AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Constructing hierarchical nanosheet-on-microwire FeCo LDH@Co3O4 arrays for high-rate water oxidation

Tang Tang1,2Zhe Jiang1,2Jun Deng3Shuai Niu1,2Ze-Cheng Yao1,2Wen-Jie Jiang1Lin-Juan Zhang4,5Jin-Song Hu1,2,5( )
Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
University of the Chinese Academy of Sciences, Beijing 100049, China
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
Dalian National Laboratory for Clean Energy, Dalian 116023, China
Show Author Information

Graphical Abstract

A Fe3+ induced nanosizing strategy is developed to fabricate hierarchical nanosheet-on-microwire FeCo LDH@Co3O4 (LDH: layered double hydroxide) electrocatalysts with abundant highly-active and durable catalytic sites for high-rate water oxidation. It demonstrates an oxygen evolution reaction (OER) current density of 1,000 mA·cm−2 at a small overpotential of 392 mV.

Abstract

Alkaline electrochemical water oxidation powered by renewable energies is a promising and environmentally friendly way to produce hydrogen. The industrial water electrolyzers are commonly operated at a high current density, calling for abundant and durable active sites to participate in. The rational design of hierarchically structured electrocatalysts is thus essential to industrial water electrolyzers. Herein, we develop a Fe3+ induced nanosizing strategy for fabricating such a hierarchical FeCo LDH@Co3O4 (LDH: layered double hydroxide) nanostructure array for high-rate water oxidation. Density functional theory (DFT) simulations indicate that the introduction of Fe3+ with a small ion radius and high electrical repulsion in the LDH layer distorted the LDH layer, resulting in a reduced nanosheet size and enabling the formation of a hierarchical structure. Such structure cannot be achieved without the participation of Fe3+ cations. Benefiting from the significantly enhanced electrochemical surface areas and charge/mass transport due to the hierarchical structure together with the boosted intrinsic activity by electronic modulation of Fe3+, such FeCo LDH@Co3O4 electrode can deliver an industrial-level current density of 1,000 mA·cm−2 at a small overpotential of 392 mV for water oxidation. When assembled in a water electrolyzer, it delivers a current density of 100 mA·cm−2 at a low operation voltage of 1.61 V. Powered by solar light, the electrolyzer demonstrates high solar-to-hydrogen efficiency of 18.15% with stable and reproducible photoresponse. These results provide new insights for constructing hierarchical nanostructures for advanced water oxidation and other diverse applications.

Electronic Supplementary Material

Download File(s)
12274_2022_5094_MOESM1_ESM.pdf (4.2 MB)

References

[1]

Lagadec, M. F.; Grimaud, A. Water electrolysers with closed and open electrochemical systems. Nat. Mater. 2020, 19, 1140–1150.

[2]

Logan, B. E.; Elimelech, M. Membrane-based processes for sustainable power generation using water. Nature 2012, 488, 313–319.

[3]

Zhao, L.; Zhang, Y.; Zhao, Z. L.; Zhang, Q. H.; Huang, L. B.; Gu, L.; Lu, G.; Hu, J. S.; Wan, L. J. Steering elementary steps towards efficient alkaline hydrogen evolution via size-dependent Ni/NiO nanoscale heterosurfaces. Natl. Sci. Rev. 2020, 7, 27–36.

[4]

Li, J. H.; Wang, L. J.; He, H. J.; Chen, Y. Q.; Gao, Z. R.; Ma, N.; Wang, B.; Zheng, L. L.; Li, R. L.; Wei, Y. J. et al. Interface construction of NiCo LDH/NiCoS based on the 2D ultrathin nanosheet towards oxygen evolution reaction. Nano Res. 2022, 15, 4986–4995.

[5]

Zhu, Y. P.; Guo, C. X.; Zheng, Y.; Qiao, S. Z. Surface and interface engineering of noble-metal-free electrocatalysts for efficient energy conversion processes. Acc. Chem. Res. 2017, 50, 915–923.

[6]

Zhang, B.; Zheng, X. L.; Voznyy, O.; Comin, R.; Bajdich, M.; García-Melchor, M.; Han, L. L.; Xu, J. X.; Liu, M.; Zheng, L. R. et al. Homogeneously dispersed multimetal oxygen-evolving catalysts. Science 2016, 352, 333–337.

[7]

Che, Z. W.; Lu, X. Y.; Cai, B. F.; Xu, X. X.; Bao, J. C.; Liu, Y. Ligand-controlled synthesis of high density and ultra-small Ru nanoparticles with excellent electrocatalytic hydrogen evolution performance. Nano Res. 2022, 15, 1269–1275.

[8]

Rausch, B.; Symes, M. D.; Chisholm, G.; Cronin, L. Decoupled catalytic hydrogen evolution from a molecular metal oxide redox mediator in water splitting. Science 2014, 345, 1326–1330.

[9]

Tang, T.; Jiang, W. J.; Niu, S.; Liu, N.; Luo, H.; Chen, Y. Y.; Jin, S. F.; Gao, F.; Wan, L. J.; Hu, J. S. Electronic and morphological dual modulation of cobalt carbonate hydroxides by Mn doping toward highly efficient and stable bifunctional electrocatalysts for overall water splitting. J. Am. Chem. Soc. 2017, 139, 8320–8328.

[10]

Wang, T. H.; Tao, L.; Zhu, X. R.; Chen, C.; Chen, W.; Du, S. Q.; Zhou, Y. Y.; Zhou, B.; Wang, D. D.; Xie, C. et al. Combined anodic and cathodic hydrogen production from aldehyde oxidation and hydrogen evolution reaction. Nat. Catal. 2022, 5, 66–73.

[11]

Zhang, Q.; Chen, H.; Yang, L.; Liang, X.; Shi, L.; Feng, Q.; Zou, Y. C.; Li, G. D.; Zou, X. X. Non-catalytic, instant iridium(Ir) leaching: A non-negligible aspect in identifying Ir-based perovskite oxygen-evolving electrocatalysts. Chin. J. Catal. 2022, 43, 885–893.

[12]

Yang, L.; Zhang, K. X.; Chen, H.; Shi, L.; Liang, X.; Wang, X. Y.; Liu, Y. P.; Feng, Q.; Liu, M. J.; Zou, X. X. An ultrathin two-dimensional iridium-based perovskite oxide electrocatalyst with highly efficient {001} facets for acidic water oxidation. J. Energy Chem. 2022, 66, 619–627.

[13]

Zhao, S. L.; Wang, Y.; Dong, J. C.; He, C. T.; Yin, H. J.; An, P. F.; Zhao, K.; Zhang, X. F.; Gao, C.; Zhang, L. J. et al. Ultrathin metal–organic framework nanosheets for electrocatalytic oxygen evolution. Nat. Energy 2016, 1, 16184.

[14]

Jiang, W. J.; Tang, T.; Zhang, Y.; Hu, J. S. Synergistic modulation of non-precious-metal electrocatalysts for advanced water splitting. Acc. Chem. Res. 2020, 53, 1111–1123.

[15]

Yuan, L. P.; Wu, Z. Y.; Jiang, W. J.; Tang, T.; Niu, S.; Hu, J. S. Phosphorus-doping activates carbon nanotubes for efficient electroreduction of nitrogen to ammonia. Nano Res. 2020, 13, 1376–1382.

[16]

Gong, M.; Dai, H. J. A mini review of NiFe-based materials as highly active oxygen evolution reaction electrocatalysts. Nano Res. 2015, 8, 23–39.

[17]

Yan, Y.; Liu, C. Y.; Jian, H. W.; Cheng, X.; Hu, T.; Wang, D.; Shang, L.; Chen, G.; Schaaf, P.; Wang, X. Y. et al. Substitutionally dispersed high-oxidation CoOx clusters in the lattice of rutile TiO2 triggering efficient Co-Ti cooperative catalytic centers for oxygen evolution reactions. Adv. Funct. Mater. 2021, 31, 2009610.

[18]

Roger, I.; Shipman, M. A.; Symes, M. D. Earth-abundant catalysts for electrochemical and photoelectrochemical water splitting. Nat. Rev. Chem. 2017, 1, 0003.

[19]

Niu, S.; Jiang, W. J.; Tang, T.; Yuan, L. P.; Luo, H.; Hu, J. S. Autogenous growth of hierarchical NiFe(OH)x/FeS nanosheet-on-microsheet arrays for synergistically enhanced high-output water oxidation. Adv. Funct. Mater. 2019, 29, 1902180.

[20]

Luo, Y. T.; Zhang, Z. Y.; Chhowalla, M.; Liu, B. L. Recent advances in design of electrocatalysts for high-current-density water splitting. Adv. Mater. 2022, 34, 2108133.

[21]

Cai, Z.; Zhou, D. J.; Wang, M. Y.; Bak, S. M.; Wu, Y. S.; Wu, Z. S.; Tian, Y.; Xiong, X. Y.; Li, Y. P.; Liu, W. et al. Introducing Fe2+ into nickel-iron layered double hydroxide: Local structure modulated water oxidation activity. Angew. Chem., Int. Ed. 2018, 57, 9392–9396.

[22]

Li, H. Y.; Chen, S. M.; Zhang, Y.; Zhang, Q. H.; Jia, X. F.; Zhang, Q.; Gu, L.; Sun, X. M.; Song, L.; Wang, X. Systematic design of superaerophobic nanotube-array electrode comprised of transition-metal sulfides for overall water splitting. Nat. Commun. 2018, 9, 2452.

[23]

Pham, C. V.; Escalera-López, D.; Mayrhofer, K.; Cherevko, S.; Thiele, S. Essentials of high performance water electrolyzers-from catalyst layer materials to electrode engineering. Adv. Energy Mater. 2021, 11, 2101998.

[24]

Park, S.; Shao, Y. Y.; Liu, J.; Wang, Y. Oxygen electrocatalysts for water electrolyzers and reversible fuel cells: Status and perspective. Energy Environ. Sci. 2012, 5, 9331–9344.

[25]

Liu, Y. P.; Liang, X.; Gu, L.; Zhang, Y.; Li, G. D.; Zou, X. X.; Chen, J. S. Corrosion engineering towards efficient oxygen evolution electrodes with stable catalytic activity for over 6,000 hours. Nat. Commun. 2018, 9, 2609.

[26]

Niu, S.; Jiang, W. J.; Wei, Z. X.; Tang, T.; Ma, J. M.; Hu, J. S.; Wan, L. J. Se-doping activates FeOOH for cost-effective and efficient electrochemical water oxidation. J. Am. Chem. Soc. 2019, 141, 7005–7013.

[27]

Xiao, C. L.; Li, Y. B.; Lu, X. Y.; Zhao, C. Bifunctional porous NiFe/NiCo2O4/Ni foam electrodes with triple hierarchy and double synergies for efficient whole cell water splitting. Adv. Funct. Mater. 2016, 26, 3515–3523.

[28]

Dong, X. W.; Zhang, Y. Q.; Song, M. L.; Tao, S. S.; Wang, H. F.; Zhou, P.; Wang, D. D.; Wu, Y. J.; Chen, C. M.; Su, C. L. et al. Colloid self-assembly of c-axis oriented hydroxide thin films to boost the electrocatalytic oxidation reaction. Chem. Eng. J. 2021, 420, 130532.

[29]

Liu, X. Z.; Tang, T.; Jiang, W. J.; Zhang, Q. H.; Gu, L.; Hu, J. S. Fe-doped Co3O4 polycrystalline nanosheets as a binder-free bifunctional cathode for robust and efficient zinc-air batteries. Chem. Commun. 2020, 56, 5374–5377.

[30]

Wu, J.; Ren, Z. Y.; Du, S. C.; Kong, L. J.; Liu, B. W.; Xi, W.; Zhu, J. Q.; Fu, H. G. A highly active oxygen evolution electrocatalyst: Ultrathin CoNi double hydroxide/CoO nanosheets synthesized via interface-directed assembly. Nano Res. 2016, 9, 713–725.

[31]

Song, F.; Hu, X. L. Exfoliation of layered double hydroxides for enhanced oxygen evolution catalysis. Nat. Commun. 2014, 5, 4477.

[32]

Qian, L.; Lu, Z. Y.; Xu, T. H.; Wu, X. C.; Tian, Y.; Li, Y. P.; Huo, Z. Y.; Sun, X. M.; Duan, X. Trinary layered double hydroxides as high-performance bifunctional materials for oxygen electrocatalysis. Adv. Energy Mater. 2015, 5, 1500245.

[33]

Yin, P. Q.; Wu, G.; Wang, X. Q.; Liu, S. J.; Zhou, F. Y.; Dai, L.; Wang, X.; Yang, B.; Yu, Z. Q. NiCo-LDH nanosheets strongly coupled with GO-CNTs as a hybrid electrocatalyst for oxygen evolution reaction. Nano Res. 2021, 14, 4783–4788.

[34]

Jia, X. D.; Zhang, X.; Zhao, J. Q.; Zhao, Y. F.; Zhao, Y. X.; Waterhouse, G. I. N.; Shi, R.; Wu, L. Z.; Tung, C. H.; Zhang, T. R. Ultrafine monolayer Co-containing layered double hydroxide nanosheets for water oxidation. J. Energy Chem. 2019, 34, 57–63.

[35]

Zhang, X.; Zhao, Y. F.; Zhao, Y. X.; Shi, R.; Waterhouse, G. I. N.; Zhang, T. R. A simple synthetic strategy toward defect-rich porous monolayer NiFe-layered double hydroxide nanosheets for efficient electrocatalytic water oxidation. Adv. Energy Mater. 2019, 9, 1900881.

[36]

Chen, W.; Wang, Y. Y.; Wu, B. B.; Shi, J. Q.; Li, Y. Y.; Xu, L. T.; Xie, C.; Zhou, W.; Huang, Y. C.; Wang, T. H. et al. Activated Ni–OH bonds in a catalyst facilitates the nucleophile oxidation reaction. Adv. Mater. 2022, 34, 2105320.

[37]

Li, R. Q.; Liu, Y. Q.; Li, H. B.; Zhang, M.; Lu, Y. R.; Zhang, L.; Xiao, J. P.; Boehm, F.; Yan, K. One-step synthesis of NiMn-layered double hydroxide nanosheets efficient for water oxidation. Small Methods 2019, 3, 1800344.

[38]

Kang, Y.; Wang, S.; Hui, K. S.; Wu, S. X.; Dinh, D. A.; Fan, X.; Bin, F.; Chen, F. M.; Geng, J. X.; Cheong, W. C. M. et al. Surface reconstruction establishing mott-schottky heterojunction and built-in space-charging effect accelerating oxygen evolution reaction. Nano Res. 2022, 15, 2952–2960.

[39]

Zhao, Y. X.; Zheng, L. R.; Shi, R.; Zhang, S.; Bian, X. A.; Wu, F.; Cao, X. Z.; Waterhouse, G. I. N.; Zhang, T. R. Alkali etching of layered double hydroxide nanosheets for enhanced photocatalytic N2 reduction to NH3. Adv. Energy Mater. 2020, 10, 2002199.

[40]

McCrory, C. C. L.; Jung, S.; Ferrer, I. M.; Chatman, S. M.; Peters, J. C.; Jaramillo, T. F. Benchmarking hydrogen evolving reaction and oxygen evolving reaction electrocatalysts for solar water splitting devices. J. Am. Chem. Soc. 2015, 137, 4347–4357.

[41]

Long, X.; Li, J. K.; Xiao, S.; Yan, K. Y.; Wang, Z. L.; Chen, H. N.; Yang, S. H. A strongly coupled graphene and FeNi double hydroxide hybrid as an excellent electrocatalyst for the oxygen evolution reaction. Angew. Chem., Int. Ed. 2014, 53, 7584–7588.

[42]

Zhao, Z. Y.; Shao, Q.; Xue, J. Y.; Huang, B. L.; Niu, Z.; Gu, H. W.; Huang, X. Q.; Lang, J. P. Multiple structural defects in ultrathin NiFe-LDH nanosheets synergistically and remarkably boost water oxidation reaction. Nano Res. 2022, 15, 310–316.

[43]

Peng, L. S.; Yang, N.; Yang, Y. Q.; Wang, Q.; Xie, X. Y.; Sun-Waterhouse, D.; Shang, L.; Zhang, T. R.; Waterhouse, G. I. N. Atomic cation-vacancy engineering of NiFe-layered double hydroxides for improved activity and stability towards the oxygen evolution reaction. Angew. Chem., Int. Ed. 2021, 60, 24612–24619.

[44]

Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50.

[45]

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

[46]

Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.

[47]

Monkhorst, H. J.; Pack, J. D. Special points for brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188–5192.

[48]

Zhang, J.; Wang, T.; Liu, P.; Liao, Z. Q.; Liu, S. H.; Zhuang, X. D.; Chen, M. W.; Zschech, E.; Feng, X. L. Efficient hydrogen production on MoNi4 electrocatalysts with fast water dissociation kinetics. Nat. Commun. 2017, 8, 15437.

[49]

Chen, Y. Y.; Zhang, Y.; Zhang, X.; Tang, T.; Luo, H.; Niu, S.; Dai, Z. H.; Wan, L. J.; Hu, J. S. Self-templated fabrication of MoNi4/MoO3−x nanorod arrays with dual active components for highly efficient hydrogen evolution. Adv. Mater. 2017, 29, 1703311.

[50]

Kong, F. H.; Zhang, W. W.; Sun, L. P.; Huo, L. H.; Zhao, H. Interface electronic coupling in hierarchical FeLDH(FeCo)/Co(OH)2 arrays for efficient electrocatalytic oxygen evolution. ChemSusChem 2019, 12, 3592–3601.

[51]

Ejaz, A.; Jeon, S. Synthesis and application of electrochemically reduced N-rGO-Co(OH)2 nanocomposite for concurrent detection of biomolecules. Electrochim. Acta 2017, 235, 709–719.

[52]

Shannon, R. D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr. 1976, 32, 751–767.

[53]

Zhao, S.; Jin, R. X.; Abroshan, H.; Zeng, C. J.; Zhang, H.; House, S. D.; Gottlieb, E.; Kim, H. J.; Yang, J. C.; Jin, R. C. Gold nanoclusters promote electrocatalytic water oxidation at the nanocluster/CoSe2 interface. J. Am. Chem. Soc. 2017, 139, 1077–1080.

[54]

Gu, D.; Jia, C. J.; Weidenthaler, C.; Bongard, H. J.; Spliethoff, B.; Schmidt, W.; Schüth, F. Highly ordered mesoporous cobalt-containing oxides: Structure, catalytic properties, and active sites in oxidation of carbon monoxide. J. Am. Chem. Soc. 2015, 137, 11407–11418.

[55]

Wang, Q.; Shang, L.; Shi, R.; Zhang, X.; Zhao, Y. F.; Waterhouse, G. I. N.; Wu, L. Z.; Tung, C. H.; Zhang, T. R. NiFe layered double hydroxide nanoparticles on Co, N-codoped carbon nanoframes as efficient bifunctional catalysts for rechargeable zinc-air batteries. Adv. Energy Mater. 2017, 7, 1700467.

[56]

Tang, T.; Jiang, W. J.; Niu, S.; Yuan, L. P.; Hu, J. S.; Wan, L. J. Hetero-coupling of a carbonate hydroxide and sulfide for efficient and robust water oxidation. J. Mater. Chem. A 2019, 7, 21959–21965.

[57]

Jia, Y.; Zhang, L. Z.; Gao, G. P.; Chen, H.; Wang, B.; Zhou, J. Z.; Soo, M. T.; Hong, M.; Yan, X. C.; Qian, G. R. et al. A heterostructure coupling of exfoliated Ni-Fe hydroxide nanosheet and defective graphene as a bifunctional electrocatalyst for overall water splitting. Adv. Mater. 2017, 29, 1700017.

[58]

Zhang, J. F.; Liu, J. Y.; Xi, L. F.; Yu, Y. F.; Chen, N.; Sun, S. H.; Wang, W. C.; Lange, K. M.; Zhang, B. Single-atom Au/NiFe layered double hydroxide electrocatalyst: Probing the origin of activity for oxygen evolution reaction. J. Am. Chem. Soc. 2018, 140, 3876–3879.

[59]

Wu, T. Z.; Sun, S. N.; Song, J. J.; Xi, S. B.; Du, Y. H.; Chen, B.; Sasangka, W. A.; Liao, H. B.; Gan, C. L.; Scherer, G. G. et al. Iron-facilitated dynamic active-site generation on spinel CoAl2O4 with self-termination of surface reconstruction for water oxidation. Nat. Catal. 2019, 2, 763–772.

[60]

Yao, N.; Li, P.; Zhou, Z. R.; Meng, R.; Cheng, G. Z.; Luo, W. Nitrogen engineering on 3D dandelion-flower-like CoS2 for high-performance overall water splitting. Small 2019, 15, 1901993.

[61]

Wang, Y.; Wang, S.; Ma, Z. L.; Yan, L. T.; Zhao, X. B.; Xue, Y. Y.; Huo, J. M.; Yuan, X.; Li, S. N.; Zhai, Q. G. Competitive coordination-oriented monodispersed ruthenium sites in conductive MOF/LDH hetero-nanotree catalysts for efficient overall water splitting in alkaline media. Adv. Mater. 2022, 34, 2107488.

[62]

Zhang, H. J.; Li, X. P.; Hähnel, A.; Naumann, V.; Lin, C.; Azimi, S.; Schweizer, S. L.; Maijenburg, A. W.; Wehrspohn, R. B. Bifunctional heterostructure assembly of NiFe LDH nanosheets on NiCoP nanowires for highly efficient and stable overall water splitting. Adv. Funct. Mater. 2018, 28, 1706847.

[63]

Huang, Y.; Wang, J. J.; Zou, Y.; Jiang, L. W.; Liu, X. L.; Jiang, W. J.; Liu, H.; Hu, J. S. Selective Se doping of NiFe2O4 on an active NiOOH scaffold for efficient and robust water oxidation. Chin. J. Catal. 2021, 42, 1395–1403.

Nano Research
Pages 10021-10028
Cite this article:
Tang T, Jiang Z, Deng J, et al. Constructing hierarchical nanosheet-on-microwire FeCo LDH@Co3O4 arrays for high-rate water oxidation. Nano Research, 2022, 15(12): 10021-10028. https://doi.org/10.1007/s12274-022-5094-8
Topics:
Part of a topical collection:

1215

Views

23

Crossref

22

Web of Science

21

Scopus

2

CSCD

Altmetrics

Received: 29 May 2022
Revised: 13 August 2022
Accepted: 24 September 2022
Published: 14 October 2022
© Tsinghua University Press 2022
Return