Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
The activation of the stimulating factor of the interferon gene (STING) pathway can enhance the immune response within the tumor. Cyclic diguanylate monophosphate (c-di-GMP) is a negatively charged, hydrophilic STING agonist, however, its effectiveness is limited due to the poor membrane permeability and low bioavailability. Herein, we introduced KL-7 peptide derived from Aβ amyloid fibrils that can self-assemble to form nanotubes to load and deliver c-di-GMP, which significantly enhanced c-di-GMP’s effectiveness and then exhibited a robust “in situ immunity” to kill melanoma cells. KL-7 peptide nanotube, also called PNT, was loaded with negatively charged c-di-GMP via electrostatic interaction, which prepared a nanocomposite named c-di-GMP-PNT. Treatment of RAW 264.7 cells (leukemia cells in mouse macrophage) with c-di-GMP-PNT markedly stimulated the secretion of IL-6 and INF-β along with phospho-STING (Ser365) protein expression, indicating the activation of the STING pathway. In the unilateral flank B16-F10 (murine melanoma cells) tumor-bearing mouse model, compared to PNT and c-di-GMP, c-di-GMP-PNT can promote the expression of INF-β, TNF-α, IL-6, and IL-1β. At the same time, up-regulated CD4 and CD8 active T cells kill tumors and enhance the immune response in tumor tissues, resulting in significant inhibition of tumor growth in tumor-bearing mice. More importantly, in a bilateral flank B16-F10 tumor model, both primary and distant tumor growth can also be significantly inhibited by c-di-GMP-PNT. Moreover, c-di-GMP-PNT demonstrated no obvious biological toxicity on the main organs (heart, liver, spleen, lung, and kidney) and biochemical indexes of mice. In summary, our study provides a strategy to overcome the barriers of free c-di-GMP in the tumor microenvironment and c-di-GMP-PNT may be an attractive nanomaterial for anti-tumor immunity.
Ji, X. W.; Lu, Y.; Tian, H. F.; Meng, X. R.; Wei, M. J.; Cho, W. C. Chemoresistance mechanisms of breast cancer and their countermeasures. Biomed. Pharmacother. 2019, 114, 108800.
Ahn, J.; Xia, T. L.; Konno, H.; Konno, K.; Ruiz, P.; Barber, G. N. Inflammation-driven carcinogenesis is mediated through STING. Nat. Commun. 2014, 5, 5166.
Jiang, M. L.; Chen, P. X.; Wang, L.; Li, W.; Chen, B.; Liu, Y.; Wang, H.; Zhao, S.; Ye, L. Y.; He, Y. Y. et al. cGAS-STING, an important pathway in cancer immunotherapy. J. Hematol. Oncol. 2020, 13, 81.
Rios-Doria, J.; Durham, N.; Wetzel, L.; Rothstein, R.; Chesebrough, J.; Holoweckyj, N.; Zhao, W.; Leow, C. C.; Hollingsworth, R. Doxil synergizes with cancer immunotherapies to enhance antitumor responses in syngeneic mouse models. Neoplasia 2015, 17, 661–670.
Alspach, E.; Lussier, D. M.; Miceli, A. P.; Kizhvatov, I.; DuPage, M.; Luoma, A. M.; Meng, W.; Lichti, C. F.; Esaulova, E.; Vomund, A. N. et al. MHC-II neoantigens shape tumour immunity and response to immunotherapy. Nature 2019, 574, 696–701.
Wang, Y.; Luo, J. W.; Alu, A.; Han, X. J.; Wei, Y. Q.; Wei, X. W. cGAS-STING pathway in cancer biotherapy. Mol. Cancer 2020, 19, 136.
Rivera Vargas, T.; Benoit-Lizon, I.; Apetoh, L. Rationale for stimulator of interferon genes-targeted cancer immunotherapy. Eur. J. Cancer 2017, 75, 86–97.
Zhang, X. W.; Bai, X. C.; Chen, Z. J. Structures and mechanisms in the cGAS-STING innate immunity pathway. Immunity 2020, 53, 43–53.
Takashima, K.; Takeda, Y.; Oshiumi, H.; Shime, H.; Okabe, M.; Ikawa, M.; Matsumoto, M.; Seya, T. STING in tumor and host cells cooperatively work for NK cell-mediated tumor growth retardation. Biochem. Biophys. Res. Commun. 2016, 478, 1764–1771.
Marcus, A.; Mao, A. J.; Lensink-Vasan, M.; Wang, L.; Vance, R. E.; Raulet, D. H. Tumor-derived cGAMP triggers a STING-mediated interferon response in non-tumor cells to activate the NK cell response. Immunity 2018, 49, 754–763.e4.
Shae, D.; Becker, K. W.; Christov, P.; Yun, D. S.; Lytton-Jean, A. K. R.; Sevimli, S.; Ascano, M.; Kelley, M.; Johnson, D. B.; Balko, J. M. et al. Endosomolytic polymersomes increase the activity of cyclic dinucleotide STING agonists to enhance cancer immunotherapy. Nat. Nanotechnol. 2019, 14, 269–278.
Kalia, D.; Merey, G.; Nakayama, S.; Zheng, Y.; Zhou, J.; Luo, Y. L.; Guo, M.; Roembke, B. T.; Sintim, H. O. Nucleotide, c-di-GMP, c-di-AMP, cGMP, cAMP, (p)ppGpp signaling in bacteria and implications in pathogenesis. Chem. Soc. Rev. 2013, 42, 305–341.
Woodward, J. J.; Iavarone, A. T.; Portnoy, D. A. c-di-AMP secreted by intracellular Listeria monocytogenes activates a host type I interferon response. Science 2010, 328, 1703–1705.
Tang, C. H. A.; Zundell, J. A.; Ranatunga, S.; Lin, C.; Nefedova, Y.; Del Valle, J. R.; Hu, C. C. A. Agonist-mediated activation of STING induces apoptosis in malignant B cells. Cancer Res. 2016, 76, 2137–2152.
Ohkuri, T.; Kosaka, A.; Ishibashi, K.; Kumai, T.; Hirata, Y.; Ohara, K.; Nagato, T.; Oikawa, K.; Aoki, N.; Harabuchi, Y. et al. Intratumoral administration of cGAMP transiently accumulates potent macrophages for anti-tumor immunity at a mouse tumor site. Cancer Immunol. Immunother. 2017, 66, 705–716.
Fu, J.; Kanne, D. B.; Leong, M.; Glickman, L. H.; McWhirter, S. M.; Lemmens, E.; Mechette, K.; Leong, J. J.; Lauer, P.; Liu, W. Q. et al. STING agonist formulated cancer vaccines can cure established tumors resistant to PD-1 blockade. Sci. Transl. Med. 2015, 7, 283ra52.
Liu, S. Q.; Cai, X.; Wu, J. X.; Cong, Q.; Chen, X.; Li, T.; Du, F. H.; Ren, J. Y.; Wu, Y. T.; Grishin, N. V. et al. Phosphorylation of innate immune adaptor proteins MAVS, STING, and TRIF induces IRF3 activation. Science 2015, 347, aaa2630.
Flood, B. A.; Higgs, E. F.; Li, S. Y.; Luke, J. J.; Gajewski, T. F. STING pathway agonism as a cancer therapeutic. Immunol. Rev. 2019, 290, 24–38.
Wang, Z. L.; Celis, E. STING activator c-di-GMP enhances the anti-tumor effects of peptide vaccines in melanoma-bearing mice. Cancer Immunol. Immunother. 2015, 64, 1057–1066.
Corrales, L.; Matson, V.; Flood, B.; Spranger, S.; Gajewski, T. F. Innate immune signaling and regulation in cancer immunotherapy. Cell Res. 2017, 27, 96–108.
He, L. M.; Xiao, X. M.; Yang, X.; Zhang, Z. X.; Wu, L. H.; Liu, Z. P. STING signaling in tumorigenesis and cancer therapy: A friend or foe? Cancer Lett. 2017, 402, 203–212.
Cheng, N.; Watkins-Schulz, R.; Junkins, R. D.; David, C. N.; Johnson, B. M.; Montgomery, S. A.; Peine, K. J.; Darr, D. B.; Yuan, H.; McKinnon, K. P. et al. A nanoparticle-incorporated STING activator enhances antitumor immunity in PD-L1-insensitive models of triple-negative breast cancer. JCI Insight 2018, 3, e120638.
Koshy, S. T.; Cheung, A. S.; Gu, L.; Graveline, A. R.; Mooney, D. J. Liposomal delivery enhances immune activation by STING agonists for cancer immunotherapy. Adv. Biosys. 2017, 1, 1600013.
Li, L. Y.; Yin, Q.; Kuss, P.; Maliga, Z.; Millán, J. L.; Wu, H.; Mitchison, T. J. Hydrolysis of 2’3’-cGAMP by ENPP1 and design of nonhydrolyzable analogs. Nat. Chem. Biol. 2014, 10, 1043–1048.
Wang, F. H.; Su, H.; Xu, D. Q.; Dai, W. B.; Zhang, W. J.; Wang, Z. Y.; Anderson, C. F.; Zheng, M. Z.; Oh, R.; Wan, F. Y. et al. Tumour sensitization via the extended intratumoural release of a STING agonist and camptothecin from a self-assembled hydrogel. Nat. Biomed. Eng. 2020, 4, 1090–1101.
Hanson, M. C.; Crespo, M. P.; Abraham, W.; Moynihan, K. D.; Szeto, G. L.; Chen, S. H.; Melo, M. B.; Mueller, S.; Irvine, D. J. Nanoparticulate STING agonists are potent lymph node-targeted vaccine adjuvants. J. Clin. Invest. 2015, 125, 2532–2546.
Chen, Y. P.; Xu, L.; Tang, T. W.; Chen, C. H.; Zheng, Q. H.; Liu, T. P.; Mou, C. Y.; Wu, C. H.; Wu, S. H. STING activator c-di-GMP-loaded mesoporous silica nanoparticles enhance immunotherapy against breast cancer. ACS Appl. Mater. Interfaces 2020, 12, 56741–56752.
Ma, P. X. Biomimetic materials for tissue engineering. Adv. Drug Deliv. Rev. 2008, 60, 184–198.
Moyer, T. J.; Kassam, H. A.; Bahnson, E. S. M.; Morgan, C. E.; Tantakitti, F.; Chew, T. L.; Kibbe, M. R.; Stupp, S. I. Shape-dependent targeting of injured blood vessels by peptide amphiphile supramolecular nanostructures. Small 2015, 11, 2750–2755.
Larnaudie, S. C.; Sanchis, J.; Nguyen, T. H.; Peltier, R.; Catrouillet, S.; Brendel, J. C.; Porter, C. J. H.; Jolliffe, K. A.; Perrier, S. Cyclic peptide-poly (HPMA) nanotubes as drug delivery vectors: In vitro assessment, pharmacokinetics and biodistribution. Biomaterials 2018, 178, 570–582.
Geng, Y.; Dalhaimer, P.; Cai, S. S.; Tsai, R.; Tewari, M.; Minko, T.; Discher, D. E. Shape effects of filaments versus spherical particles in flow and drug delivery. Nat. Nanotechnol. 2007, 2, 249–255.
Seabra, A. B.; Durán, N. Biological applications of peptides nanotubes: An overview. Peptides 2013, 39, 47–54.
El Khalifi, M.; Bentin, J.; Duverger, E.; Gharbi, T.; Boulahdour, H.; Picaud, F. Encapsulation capacity and natural payload delivery of an anticancer drug from boron nitride nanotube. Phys. Chem. Chem. Phys. 2016, 18, 24994–25001.
Lai, Y.; Xu, Z. A.; Hu, X. L.; Lei, L.; Li, L. L.; Dong, L.; Yu, H. J.; Zhang, W. Peptide nanotube-templated biomineralization of Cu2−xS nanoparticles for combination treatment of metastatic tumor. Small 2019, 15, e1904397.
Hilbich, C.; Kisters-Woike, B.; Reed, J.; Masters, C. L.; Beyreuther, K. Substitutions of hydrophobic amino acids reduce the amyloidogenicity of Alzheimer’s disease βA4 peptides. J. Mol. Biol. 1992, 228, 460–473.
Li, S.; Mehta, A. K.; Sidorov, A. N.; Orlando, T. M.; Jiang, Z. G.; Anthony, N. R.; Lynn, D. G. Design of asymmetric peptide bilayer membranes. J. Am. Chem. Soc. 2016, 138, 3579–3586.
Childers, W. S.; Mehta, A. K.; Ni, R.; Taylor, J. V.; Lynn, D. G. Peptides organized as bilayer membranes. Angew. Chem., Int. Ed. 2010, 49, 4104–4107.
Lei, L.; Xu, Z. A.; Hu, X. L.; Lai, Y.; Xu, J.; Hou, B.; Wang, Y.; Yu, H. J.; Tian, Y.; Zhang, W. Bioinspired multivalent peptide nanotubes for sialic acid targeting and imaging-guided treatment of metastatic melanoma. Small 2019, 15, e1900157.
Omosun, T. O.; Hsieh, M. C.; Childers, W. S.; Das, D.; Mehta, A. K.; Anthony, N. R.; Pan, T.; Grover, M. A.; Berland, K. M.; Lynn, D. G. Catalytic diversity in self-propagating peptide assemblies. Nat. Chem. 2017, 9, 805–809.
Sarkhel, B.; Chatterjee, A.; Das, D. Covalent catalysis by cross β amyloid nanotubes. J. Am. Chem. Soc. 2020, 142, 4098–4103.
Mende, F.; Seitz, O. 9-Fluorenylmethoxycarbonyl-based solid-phase synthesis of peptide α-thioesters. Angew. Chem. , Int. Ed. 2011, 50, 1232–1240.
Kim, H. S.; Kim, Y. J.; Lee, H. K.; Ryu, H. S.; Kim, J. S.; Yoon, M. J.; Kang, J. S.; Hong, J. T.; Kim, Y.; Han, S. B. Activation of macrophages by polysaccharide isolated from Paecilomyces cicadae through toll-like receptor 4. Food Chem. Toxicol. 2012, 50, 3190–3197.
Al-Anati, L.; Essid, E.; Stenius, U.; Beuerlein, K.; Schuh, K.; Petzinger, E. Differential cell sensitivity between OTA and LPS upon releasing TNF-α. Toxins 2010, 2, 1279–1299.
Deb, K.; Chaturvedi, M. M.; Jaiswal, Y. K. Gram-negative bacterial LPS induced poor uterine receptivity and implantation failure in mouse: Alterations in IL-1β expression in the preimplantation embryo and uterine horns. Infect. Dis. Obstet. Gynecol. 2005, 13, 125–133.
Park, K. S.; Xu, C.; Sun, X. Q.; Louttit, C.; Moon, J. J. Improving STING agonist delivery for cancer immunotherapy using biodegradable mesoporous silica nanoparticles. Adv. Therap. 2020, 3, 2000130.
Li, A. P.; Yi, M.; Qin, S.; Song, Y. P.; Chu, Q.; Wu, K. M. Activating cGAS-STING pathway for the optimal effect of cancer immunotherapy. J. Hematol. Oncol. 2019, 12, 35.
Abe, T.; Barber, G. N. Cytosolic-DNA-mediated, STING-dependent proinflammatory gene induction necessitates canonical NF-κB activation through TBK1. J. Virol. 2014, 88, 5328–5341.