AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Plasma-enhanced interfacial engineering of FeSiAl@PUA@SiO2 hybrid for efficient microwave absorption and anti-corrosion

Hongyan Zhang1,2Feng Cao3Hui Xu3Wei Tian1Ying Pan1,2Nasir Mahmood4( )Xian Jian1,2( )
School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, China
Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, China
Department of Engineering Technology, Huzhou College, Huzhou 313000, China
School of Science, RMIT University, Melbourne, VIC 3001, Australia
Show Author Information

Graphical Abstract

Plasma-enhanced interfacial manipulation of FeSiAl@PUA@SiO2 (PUA: acrylic polyurethane) hybrid introduces multiple-polarization and anti-corrosion properties, resulting in exceptional microwave absorption performance and stability of the resulted heterogeneous structure.

Abstract

Microwave absorption materials are prone to degradation in extremely humid and salty environments, and it is still challenging to develop a dense and firm interface to protect microwave absorbers. Herein, a robust FeSiAl@PUA@SiO2 (PUA: acrylic polyurethane) gradient hybrid was prepared through plasma-enhanced chemical vapor deposition (PECVD) to achieve efficient microwave absorption and anti-corrosion properties. The organic/inorganic dual coat of PUA/SiO2 not only facilitated the interface polarization but also effectively reduced the dielectric constant and optimized impedance matching. Owing to the unique hybrid structure, the (PECVD-FeSiAl@PUA)@SiO2 exhibited highly efficient microwave absorbing performance in frequency bands covering almost the entire Ku-bands (12–18 GHz) with a minimum reflection loss (RLmin) of −47 dB with a matching thickness of 2.3 mm. The organic/inorganic dual protection effectively shields against the corrosive medium, as the corrosion potential and the polarization resistance increased from −0.167 to −0.047 V and 8,064 to 16,273 Ω·cm2, respectively. While the corrosion current decreased from 3.04 × 10−6 to 2.16 × 10−6 A/cm2. Hence, the plasma-enhanced densification of PUA created a strong bridge to integrate FeSiAl and organic/inorganic components acquiring dual-function of efficient microwave absorption and anti-corrosion, which opened a promising platform for potential practical absorbers.

Electronic Supplementary Material

Download File(s)
12274_2022_5100_MOESM1_ESM.pdf (1.4 MB)

References

[1]

Zhang, K. L.; Zhang, J. Y.; Hou, Z. L.; Bi, S.; Zhao, Q. L. Multifunctional broadband microwave absorption of flexible graphene composites. Carbon 2019, 141, 608–617.

[2]

Wang, Y. Y.; Zhu, J. L.; Li, N.; Shi, J. F.; Tang, J. H.; Yan, D. X.; Li, Z. M. Carbon aerogel microspheres with in-situ mineralized TiO2 for efficient microwave absorption. Nano Res. 2022, 15, 7723–7730.

[3]

Meng, X.; He, L.; Liu, Y. Q.; Yu, Y. S.; Yang, W. W. Carbon-coated defect-rich MnFe2O4/MnO heterojunction for high-performance microwave absorption. Carbon 2022, 194, 207–219.

[4]

Hu, Q. M.; Yang, R. L.; Mo, Z. C.; Lu, D. W.; Yang, L. L.; He, Z. F.; Zhu, H.; Tang, Z. K.; Gui, X. C. Nitrogen-doped and Fe-filled CNTs/NiCo2O4 porous sponge with tunable microwave absorption performance. Carbon 2019, 153, 737–744.

[5]

Fu, H. H.; Guo, Y.; Yu, J.; Shen, Z.; Zhao, J.; Xie, Y.; Ling, Y.; Ouyang, S.; Li, S. Q.; Zhang, W. Tuning the shell thickness of core–shell α-Fe2O3@SiO2 nanoparticles to promote microwave absorption. Chin. Chem. Lett. 2022, 33, 957–962.

[6]

Ren, S. N.; Yu, H. J.; Wang, L.; Huang, Z. K.; Lin, T. F.; Huang, Y. D.; Yang, J.; Hong, Y. C.; Liu, J. Y. State of the art and prospects in metal−organic framework-derived microwave absorption materials. Nano-Micro Lett. 2022, 14, 68.

[7]

Arai, K. I.; Tsuya, N.; Ohmori, K.; Yamamoto, T.; Miyazaki, T. Magnetic properties of ribbon-form sendust alloy. J. Magn. Magn. Mater. 1980, 19, 85–87.

[8]

Wakiyama, T.; Takahashi, M.; Nishimaki, S.; Shimoda, J. Magnetic properties of Fe-Si-Al single crystals. IEEE Trans. Magn. 1981, 17, 3147–3150.

[9]

Wu, Y. P.; Gao, X.; Cheng, J. X.; Wen, W. W.; Wang, Q. B.; Zhu, Z. M. Optimum design for permittivity of dielectric absorbing materials. J. Phys. Conf. Ser. 2021, 1765, 012002.

[10]

Qing, Y. C.; Su, J. B.; Wen, Q. L.; Luo, F.; Zhu, D. M.; Zhou, W. C. Enhanced dielectric and electromagnetic interference shielding properties of FeSiAl/Al2O3 ceramics by plasma spraying. J. Alloys Compd. 2015, 651, 259–265.

[11]

Duan, Y. P.; Liu, W.; Song, L. L.; Wang, T. M. A discrete structure: FeSiAl/carbon black composite absorption coatings. Mater. Res. Bull. 2017, 88, 41–48.

[12]

Zhou, L.; Huang, J. L.; Wang, H. B.; Chen, M.; Dong, Y. L.; Zheng, F. K. FeSiAl/ZnO-filled resin composite coatings with enhanced dielectric and microwave absorption properties. J. Mater. Sci. Mater. Electron. 2019, 30, 1896–1906.

[13]

Liu, D.; Wu, C.; Yan, M.; Wang, J. Correlating the microstructure, growth mechanism and magnetic properties of FeSiAl soft magnetic composites fabricated via HNO3 oxidation. Acta Mater. 2018, 146, 294–303.

[14]

Liu, W.; Shao, Q. W.; Ji, G. B.; Liang, X. H.; Cheng, Y.; Quan, B.; Du, Y. W. Metal–organic-frameworks derived porous carbon-wrapped Ni composites with optimized impedance matching as excellent lightweight electromagnetic wave absorber. Chem. Eng. J. 2017, 313, 734–744.

[15]

Xu, C. Y.; Wang, L.; Li, X.; Qian, X.; Wu, Z. C.; You, W. B.; Pei, K.; Qin, G.; Zeng, Q. W.; Yang, Z. Q. et al. Hierarchical magnetic network constructed by CoFe nanoparticles suspended within “tubes on rods” matrix toward enhanced microwave absorption. Nano-Micro Lett. 2021, 13, 47.

[16]

Ma, G. J.; Duan, Y. P.; Liu, Y.; Gao, S. H. Effect of surface modified SiO2 powders on microwave absorbing properties of flaky FeSiAl coatings. J. Mater. Sci. Mater. Electron. 2018, 29, 17405–17415.

[17]

Guo, Y.; Zhang, X. Z.; Feng, X. Q.; Jian, X.; Zhang, L.; Deng, L. J. Non-isothermal oxidation kinetics of FeSiAl alloy powder for microwave absorption at high temperature. Compos. B. Eng. 2018, 155, 282–287.

[18]

Chen, Y. H.; Huang, Z. H.; Lu, M. M.; Cao, W. Q.; Yuan, J.; Zhang, D. Q.; Cao, M. S. 3D Fe3O4 nanocrystals decorating carbon nanotubes to tune electromagnetic properties and enhance microwave absorption capacity. J. Mater. Chem. A 2015, 3, 12621–12625.

[19]

Tian, W.; Li, J. Y.; Liu, Y. F.; Deng, L. J.; Guo, Y.; Jian, X. Large-scale synthesis of fluorine-free carbonyl iron-organic silicon hydrophobic absorbers with long term corrosion protection property. Nano Res. 2022, 15, 9479–9491.

[20]

Cao, L.; Jiang, J. T.; Wang, Z. Q.; Gong, Y. X.; Liu, C.; Zhen, L. Electromagnetic properties of flake-shaped Fe-Si alloy particles prepared by ball milling. J. Magn. Magn. Mater. 2014, 368, 295–299.

[21]

Guo, Y.; Ali, R.; Zhang, X. Z.; Tian, W.; Zhang, L.; Lu, H. P.; Jian, X.; Xie, J. L.; Deng, L. J. Raman and XPS depth profiling technique to investigate the corrosion behavior of FeSiAl alloy in salt spray environment. J. Alloys Compd. 2020, 834, 155075.

[22]

Li, J. Y.; Guo, Y.; Yang, R. Q.; Liu, Z. Y.; Tian, H. X.; Tian, W.; Liu, Y. F.; Jian, X. Achieving ultra-low frequency microwave absorbing properties based on anti-corrosive silica-pinned flake FeSiAl hybrid with full L band absorption. J. Alloys Compd. 2021, 888, 161574.

[23]

Zhang, X. Z.; Guo, Y.; Ali, R.; Tian, W.; Liu, Y. F.; Zhang, L.; Wang, X.; Zhang, L. B.; Yin, L. J.; Su, H. et al. Bifunctional carbon-encapsulated FeSiAl hybrid flakes for enhanced microwave absorption properties and analysis of corrosion resistance. J. Alloys Compd. 2020, 828, 154079.

[24]

Liu, S.; Qin, S. H.; Jiang, Y.; Song, P. G.; Wang, H. Lightweight high-performance carbon-polymer nanocomposites for electromagnetic interference shielding. Compos. Part A Appl. Sci. Manuf. 2021, 145, 106376.

[25]

Chen, K. X.; Liu, M.; Shi, Y. Q.; Wang, H. R.; Fu, L. B.; Feng, Y. Z.; Song, P. A. Multi-hierarchical flexible composites towards superior fire safety and electromagnetic interference shielding. Nano Res. 2022, 15, 9531–9543.

[26]

Tang, T. T.; Wang, S. C.; Jiang, Y.; Xu, Z. G.; Chen, Y.; Peng, T. S.; Khan, F.; Feng, J. B.; Song, P. G.; Zhao, Y. Flexible and flame-retarding phosphorylated MXene/polypropylene composites for efficient electromagnetic interference shielding. J. Mater. Sci. Technol. 2022, 111, 66–75.

[27]

Chen, K. X.; Feng, Y. Z.; Shi, Y. Q.; Wang, H. R.; Fu, L. B.; Liu, M.; Lv, Y. C.; Yang, F. Q.; Yu, B.; Liu, M. H. et al. Flexible and fire safe sandwich structured composites with superior electromagnetic interference shielding properties. Compos. Part A Appl. Sci. Manuf. 2022, 160, 107070.

[28]

Liu, L.; Ma, Z. W.; Zhu, M. H.; Liu, L. N.; Dai, J. F.; Shi, Y. Q.; Gao, J. F.; Dinh, T.; Nguyen, T.; Tang, L. C. et al. Superhydrophobic self-extinguishing cotton fabrics for electromagnetic interference shielding and human motion detection. J. Mater. Sci. Technol. 2023, 132, 59–68.

[29]

Maklakov, S. S.; Lagarkov, A. N.; Maklakov, S. A.; Adamovich, Y. A.; Petrov, D. A.; Rozanov, K. N.; Ryzhikov, I. A.; Zarubina, A. Y.; Pokholok, K. V.; Filimonov, D. S. Corrosion-resistive magnetic powder Fe@SiO2 for microwave applications. J. Alloys Compd. 2017, 706, 267–273.

[30]

Xue, F.; Jia, D. M.; Li, Y.; Jing, X. L. Facile preparation of a mechanically robust superhydrophobic acrylic polyurethane coating. J. Mater. Chem. A 2015, 3, 13856–13863.

[31]

Pan, Y.; Li, J. Y.; Liu, Z. Y.; Yang, R. Q.; Liu, Y. F.; Yin, L. J.; Liu, H. K.; Jian, X. Inorganic/organic bilayer of silica/acrylic polyurethane decorating FeSiAl for enhanced anti-corrosive microwave absorption. Appl. Surf. Sci. 2021, 567, 150829.

[32]

Nguyen, B. Q. H.; Shanmugasundaram, A.; Hou, T. F.; Park, J.; Lee, D. W. Realizing the flexible and transparent highly-hydrophobic film through siloxane functionalized polyurethane-acrylate micro-pattern. Chem. Eng. J. 2019, 373, 68–77.

[33]

Xu, J. J.; Wang, K.; Zu, S. Z.; Han, B. H.; Wei, Z. X. Hierarchical nanocomposites of polyaniline nanowire arrays on graphene oxide sheets with synergistic effect for energy storage. ACS Nano 2010, 4, 5019–5026.

[34]

Liu, P. B.; Gao, S.; Wang, Y.; Huang, Y.; He, W. J.; Huang, W. H.; Luo, J. H. Carbon nanocages with N-doped carbon inner shell and Co/N-doped carbon outer shell as electromagnetic wave absorption materials. Chem. Eng. J. 2020, 381, 122653.

[35]

Guo, Y.; Jian, X.; Zhang, L.; Mu, C. H.; Yin, L. J.; Xie, J. L.; Mahmood, N.; Dou, S. X.; Che, R. C.; Deng, L. J. Plasma-induced FeSiAl@Al2O3@SiO2 core–shell structure for exceptional microwave absorption and anti-oxidation at high temperature. Chem. Eng. J. 2020, 384, 123371.

[36]

Tian, W.; Zhang, X. Z.; Guo, Y.; Mu, C. H.; Zhou, P. H.; Yin, L. J.; Zhang, L. B.; Zhang, L.; Lu, H. P.; Jian, X. et al. Hybrid silica-carbon bilayers anchoring on FeSiAl surface with bifunctions of enhanced anti-corrosion and microwave absorption. Carbon 2021, 173, 185–193.

[37]

Ma, Y. J.; Ye, Y. P.; Wan, H. Q.; Chen, L.; Zhou, H. D.; Chen, J. M. Chemical modification of graphene oxide to reinforce the corrosion protection performance of UV-curable polyurethane acrylate coating. Prog. Org. Coat. 2020, 141, 105547.

[38]

Jian, X.; Tian, W.; Li, J. Y.; Deng, L. J.; Zhou, Z. W.; Zhang, L.; Lu, H. P.; Yin, L. J.; Mahmood, N. High-temperature oxidation-resistant ZrN0.4B0.6/SiC nanohybrid for enhanced microwave absorption. ACS Appl. Mater. Interfaces 2019, 11, 15869–15880.

[39]

Liu, P. J.; Ng, V. M. H.; Yao, Z. J.; Zhou, J. T.; Lei, Y. M.; Yang, Z. H.; Lv, H. L.; Kong, L. B. Facile synthesis and hierarchical assembly of flowerlike NiO structures with enhanced dielectric and microwave absorption properties. ACS Appl. Mater. Interfaces 2017, 9, 16404–16416.

[40]

Yan, L. W.; Hong, C. Q.; Sun, B. Q.; Zhao, G. D.; Cheng, Y. H.; Dong, S.; Zhang, D. Y.; Zhang, X. H. In situ growth of core–sheath heterostructural SiC nanowire arrays on carbon fibers and enhanced electromagnetic wave absorption performance. ACS Appl. Mater. Interfaces 2017, 9, 6320–6331.

[41]

Byun, K. M.; Lee, W. J. Deposition characteristics of low dielectric constant SiOF films prepared by ECR PECVD. Met. Mater. 2000, 6, 155–160.

[42]

Zhang, J. J.; Li, Z. H.; Qi, X. S.; Gong, X.; Xie, R.; Deng, C. Y.; Zhong, W.; Du, Y. W. Constructing flower-like core@shell MoSe2-based nanocomposites as a novel and high-efficient microwave absorber. Compos. B Eng. 2021, 222, 109067.

[43]

Zhou, L.; Gao, L.; Yang, M.; Zhang, B. S.; Wei, G. K. In situ growth of nanocarbon-coated Ni particles by PECVD for enhanced microwave absorption. J. Mater. Sci. Mater. Electron. 2022, 33, 16306–16319.

[44]

Li, C.; Qi, X. S.; Gong, X.; Peng, Q.; Chen, Y. L.; Xie, R.; Zhong, W. Magnetic–dielectric synergy and interfacial engineering to design yolk–shell structured CoNi@void@C and CoNi@void@C@MoS2 nanocomposites with tunable and strong wideband microwave absorption. Nano Res. 2022, 15, 6761–6771.

[45]

Wang, G. Z.; Gao, Z.; Tang, S. W.; Chen, C. Q.; Duan, F. F.; Zhao, S. C.; Lin, S. W.; Feng, Y. H.; Zhou, L.; Qin, Y. Microwave absorption properties of carbon nanocoils coated with highly controlled magnetic materials by atomic layer deposition. ACS Nano 2012, 6, 11009–11017.

[46]

Hou, T. Q.; Jia, Z. R.; Dong, Y. H.; Liu, X. H.; Wu, G. L. Layered 3D structure derived from MXene/magnetic carbon nanotubes for ultra-broadband electromagnetic wave absorption. Chem. Eng. J. 2022, 431, 133919.

[47]

Zhang, J. J.; Qi, X. S.; Gong, X.; Peng, Q.; Chen, Y. L.; Xie, R.; Zhong, W. Microstructure optimization of core@shell structured MSe2/FeSe2@MoSe2 (M = Co, Ni) flower-like multicomponent nanocomposites towards high-efficiency microwave absorption. J. Mater. Sci. Technol. 2022, 128, 59–70.

[48]

Li, C.; Li, Z. H.; Qi, X. S.; Gong, X.; Chen, Y. L.; Peng, Q.; Deng, C. Y.; Jing, T.; Zhong, W. A generalizable strategy for constructing ultralight three-dimensional hierarchical network heterostructure as high-efficient microwave absorber. J. Colloid Interface Sci. 2022, 605, 13–22.

[49]

Yang, P. A.; Huang, Y. X.; Li, R.; Huang, X.; Ruan, H. B.; Shou, M. J.; Li, W. J.; Zhang, Y. X.; Li, N.; Dong, L. C. Optimization of Fe@Ag core–shell nanowires with improved impedance matching and microwave absorption properties. Chem. Eng. J. 2022, 430, 132878.

[50]

Han, M. Y.; Zhou, M.; Wu, Y.; Zhao, Y.; Cao, J. M.; Tang, S. L.; Zou, Z. Q.; Ji, G. B. Constructing angular conical FeSiAl/SiO2 composites with corrosion resistance for ultra-broadband microwave absorption. J. Alloys Compd. 2022, 902, 163792.

[51]

Zhang, Z. Y.; Zhao, Y. H.; Li, Z. H.; Zhang, L. J.; Liu, Z. X.; Long, Z. K.; Li, Y. J.; Liu, Y.; Fan, R. H.; Sun, K. et al. Synthesis of carbon/SiO2 core–sheath nanofibers with Co-Fe nanoparticles embedded in via electrospinning for high-performance microwave absorption. Adv. Compos. Hybrid Mater. 2022, 5, 513–524.

[52]

Ma, Z.; Zhang, Y.; Cao, C. T.; Yuan, J.; Liu, Q. F.; Wang, J. B. Attractive microwave absorption and the impedance match effect in zinc oxide and carbonyl iron composite. Phys. B 2011, 406, 4620–4624.

[53]

Meng, X.; Lei, W. J.; Yang, W. W.; Liu, Y. Q.; Yu, Y. S. Fe3O4 nanoparticles coated with ultra-thin carbon layer for polarization-controlled microwave absorption performance. J. Colloid Interface Sci. 2021, 600, 382–389.

[54]

Yang, H.-J.; Cao, W.-Q.; Zhang, D.-Q.; Su, T.-J.; Shi, H.-L.; Wang, W.-Z.; Yuan, J.; Cao, M.-S. NiO hierarchical nanorings on SiC: Enhancing relaxation to tune microwave absorption at elevated temperature. ACS Appl. Mater. Interfaces 2015, 7, 7073–7077.

[55]

Wang, X. X.; Cao, W. Q.; Cao, M. S.; Yuan, J. Assembling nano-microarchitecture for electromagnetic absorbers and smart devices. Adv. Mater. 2020, 32, 2002112.

[56]

Wu, M.; Darboe, A. K.; Qi, X. S.; Xie, R.; Qin, S. J.; Deng, C. Y.; Wu, G. L.; Zhong, W. Optimization, selective and efficient production of CNTs/CoXFe3−XO4 core/shell nanocomposites as outstanding microwave absorbers. J. Mater. Chem. C 2020, 8, 11936–11949.

[57]

Ye, Y. W.; Liu, Z. Y.; Liu, W.; Zhang, D. W.; Zhao, H. C.; Wang, L. P.; Li, X. G. Superhydrophobic oligoaniline-containing electroactive silica coating as pre-process coating for corrosion protection of carbon steel. Chem. Eng. J. 2018, 348, 940–951.

Nano Research
Pages 645-653
Cite this article:
Zhang H, Cao F, Xu H, et al. Plasma-enhanced interfacial engineering of FeSiAl@PUA@SiO2 hybrid for efficient microwave absorption and anti-corrosion. Nano Research, 2023, 16(1): 645-653. https://doi.org/10.1007/s12274-022-5100-1
Topics:
Part of a topical collection:

1147

Views

56

Crossref

57

Web of Science

54

Scopus

0

CSCD

Altmetrics

Received: 31 July 2022
Revised: 18 September 2022
Accepted: 23 September 2022
Published: 02 November 2022
© Tsinghua University Press 2022
Return