AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

2D/2D hierarchical Co3O4/ZnIn2S4 heterojunction with robust built-in electric field for efficient photocatalytic hydrogen evolution

Guping ZhangXunxun LiMengmeng WangXueqing LiYaru WangShuting HuangDongyun Chen( )Najun LiQingfeng XuHua LiJianmei Lu( )
College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
Show Author Information

Graphical Abstract

A 2D/2D (2D: two-dimensional) Co3O4/ZnIn2S4 heterojunction is successfully synthesized for efficient photocatalytic H2 production, where the enhanced interfacial charge separation and migration induced by a strong built-in electric field are the critical reasons for the boosted photocatalytic performance. This study paves the way for the rational design and construction of high-efficient heterojunction photocatalysts with built-in electric fields for solar energy conversion.

Abstract

Because of its importance in enhancing charge separation and transfer, built-in electric field engineering has been acknowledged as an effective technique for improving photocatalytic performance. Herein, a stable p–n heterojunction of 2D/2D (2D: two-dimensional) Co3O4/ZnIn2S4 with a strong built-in electric field is precisely constructed. The Co3O4/ZnIn2S4 heterojunction exhibits a higher visible-light photocatalytic hydrogen (H2) evolution rate than the individual components, which is primarily attributed to the synergy effect of improved light absorption, abundant active sites, short charge transport distance, and high separation efficiency of photogenerated carriers. Furthermore, the photoelectrochemical studies and density functional theory (DFT) calculation results demonstrate that the enhanced interfacial charge separation and migration induced by the generated built-in electric field are the critical reasons for the boosted photocatalytic performance. This research might pave the way for the rational design and manufacturing of 2D/2D heterojunction photocatalysts with extremely efficient photocatalytic performance for solar energy conversion.

Electronic Supplementary Material

Download File(s)
12274_2022_5096_MOESM1_ESM.pdf (1.8 MB)

References

[1]

Xiao, Y.; Guo, X. Y.; Yang, N. C.; Zhang, F. X. Heterostructured MOFs photocatalysts for water splitting to produce hydrogen. J. Energy Chem. 2021, 58, 508–522.

[2]

Qi, M. Y.; Conte, M.; Anpo, M.; Tang, Z. R.; Xu, Y. J. Cooperative coupling of oxidative organic synthesis and hydrogen production over semiconductor-based photocatalysts. Chem. Rev. 2021, 121, 13051–13085.

[3]

Shen, Z. K.; Yuan, Y. J.; Pei, L.; Yu, Z. T.; Zou, Z. G. Black phosphorus photocatalysts for photocatalytic H2 generation: A review. Chem. Eng. J. 2020, 386, 123997.

[4]

Wang, Q.; Domen, K. Particulate photocatalysts for light-driven water splitting: Mechanisms, challenges, and design strategies. Chem. Rev. 2020, 120, 919–985.

[5]

Yang, R. J.; Mei, L.; Fan, Y. Y.; Zhang, Q. Y.; Zhu, R. S.; Amal, R.; Yin, Z. Y.; Zeng, Z. Y. ZnIn2S4-based photocatalysts for energy and environmental applications. Small Methods 2021, 5, 2100887.

[6]

Oh, V. B. Y.; Ng, S. F.; Ong, W. J. Shining light on ZnIn2S4 photocatalysts: Promotional effects of surface and heterostructure engineering toward artificial photosynthesis. EcoMat 2022, 4, e12204.

[7]

Zhang, G. P.; Wu, H.; Chen, D. Y.; Li, N. J.; Xu, Q. F.; Li, H.; He, J. H.; Lu, J. M. A mini-review on ZnIn2S4-based photocatalysts for energy and environmental application. Green Energy Environ. 2022, 7, 176–204.

[8]

Wang, X. H.; Wang, X. H.; Huang, J. F.; Li, S. X.; Meng, A. L.; Li, Z. J. Interfacial chemical bond and internal electric field modulated Z-scheme Sv-ZnIn2S4/MoSe2 photocatalyst for efficient hydrogen evolution. Nat. Commun. 2021, 12, 4112.

[9]

Mao, S. M.; Shi, J. W.; Sun, G. T.; Ma, D. D.; He, C.; Pu, Z. X.; Song, K. L.; Cheng, Y. H. Au nanodots@thiol-UiO66@ZnIn2S4 nanosheets with significantly enhanced visible-light photocatalytic H2 evolution: The effect of different Au positions on the transfer of electron–hole pairs. Appl. Catal. B Environ. 2021, 282, 119550.

[10]

Peng, X. X.; Li, J. W.; Yi, L. C.; Liu, X.; Chen, J. X.; Cai, P. W.; Wen, Z. H. Ultrathin ZnIn2S4 nanosheets decorating PPy nanotubes toward simultaneous photocatalytic H2 production and 1,4-benzenedimethanol valorization. Appl. Catal. B Environ. 2022, 300, 120737.

[11]

Guo, X. L.; Peng, Y. H.; Liu, G. B.; Xie, G. W.; Guo, Y. A.; Zhang, Y.; Yu, J. Q. An efficient ZnIn2S4@CuInS2 core–shell p–n heterojunction to boost visible-light photocatalytic hydrogen evolution. J. Phys. Chem. C 2020, 124, 5934–5943.

[12]

Swain, G.; Sultana, S.; Parida, K. One-pot-architectured Au-nanodot-promoted MoS2/ZnIn2S4: A novel p–n heterojunction photocatalyst for enhanced hydrogen production and phenol degradation. Inorg. Chem. 2019, 58, 9941–9955.

[13]

Fan, H. T.; Wu, Z.; Liu, K. C.; Liu, W. S. Fabrication of 3D CuS@ZnIn2S4 hierarchical nanocages with 2D/2D nanosheet subunits p–n heterojunctions for improved photocatalytic hydrogen evolution. Chem. Eng. J. 2022, 433, 134474.

[14]

Wang, L. L.; Tang, G. G.; Liu, S.; Dong, H. L.; Liu, Q. Q.; Sun, J. F.; Tang, H. Interfacial active-site-rich 0D Co3O4/1D TiO2 p–n heterojunction for enhanced photocatalytic hydrogen evolution. Chem. Eng. J. 2022, 428, 131338.

[15]

Ke, Y.; Liang, Q.; Zhao, S.; Zhang, Z. H.; Li, X. Z.; Li, Z. Y. In situ self-assembled ZIF-67/MIL-125-derived Co3O4/TiO2 p–n heterojunctions for enhanced photocatalytic CO2 reduction. Inorg. Chem. 2022, 61, 2652–2661.

[16]

Han, Y. L.; Liang, Z. B.; Dang, H. F.; Dong, X. F. Extremely high photocatalytic H2 evolution of novel Co3O4/Cd0.9Zn0.1S p–n heterojunction photocatalyst under visible light irradiation. J. Taiwan Inst. Chem. Eng. 2018, 87, 196–203.

[17]

Zhang, Y. K.; Jin, Z. L.; Yuan, H.; Wang, G. R.; Ma, B. Z. Well-regulated nickel nanoparticles functional modified ZIF-67 (Co) derived Co3O4/CdS p–n heterojunction for efficient photocatalytic hydrogen evolution. Appl. Surf. Sci. 2018, 462, 213–225.

[18]

Huang, L. J.; Li, B. F.; Su, B.; Xiong, Z.; Zhang, C. J.; Hou, Y. D.; Ding, Z. X.; Wang, S. B. Fabrication of hierarchical Co3O4@CdIn2S4 p–n heterojunction photocatalysts for improved CO2 reduction with visible light. J. Mater. Chem. A 2020, 8, 7177–7183.

[19]

Zuo, G. C.; Wang, Y. T.; Teo, W. L.; Xie, A. M.; Guo, Y.; Dai, Y. X.; Zhou, W. Q.; Jana, D.; Xian, Q. M.; Dong, W. et al. Ultrathin ZnIn2S4 nanosheets anchored on Ti3C2TX MXene for photocatalytic H2 evolution. Angew. Chem., Int. Ed. 2020, 59, 11287–11292.

[20]

Hou, H. L.; Zhang, X. W. Rational design of 1D/2D heterostructured photocatalyst for energy and environmental applications. Chem. Eng. J. 2020, 395, 125030.

[21]

Su, J.; Li, G. D.; Li, X. H.; Chen, J. S. 2D/2D heterojunctions for catalysis. Adv. Sci. 2019, 6, 18011702.

[22]

Ong, W. J.; Shak, K. P. Y. 2D/2D heterostructured photocatalysts: An emerging platform for artificial photosynthesis. Solar RRL 2020, 4, 2000132.

[23]

Hou, H. L.; Zeng, X. K.; Zhang, X. W. 2D/2D heterostructured photocatalyst: Rational design for energy and environmental applications. Sci. China Mater. 2020, 63, 2119–2152.

[24]

Liu, X. L.; Zhang, Q. Z.; Ma, D. L. Advances in 2D/2D Z-scheme heterojunctions for photocatalytic applications. Solar RRL 2021, 5, 2000397.

[25]

Hu, J. D.; Chen, C.; Zheng, Y.; Zhang, G. P.; Guo, C. X.; Li, C. M. Spatially separating redox centers on Z-scheme ZnIn2S4/BiVO4 hierarchical heterostructure for highly efficient photocatalytic hydrogen evolution. Small 2020, 16, 2002988.

[26]

Xi, Y. M.; Chen, W. B.; Dong, W. R.; Fan, Z. X.; Wang, K. F.; Shen, Y.; Tu, G. M.; Zhong, S. X.; Bai, S. Engineering an interfacial facet of S-scheme heterojunction for improved photocatalytic hydrogen evolution by modulating the internal electric field. ACS Appl. Mater. Interfaces 2021, 13, 39491–39500.

[27]

Zhao, S. Q.; Li, T.; Lin, J. J.; Wu, P.; Li, Y. F.; Li, A. Q.; Chen, T. Y.; Zhao, Y.; Chen, G. X.; Yang, L. et al. Engineering Co3+-rich crystal planes on Co3O4 hexagonal nanosheets for CO and hydrocarbons oxidation with enhanced catalytic activity and water resistance. Chem. Eng. J. 2021, 420, 130448.

[28]

Wang, Y. T.; Zhu, C. Z.; Zuo, G. C.; Guo, Y.; Xiao, W.; Dai, Y. X.; Kong, J. J.; Xu, X. M.; Zhou, Y. X.; Xie, A. M. et al. 0D/2D Co3O4/TiO2 Z-scheme heterojunction for boosted photocatalytic degradation and mechanism investigation. Appl. Catal. B Environ. 2020, 278, 119298.

[29]

Huang, J. Z.; Sheng, H. Y.; Ross, R. D.; Han, J. C.; Wang, X. J.; Song, B.; Jin, S. Modifying redox properties and local bonding of Co3O4 by CeO2 enhances oxygen evolution catalysis in acid. Nat. Commun. 2021, 12, 3036.

[30]

Kang, Y.; Zhang, Y. H.; Shi, Q.; Shi, H. W.; Xue, D. F.; Shi, F. N. Highly efficient Co3O4/CeO2 heterostructure as anode for lithium-ion batteries. J. Colloid Interface Sci. 2021, 585, 705–715.

[31]

Hu, J. D.; Yang, T. Y.; Chen, J. J.; Yang, X. G.; Qu, J. F.; Cai, Y. H. Efficient solar-driven H2O2 synthesis in-situ and sustainable activation to purify water via cascade reaction on ZnIn2S4-based heterojunction. Chem. Eng. J. 2022, 430, 133039.

[32]

Miao, L. L.; Tang, X. L.; Zhao, S. Z.; Xie, X. Z.; Du, C. C.; Tang, T.; Yi, H. H. Study on mechanism of low-temperature oxidation of n-hexanal catalysed by 2D ultrathin Co3O4 nanosheets. Nano Res. 2022, 15, 1660–1671.

[33]

Zhu, Z. Z.; Li, X. X.; Qu, Y. T.; Zhou, F. Y.; Wang, Z. Y.; Wang, W. Y.; Zhao, C. M.; Wang, H. J.; Li, L. Q.; Yao, Y. G. et al. A hierarchical heterostructure of CdS QDs confined on 3D ZnIn2S4 with boosted charge transfer for photocatalytic CO2 reduction. Nano Res. 2021, 14, 81–90.

[34]

Shao, Y. Y.; Hu, J. D.; Yang, T. Y.; Yang, X. G.; Qu, J. F.; Xu, Q.; Li, C. M. Significantly enhanced photocatalytic in-situ H2O2 production and consumption activities for efficient sterilization by ZnIn2S4/g-C3N4 heterojunction. Carbon 2022, 190, 337–347.

[35]

Han, Q. T.; Li, L.; Gao, W.; Shen, Y.; Wang, L.; Zhang, Y. T.; Wang, X. Y.; Shen, Q.; Xiong, Y. J.; Zhou, Y. et al. Elegant construction of ZnIn2S4/BiVO4 hierarchical heterostructures as direct Z-scheme photocatalysts for efficient CO2 photoreduction. ACS Appl. Mater. Interfaces 2021, 13, 15092–15100.

[36]

Wang, L. B.; Cheng, B.; Zhang, L. Y.; Yu, J. G. In situ irradiated XPS investigation on S-scheme TiO2@ZnIn2S4 photocatalyst for efficient photocatalytic CO2 reduction. Small 2021, 17, 2103447.

[37]

Chao, Y. G.; Zhou, P.; Lai, J. P.; Zhang, W. Y.; Yang, H. W.; Lu, S. Y.; Chen, H.; Yin, K.; Li, M. G.; Tao, L. et al. Ni1−xCoxSe2-C/ZnIn2S4 hybrid nanocages with strong 2D/2D hetero-interface interaction enable efficient H2-releasing photocatalysis. Adv. Funct. Mater. 2021, 31, 2100923.

[38]

Wu, K.; Jiang, R. Q.; Zhao, Y. L.; Mao, L.; Gu, X. Q.; Cai, X. Y.; Zhu, M. S. Hierarchical NiCo2S4/ZnIn2S4 heterostructured prisms: High-efficient photocatalysts for hydrogen production under visible-light. J. Colloid Interface Sci. 2022, 619, 339–347.

[39]

Zhang, D. Q.; Mao, B. D.; Li, D.; Liu, Y. H.; Li, F. H.; Dong, W. X.; Jiang, T. Y.; Shi, W. D. 0D/2D Z-scheme heterojunctions of Zn-AgIn5S8 QDs/α-Fe2O3 nanosheets for efficient visible-light-driven hydrogen production. Chem. Eng. J. 2021, 417, 128275.

[40]

Yang, Y. L.; Mao, B. D.; Gong, G.; Li, D.; Liu, Y. H.; Cao, W. J.; Xing, L.; Zeng, J.; Shi, W. D.; Yuan, S. Q. In-situ growth of Zn-AgIn5S8 quantum dots on g-C3N4 towards 0D/2D heterostructured photocatalysts with enhanced hydrogen production. Int. J. Hydrogen Energy 2019, 44, 15882–15891.

[41]

Zhu, X. W.; Ji, H. Y.; Yi, J. J.; Yang, J. M.; She, X. J.; Ding, P. H.; Li, L.; Deng, J. J.; Qian, J. C.; Xu, H. et al. A specifically exposed cobalt oxide/carbon nitride 2D heterostructure for carbon dioxide photoreduction. Ind. Eng. Chem. Res. 2018, 57, 17394–17400.

[42]

Wang, S. B.; Guan, B. Y.; Wang, X.; Lou, X. W. D. Formation of hierarchical Co9S8@ZnIn2S4 heterostructured cages as an efficient photocatalyst for hydrogen evolution. J. Am. Chem. Soc. 2018, 140, 15145–15148.

[43]

Luo, D.; Peng, L.; Wang, Y.; Lu, X. Y.; Yang, C.; Xu, X. S.; Huang, Y. C.; Ni, Y. H. Highly efficient photocatalytic water splitting utilizing a WO3−x/ZnIn2S4 ultrathin nanosheet Z-scheme catalyst. J. Mater. Chem. A 2021, 9, 908–914.

[44]

Zhang, J. H.; Gu, H. J.; Wang, X. L.; Zhang, H. H.; Li, L. F.; Wang, X. H.; Dai, W. L. Facile and robust construction of a 3D-hierarchical NaNbO3-nanorod/ZnIn2S4 heterojunction towards ultra-high photocatalytic H2 production. Catal. Sci. Technol. 2022, 12, 2346–2359.

[45]

Wang, T.; Tao, X. Q.; Li, X. L.; Zhang, K.; Liu, S. J.; Li, B. X. Synergistic Pd single atoms, clusters, and oxygen vacancies on TiO2 for photocatalytic hydrogen evolution coupled with selective organic oxidation. Small 2021, 17, 2006255.

[46]

Qian, J. J.; Shen, C.; Yan, J.; Xi, F. N.; Dong, X. P.; Liu, J. Y. Tailoring the electronic properties of graphene quantum dots by P doping and their enhanced performance in metal-free composite photocatalyst. J. Phys. Chem. C 2018, 122, 349–358.

[47]

Liu, D. N.; Chen, D. Y.; Li, N. J.; Xu, Q. F.; Li, H.; He, J. H.; Lu, J. M. ZIF-67-derived 3D hollow mesoporous crystalline Co3O4 wrapped by 2D g-C3N4 nanosheets for photocatalytic removal of nitric oxide. Small 2019, 15, 1902291.

[48]

Tan, M. X.; Ma, Y.; Yu, C. Y.; Luan, Q. J.; Li, J. J.; Liu, C. B.; Dong, W. J.; Su, Y. J.; Qiao, L. J.; Gao, L. et al. Boosting photocatalytic hydrogen production via interfacial engineering on 2D ultrathin Z-scheme ZnIn2S4/g-C3N4 heterojunction. Adv. Funct. Mater. 2022, 32, 2111740.

Nano Research
Pages 6134-6141
Cite this article:
Zhang G, Li X, Wang M, et al. 2D/2D hierarchical Co3O4/ZnIn2S4 heterojunction with robust built-in electric field for efficient photocatalytic hydrogen evolution. Nano Research, 2023, 16(5): 6134-6141. https://doi.org/10.1007/s12274-022-5096-6
Topics:
Part of a topical collection:

11187

Views

45

Crossref

27

Web of Science

41

Scopus

0

CSCD

Altmetrics

Received: 21 June 2022
Revised: 15 August 2022
Accepted: 24 September 2022
Published: 19 November 2022
© Tsinghua University Press 2022
Return