Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Rapid and accurate chemical composition identification is critically important in chemistry. While it can be achieved with optical absorption spectrometry by comparing the experimental spectra with the reference data when the chemical compositions are simple, such application is limited in more complicated scenarios especially in nano-scale research. This is due to the difficulties in identifying optical absorption peaks (i.e., from “featureless” spectra) arose from the complexity. In this work, using the ultraviolet–visible (UV–Vis) absorption spectra of metal nanoclusters (NCs) as a demonstration, we develop a machine-learning-based method to unravel the compositions of metal NCs behind the “featureless” spectra. By implementing a one-dimensional convolutional neural network, good matches between prediction results and experimental results and low mean absolute error values are achieved on these optical absorption spectra that human cannot interpret. This work opens a door for the identification of nanomaterials at molecular precision from their optical properties, paving the way to rapid and high-throughput characterizations.
Fenn, J. B.; Mann, M.; Meng, C. K.; Wong, S. F.; Whitehouse, C. M. Electrospray ionization-principles and practice. Mass Spectrom. Rev. 1990, 9, 37–70.
Whitesides, G. M.; Ismagilov, R. F. Complexity in chemistry. Science 1999, 284, 89–92.
Chakraborty, I.; Pradeep, T. Atomically precise clusters of noble metals: Emerging link between atoms and nanoparticles. Chem. Rev. 2017, 117, 8208–8271.
Yan, J. Z.; Teo, B. K.; Zheng, N. F. Surface chemistry of atomically precise coinage-metal nanoclusters: From structural control to surface reactivity and catalysis. Acc. Chem. Res. 2018, 51, 3084–3093.
Chen, T. K.; Lin, H. B.; Cao, Y. T.; Yao, Q. F.; Xie, J. P. Interactions of metal nanoclusters with light: Fundamentals and applications. Adv. Mater. 2022, 34, 2103918.
Jiang, D. E.; Overbury, S. H.; Dai, S. Structure of Au15(SR)13 and its implication for the origin of the nucleus in thiolated gold nanoclusters. J. Am. Chem. Soc. 2013, 135, 8786–8789.
Tlahuice-Flores, A.; Jose-Yacamán, M.; Whetten, R. L. On the structure of the thiolated Au15 cluster. Phys. Chem. Chem. Phys. 2013, 15, 19557–19560.
Liu, P. Y.; Han, W. H.; Zheng, M. K.; Li, W. L.; Ren, J. F.; Tlahuice-Flores, A.; Xu, W. W. [Au7(SR)7] ring as a new type of protection ligand in a new atomic structure of Au15(SR)13 nanocluster. J. Phys. Chem. A 2021, 125, 5933–5938.
Chen, S.; Wang, S. X.; Zhong, J.; Song, Y. B.; Zhang, J.; Sheng, H. T.; Pei, Y.; Zhu, M. Z. The structure and optical properties of the [Au18(SR)14] nanocluster. Angew. Chem., Int. Ed. 2015, 54, 3145–3149.
Das, A.; Liu, C.; Byun, H. Y.; Nobusada, K.; Zhao, S.; Rosi, N.; Jin, R. C. Structure determination of [Au18(SR)14]. Angew. Chem., Int. Ed. 2015, 54, 3140–3144.
Zhu, M. Z.; Aikens, C. M.; Hollander, F. J.; Schatz, G. C.; Jin, R. C. Correlating the crystal structure of a thiol-protected Au25 cluster and optical properties. J. Am. Chem. Soc. 2008, 130, 5883–5885.
Akola, J.; Walter, M.; Whetten, R. L.; Häkkinen, H.; Grönbeck, H. On the structure of thiolate-protected Au25. J. Am. Chem. Soc. 2008, 130, 3756–3757.
Heaven, M. W.; Dass, A.; White, P. S.; Holt, K. M.; Murray, R. W. Crystal structure of the gold nanoparticle [N(C8H17)4][Au25(SCH2CH2Ph)18]. J. Am. Chem. Soc. 2008, 130, 3754–3755.
Jin, R. C. Atomically precise metal nanoclusters: Stable sizes and optical properties. Nanoscale 2015, 7, 1549–1565.
Negishi, Y.; Nobusada, K.; Tsukuda, T. Glutathione-protected gold clusters revisited: Bridging the gap between gold(I)-thiolate complexes and thiolate-protected gold nanocrystals. J. Am. Chem. Soc. 2005, 127, 5261–5270.
Bootharaju, M. S.; Burlakov, V. M.; Besong, T. M. D.; Joshi, C. P.; AbdulHalim, L. G.; Black, D. M.; Whetten, R. L.; Goriely, A.; Bakr, O. M. Reversible size control of silver nanoclusters via ligand-exchange. Chem. Mater. 2015, 27, 4289–4297.
Jin, R. C.; Qian, H. F.; Wu, Z. K.; Zhu, Y.; Zhu, M. Z.; Mohanty, A.; Garg, N. Size focusing: A methodology for synthesizing atomically precise gold nanoclusters. J. Phys. Chem. Lett. 2010, 1, 2903–2910.
Knoppe, S.; Boudon, J.; Dolamic, I.; Dass, A.; Bürgi, T. Size exclusion chromatography for semipreparative scale separation of Au38(SR)24 and Au40(SR)24 and larger clusters. Anal. Chem. 2011, 83, 5056–5061.
Kimura, K.; Sugimoto, N.; Sato, S.; Yao, H.; Negishi, Y.; Tsukuda, T. Size determination of gold clusters by polyacrylamide gel electrophoresis in a large cluster region. J. Phys. Chem. C 2009, 113, 14076–14082.
Li, D.; Kumari, B.; Zhang, X. Z.; Wang, C. P.; Mei, X. F.; Rotello, V. M. Purification and separation of ultra-small metal nanoclusters. Adv. Colloid Interface Sci. 2020, 276, 102090.
Niihori, Y.; Uchida, C.; Kurashige, W.; Negishi, Y. High-resolution separation of thiolate-protected gold clusters by reversed-phase high-performance liquid chromatography. Phys. Chem. Chem. Phys. 2016, 18, 4251–4265.
Maffettone, P. M.; Banko, L.; Cui, P.; Lysogorskiy, Y.; Little, M. A.; Olds, D.; Ludwig, A.; Cooper, A. I. Crystallography companion agent for high-throughput materials discovery. Nat. Comput. Sci. 2021, 1, 290–297.
Li, J. L.; Lim, K.; Yang, H. T.; Ren, Z. K.; Raghavan, S.; Chen, P. Y.; Buonassisi, T.; Wang, X. N. AI applications through the whole life cycle of material discovery. Matter 2020, 3, 393–432.
Xu, S. D.; Li, J. L.; Cai, P. F.; Liu, X. L.; Liu, B.; Wang, X. N. Self-improving photosensitizer discovery system via bayesian search with first-principle simulations. J. Am. Chem. Soc. 2021, 143, 19769–19777.
Ren, Z. K.; Tian, S. I. P.; Noh, J.; Oviedo, F.; Xing, G. Z.; Li, J. L.; Liang, Q. H.; Zhu, R. M.; Aberle, A. G.; Sun, S. J. et al. An invertible crystallographic representation for general inverse design of inorganic crystals with targeted properties. Matter 2022, 5, 314–335.
Yang, H. T.; Li, J. L.; Lim, K. Z.; Pan, C. J.; van Truong, T.; Wang, Q.; Li, K. R.; Li, S.; Xiao, X.; Ding, M. et al. Automatic strain sensor design via active learning and data augmentation for soft machines. Nat. Mach. Intell. 2022, 4, 84–94.
Malola, S.; Häkkinen, H. Prospects and challenges for computer simulations of monolayer-protected metal clusters. Nat. Commun. 2021, 12, 2197.
Cowan, M. J.; Mpourmpakis, G. Towards elucidating structure of ligand-protected nanoclusters. Dalton Trans. 2020, 49, 9191–9202.
Li, J. L.; Chen, T. K.; Lim, K.; Chen, L. T.; Khan, S. A.; Xie, J. P.; Wang, X. N. Deep learning accelerated gold nanocluster synthesis. Adv. Intell. Syst. 2019, 1, 1900029.
Wang, S.; Wu, Z. L.; Dai, S.; Jiang, D. E. Deep learning accelerated determination of hydride locations in metal nanoclusters. Angew. Chem., Int. Ed. 2021, 60, 12289–12292.
Ouyang, R. H.; Xie, Y.; Jiang, D. E. Global minimization of gold clusters by combining neural network potentials and the basin-hopping method. Nanoscale 2015, 7, 14817–14821.
Panapitiya, G.; Avendaño-Franco, G.; Ren, P. J.; Wen, X. D.; Li, Y. W.; Lewis, J. P. Machine-learning prediction of CO adsorption in thiolated, Ag-alloyed Au nanoclusters. J. Am. Chem. Soc. 2018, 140, 17508–17514.
Jäger, M. O. J.; Morooka, E. V.; Canova, F. F.; Himanen, L.; Foster, A. S. Machine learning hydrogen adsorption on nanoclusters through structural descriptors. npj Comput. Mater. 2018, 4, 37.
Jäger, M. O. J.; Ranawat, Y. S.; Canova, F. F.; Morooka, E. V.; Foster, A. S. Efficient machine-learning-aided screening of hydrogen adsorption on bimetallic nanoclusters. ACS Comb. Sci. 2020, 22, 768–781.
Pihlajamäki, A.; Hämäläinen, J.; Linja, J.; Nieminen, P.; Malola, S.; Kärkkäinen, T.; Häkkinen, H. Monte carlo simulations of Au38(SCH3)24 nanocluster using distance-based machine learning methods. J. Phys. Chem. A 2020, 124, 4827–4836.
Copp, S. M.; Gorovits, A.; Swasey, S. M.; Gudibandi, S.; Bogdanov, P.; Gwinn, E. G. Fluorescence color by data-driven design of genomic silver clusters. ACS Nano 2018, 12, 8240–8247.
Li, X. B.; Maffettone, P. M.; Che, Y.; Liu, T.; Chen, L. J.; Cooper, A. I. Combining machine learning and high-throughput experimentation to discover photocatalytically active organic molecules. Chem. Sci. 2021, 12, 10742–10754.
Hu, J. T.; Liu, T. T.; Choo, P.; Wang, S. J.; Reese, T.; Sample, A. D.; Odom, T. W. Single-nanoparticle orientation sensing by deep learning. ACS Cent. Sci. 2020, 6, 2339–2346.
Ziatdinov, M.; Dyck, O.; Maksov, A.; Li, X. F.; Sang, X. H.; Xiao, K.; Unocic, R. R.; Vasudevan, R.; Jesse, S.; Kalinin, S. V. Deep learning of atomically resolved scanning transmission electron microscopy images: Chemical identification and tracking local transformations. ACS Nano 2017, 11, 12742–12752.
Walker, S. W. C.; Anwar, A.; Psutka, J. M.; Crouse, J.; Liu, C.; Le Blanc, J. C. Y.; Montgomery, J.; Goetz, G. H.; Janiszewski, J. S.; Campbell, J. L. et al. Determining molecular properties with differential mobility spectrometry and machine learning. Nat. Commun. 2018, 9, 5096.
Sanchez-Gonzalez, A.; Micaelli, P.; Olivier, C.; Barillot, T. R.; Ilchen, M.; Lutman, A. A.; Marinelli, A.; Maxwell, T.; Achner, A.; Agåker, M. et al. Accurate prediction of X-ray pulse properties from a free-electron laser using machine learning. Nat. Commun. 2017, 8, 15461.
Oviedo, F.; Ren, Z. K.; Sun, S. J.; Settens, C.; Liu, Z.; Hartono, N. T. P.; Ramasamy, S.; DeCost, B. L.; Tian, S. I. P.; Romano, G. et al. Fast and interpretable classification of small X-ray diffraction datasets using data augmentation and deep neural networks. npj Comput. Mater. 2019, 5, 60.
Alldritt, B.; Hapala, P.; Oinonen, N.; Urtev, F.; Krejci, O.; Federici Canova, F.; Kannala, J.; Schulz, F.; Liljeroth, P.; Foster, A. S. Automated structure discovery in atomic force microscopy. Sci. Adv. 2020, 6, eaay6913.
Ziatdinov, M.; Maksov, A.; Kalinin, S. V. Learning surface molecular structures via machine vision. npj Comput. Mater. 2017, 3, 31.
Li, J. L.; Telychko, M.; Yin, J.; Zhu, Y. X.; Li, G. W.; Song, S. T.; Yang, H. T.; Li, J.; Wu, J. S.; Lu, J. et al. Machine vision automated chiral molecule detection and classification in molecular imaging. J. Am. Chem. Soc. 2021, 143, 10177–10188.
Chen, T. K.; Fung, V.; Yao, Q. F.; Luo, Z. T.; Jiang, D. E.; Xie, J. P. Synthesis of water-soluble [Au25(SR)18]− using a stoichiometric amount of NaBH4. J. Am. Chem. Soc. 2018, 140, 11370–11377.
Chen, T. K.; Yao, Q. F.; Cao, Y. T.; Xie, J. P. Studying the growth of gold nanoclusters by sub-stoichiometric reduction. Cell Rep. Phy. Sci. 2020, 1, 100206.
Jadzinsky, P. D.; Calero, G.; Ackerson, C. J.; Bushnell, D. A.; Kornberg, R. D. Structure of a thiol monolayer-protected gold nanoparticle at 1.1 Å resolution. Science 2007, 318, 430–433.
Tero, T. R.; Malola, S.; Koncz, B.; Pohjolainen, E.; Lautala, S.; Mustalahti, S.; Permi, P.; Groenhof, G.; Pettersson, M.; Häkkinen, H. Dynamic stabilization of the ligand–metal interface in atomically precise gold nanoclusters Au68 and Au144 protected by meta-mercaptobenzoic acid. ACS Nano 2017, 11, 11872–11879.
Desireddy, A.; Conn, B. E.; Guo, J. S.; Yoon, B.; Barnett, R. N.; Monahan, B. M.; Kirschbaum, K.; Griffith, W. P.; Whetten, R. L.; Landman, U. et al. Ultrastable silver nanoparticles. Nature 2013, 501, 399–402.
Chen, T. K.; Yao, Q. F.; Nasaruddin, R. R.; Xie, J. P. Electrospray ionization mass spectrometry: A powerful platform for noble-metal nanocluster analysis. Angew. Chem., Int. Ed. 2019, 58, 11967–11977.
Kang, X.; Chong, H. B.; Zhu, M. Z. Au25(SR)18: The captain of the great nanocluster ship. Nanoscale 2018, 10, 10758–10834.
Devadas, M. S.; Bairu, S.; Qian, H. F.; Sinn, E.; Jin, R. C.; Ramakrishna, G. Temperature-dependent optical absorption properties of monolayer-protected Au25 and Au38 clusters. J. Phys. Chem. Lett. 2011, 2, 2752–2758.
Iwana, B. K.; Uchida, S. An empirical survey of data augmentation for time series classification with neural networks. PLoS One 2021, 16, e0254841.
Li, J. J.; Guan, Z. J.; Lei, Z.; Hu, F.; Wang, Q. M. Same magic number but different arrangement: Alkynyl-protected Au25 with D3 symmetry. Angew. Chem., Int. Ed. 2019, 58, 1083–1087.
Narouz, M. R.; Osten, K. M.; Unsworth, P. J.; Man, R. W. Y.; Salorinne, K.; Takano, S.; Tomihara, R.; Kaappa, S.; Malola, S.; Dinh, C. T. et al. N-heterocyclic carbene-functionalized magic-number gold nanoclusters. Nat. Chem. 2019, 11, 419–425.
Yao, Q. F.; Yuan, X.; Fung, V.; Yu, Y.; Leong, D. T.; Jiang, D. E.; Xie, J. P. Understanding seed-mediated growth of gold nanoclusters at molecular level. Nat. Commun. 2017, 8, 927.
Liao, L. W.; Zhuang, S. L.; Yao, C. H.; Yan, N.; Chen, J. S.; Wang, C. M.; Xia, N.; Liu, X.; Li, M. B.; Li, M. B. et al. Structure of chiral Au44(2,4-DMBT)26 nanocluster with an 18-electron shell closure. J. Am. Chem. Soc. 2016, 138, 10425–10428.
Das, A.; Li, T.; Nobusada, K.; Zeng, C. J.; Rosi, N. L.; Jin, R. C. Nonsuperatomic [Au23(SC6H11)16]− nanocluster featuring bipyramidal Au15 kernel and trimeric Au3(SR)4 motif. J. Am. Chem. Soc. 2013, 135, 18264–18267.
Yao, Q. F.; Fung, V.; Sun, C.; Huang, S. D.; Chen, T. K.; Jiang, D. E.; Lee, J. Y.; Xie, J. P. Revealing isoelectronic size conversion dynamics of metal nanoclusters by a noncrystallization approach. Nat. Commun. 2018, 9, 1979.
Aikens, C. M. Origin of discrete optical absorption spectra of M25(SH)18− nanoparticles (M = Au, Ag). J. Phys. Chem. C 2008, 112, 19797–19800.
Kumara, C.; Aikens, C. M.; Dass, A. X-ray crystal structure and theoretical analysis of Au25−xAgx(SCH2CH2Ph)18− alloy. J. Phys. Chem. Lett. 2014, 5, 461–466.
Tian, S. B.; Liao, L. W.; Yuan, J. Y.; Yao, C. H.; Chen, J. S.; Yang, J. L.; Wu, Z. K. Structures and magnetism of mono-palladium and mono-platinum doped Au25(PET)18 nanoclusters. Chem. Commun. 2016, 52, 9873–9876.
Jiang, D. E.; Dai, S. From superatomic Au25(SR)18− to superatomic M@Au24(SR)18q core–shell clusters. Inorg. Chem. 2009, 48, 2720–2722.
Li, G.; Abroshan, H.; Liu, C.; Zhuo, S.; Li, Z. M.; Xie, Y.; Kim, H. J.; Rosi, N. L.; Jin, R. C. Tailoring the electronic and catalytic properties of Au25 nanoclusters via ligand engineering. ACS Nano 2016, 10, 7998–8005.
Yang, H. Y.; Yan, J. Z.; Wang, Y.; Deng, G. C.; Su, H. F.; Zhao, X. J.; Xu, C. F.; Teo, B. K.; Zheng, N. F. From racemic metal nanoparticles to optically pure enantiomers in one pot. J. Am. Chem. Soc. 2017, 139, 16113–16116.
Negishi, Y.; Kurashige, W.; Kamimura, U. Isolation and structural characterization of an octaneselenolate-protected Au25 cluster. Langmuir 2011, 27, 12289–12292.
Lei, Z.; Wan, X. K.; Yuan, S. F.; Guan, Z. J.; Wang, Q. M. Alkynyl approach toward the protection of metal nanoclusters. Acc. Chem. Res. 2018, 51, 2465–2474.
Konishi, K.; Iwasaki, M.; Shichibu, Y. Phosphine-ligated gold clusters with core+exo geometries: Unique properties and interactions at the ligand–cluster interface. Acc. Chem. Res. 2018, 51, 3125–3133.
Brust, M.; Walker, M.; Bethell, D.; Schiffrin, D. J.; Whyman, R. Synthesis of thiol-derivatized gold nanoparticles in a 2-phase liquid-liquid system. J. Chem. Soc. Chem. Commun. 1994, 7, 801–802.