Wu, Z. C.; Cheng, H. W.; Jin, C.; Yang, B. T.; Xu, C. Y.; Pei, K.; Zhang, H. B.; Yang, Z. Q.; Che, R. C. Dimensional design and core–shell engineering of nanomaterials for electromagnetic wave absorption. Adv. Mater. 2022, 34, 2107538.

[59]

Xue, W.; Yang, G.; Bi, S.; Zhang, J. Y.; Hou, Z. L. Construction of caterpillar-like hierarchically structured Co/MnO/CNTs derived from MnO2/ZIF-8@ZIF-67 for electromagnetic wave absorption. Carbon 2021, 173, 521–527.

[60]

Liu, P. B.; Zhang, Y. Q.; Yan, J.; Huang, Y.; Xia, L.; Guang, Z. X. Synthesis of lightweight N-doped graphene foams with open reticular structure for high-efficiency electromagnetic wave absorption. Chem. Eng. J. 2019, 368, 285–298.

[61]

Wang, N. N.; Wu, F.; Xie, A. M.; Dai, X. Q.; Sun, M. X.; Qiu, Y. Y.; Wang, Y.; Lv, X.; Wang, M. L. One-pot synthesis of biomass-derived carbonaceous spheres for excellent microwave absorption at the Ku band. RSC Adv. 2015, 5, 40531–40535.

[62]

Guo, L.; An, Q. D.; Xiao, Z. Y.; Zhai, S. R.; Cui, L.; Li, Z. C. Performance enhanced electromagnetic wave absorber from controllable modification of natural plant fiber. RSC Adv. 2019, 9, 16690–16700.

[63]

Ren, A. F.; Zahid, A.; Fan, D.; Yang, X. D.; Imran, M. A.; Alomainy, A.; Abbasi, Q. H. State-of-the-art in terahertz sensing for food and water security–A comprehensive review. Trends Food Sci. Technol. 2019, 85, 241–251.

[64]

Seo, M.; Park, H. R. THz biochemical sensors: Terahertz biochemical molecule-specific sensors (Advanced Optical Materials 3/2020). Adv. Opt. Mater. 2020, 8, 2070010.

[65]

Yang, X. X.; Vorobiev, A.; Generalov, A.; Andersson, M. A.; Stake, J. A flexible graphene terahertz detector. Appl. Phys. Lett. 2017, 111, 021102.

[66]

Zhang, Z. Y.; Zhong, C. Z.; Fan, F.; Liu, G. H.; Chang, S. J. Terahertz polarization and chirality sensing for amino acid solution based on chiral metasurface sensor. Sens. Actuators B Chem. 2021, 330, 129315.

[67]

Jung, G. B.; Myung, Y.; Cho, Y. J.; Sohn, Y. J.; Jang, D. M.; Kim, H. S.; Lee, C. W.; Park, J.; Maeng, I.; Son, J. H. et al. Terahertz spectroscopy of nanocrystal–carbon nanotube and -graphene oxide hybrid nanostructures. J. Phys. Chem. C 2010, 114, 11258–11265.

[68]

Yuan, T. Y.; Xiong, S. J.; Shen, X. H. Coordination of actinide single ions to deformed graphdiyne: Strategy on essential separation processes in nuclear fuel cycle. Angew. Chem., Int. Ed. 2020, 59, 17719–17725.

Nano Research
Pages 88-100
Cite this article:
Zhang Z, Li Z, Xia L, et al. Much enhanced electromagnetic wave absorbing properties from the synergistic effect of graphene/γ-graphyne heterostructure in both gigahertz and terahertz band ranges. Nano Research, 2023, 16(1): 88-100. https://doi.org/10.1007/s12274-022-5093-9
Topics:
Part of a topical collection:

11621

Views

11

Crossref

11

Web of Science

12

Scopus

0

CSCD

Altmetrics

Received: 21 May 2022
Revised: 18 September 2022
Accepted: 23 September 2022
Published: 12 November 2022
© Tsinghua University Press 2022
Return