AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Insights into the synergistic promotion of spin polarization over C3N5.4 for enhancing cooperative hydrogen evolution and benzylamine oxidation coupling

Qiuchen Wang1,§Xiaoxu Deng2,§Haiyan Pen1Fei Liu1Meiyang Song1Peng Chen1( )Shuang-Feng Yin3( )
Provincial Guizhou Key Laboratory of Green Chemical and Clean Energy Technology, School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China
College of Big Data and Information Engineering, Guizhou University, Guiyang 550025, China
College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China

§ Qiuchen Wang and Xiaoxu Deng contributed equally to this work.

Show Author Information

Graphical Abstract

In this work, nonmetal P and N elements have been demonstrated to regulate spin polarization in carbon nitride. It is verified that the electron spin polarization with parallel arrangement of charge and huge built-in electric field can significantly enhance the separation of photoexcited charge and exciton dissociation as well as surface catalysis reaction.

Abstract

Polymers are usually restricted on the high exciton binding energies and sluggish electron transfer because of the low dielectric constants. Regulating spin-polarized electrons is regarded as an attractive strategy, but often confined to the d-orbital elements. Here, the nonmetal P and N elements co-mediated the spin polarization of carbon nitrides (PCN) have been elaborately designed. The optimized PCN-3 shows an outstanding hydrogen production (22.2 mmol·g–1·h–1) coupled with selective benzylamine oxidation without using any solvent and cocatalysts, which is 200 times of original C3N4 and superior to the photocatalysts has been reported to date. Experimental and theoretical results verified that the spin-orbital coupling of N 2p and P 2p remarkably increased the parallel spin states of charge and reduced the formation of singlet excitons to accelerate exciton dissociation in carbon nitride. In addition, charge separation and surface catalysis can be significantly enhanced by the electron spin polarization of carbon nitride with the parallel arrangement, huge built-in electric field and disturbed electronic structure. Our finding deepens the insight into the charge separation and exciton dissociation in spin polarization, and offers new tactics to develop high-efficiency catalysts.

Electronic Supplementary Material

Download File(s)
12274_2022_5105_MOESM1_ESM.pdf (6.5 MB)

References

[1]

Pang, J. B.; Mendes, R. G.; Bachmatiuk, A.; Zhao, L.; Ta, H. Q.; Gemming, T.; Liu, H.; Liu, Z. F.; Rummeli, M. H. Applications of 2D MXenes in energy conversion and storage systems. Chem. Soc. Rev. 2019, 48, 72–133.

[2]

Kasap, H.; Godin, R.; Jeay-Bizot, C.; Achilleos, D. S.; Fang, X.; Durrant, J. R.; Reisner, E. Interfacial engineering of a carbon nitride-graphene oxide-molecular Ni catalyst hybrid for enhanced photocatalytic activity. ACS Catal. 2018, 8, 6914–6926.

[3]

Wang, X. Y.; Chen, L. J.; Chong, S. Y.; Little, M. A.; Wu, Y. Z.; Zhu, W. H.; Clowes, R.; Yan, Y.; Zwijnenburg, M. A.; Sprick, R. S. et al. Sulfone-containing covalent organic frameworks for photocatalytic hydrogen evolution from water. Nat. Chem. 2018, 10, 1180–1189.

[4]

Li, G.; Deng, X. X.; Chen, P.; Wang, X. D.; Ma, J.; Liu, F.; Yin, S. F. Sulphur vacancies-VS2@C3N4 drived by in situ supramolecular self-assembly for synergistic photocatalytic degradation of real wastewater and H2 production: Vacancies taming interfacial compact heterojunction and carriers transfer. Chem. Eng. J. 2022, 433, 134505.

[5]

Wang, Q. C.; Deng, X. X.; Chen, W. G.; Chen, P.; Liu, F.; Yin, S. F. Bismuth complexes with N/S coordination based metallopolymer as highly efficient photocatalyst for selective oxidation of styrene. Fuel 2021, 302, 121127.

[6]

Huang, G. Q.; Ye, W. N.; Lv, C. X.; Butenko, D. S.; Yang, C.; Zhang, G. L.; Lu, P.; Xu, Y.; Zhang, S. C.; Wang, H. W. et al. Hierarchical red phosphorus incorporated TiO2 hollow sphere heterojunctions toward superior photocatalytic hydrogen production. J. Mater. Sci. Technol. 2022, 108, 18–25.

[7]

Yang, C.; Zhu, Y. K.; Liu, Y. M.; Wang, H. W.; Yang, D. J. Ternary red phosphorus/CoP2/SiO2 microsphere boosts visible-light-driven photocatalytic hydrogen evolution from pure water splitting. J. Mater. Sci. Technol. 2022, 125, 59–66.

[8]

Zhu, Y. K.; Lv, C. X.; Yin, Z. C.; Ren, J.; Yang, X. F.; Dong, C. L.; Liu, H. W.; Cai, R. S.; Huang, Y. C.; Theis, W. et al. A [001]-oriented hittorf's phosphorus nanorods/polymeric carbon nitride heterostructure for boosting wide-spectrum-responsive photocatalytic hydrogen evolution from pure water. Angew. Chem., Int. Ed. 2020, 59, 868–873.

[9]

Hisatomi, T.; Domen, K. Reaction systems for solar hydrogen production via water splitting with particulate semiconductor photocatalysts. Nat. Catal. 2019, 2, 387–399.

[10]

Wang, S. B.; Guan, B. Y.; Wang, X.; Lou, X. W. D. Formation of hierarchical Co9S8@ZnIn2S4 heterostructured cages as an efficient photocatalyst for hydrogen evolution. J. Am. Chem. Soc. 2018, 140, 15145–15148.

[11]

Kasap, H.; Caputo, C. A.; Martindale, B. C. M.; Godin, R.; Lau, V. W. H.; Lotsch, B. V.; Durrant, J. R.; Reisner, E. Solar-driven reduction of aqueous protons coupled to selective alcohol oxidation with a carbon nitride-molecular Ni catalyst system. J. Am. Chem. Soc. 2016, 138, 9183–9192.

[12]

Han, G. Q.; Jin, Y. H.; Burgess, R. A.; Dickenson, N. E.; Cao, X. M.; Sun, Y. J. Visible-light-driven valorization of biomass intermediates integrated with H2 production catalyzed by ultrathin Ni/CdS nanosheets. J. Am. Chem. Soc. 2017, 139, 15584–15587.

[13]

Su, F. Z.; Mathew, S. C.; Möhlmann, L.; Antonietti, M.; Wang, X. C.; Blechert, S. Aerobic oxidative coupling of amines by carbon nitride photocatalysis with visible light. Angew. Chem., Int. Ed. 2011, 50, 657–660.

[14]

Ray, S. C.; Pao, C. W.; Chiou, J. W.; Tsai, H. M.; Jan, J. C.; Pong, W. F.; McCann, R.; Roy, S. S.; Papakonstantinou, P.; McLaughlin, J. A. Electronic properties of a-CNx thin films: An X-ray-absorption and photoemission spectroscopy study. J. Appl. Phys. 2005, 98, 033708.

[15]

Meng, Q. Y.; Zhong, J. J.; Liu, Q.; Gao, X. W.; Zhang, H. H.; Lei, T.; Li, Z. J.; Feng, K.; Chen, B.; Tung, C. H. et al. A cascade cross-coupling hydrogen evolution reaction by visible light catalysis. J. Am. Chem. Soc. 2013, 135, 19052–19055.

[16]

Zhou, Z. X.; Zhang, Y. Y.; Shen, Y. F.; Liu, S. Q.; Zhang, Y. J. Molecular engineering of polymeric carbon nitride: Advancing applications from photocatalysis to biosensing and more. Chem. Soc. Rev. 2018, 47, 2298–2321.

[17]

Talapaneni, S. N.; Mane, G. P.; Park, D. H.; Lakhi, K. S.; Ramadass, K.; Joseph, S.; Skinner, W. M.; Ravon, U.; Al-Bahily, K.; Vinu, A. Diaminotetrazine based mesoporous C3N6 with a well-ordered 3D cubic structure and its excellent photocatalytic performance for hydrogen evolution. J. Mater. Chem. A 2017, 5, 18183–18192.

[18]

Kim, I. Y.; Kim, S.; Premkumar, S.; Yang, J. H.; Umapathy, S.; Vinu, A. Thermodynamically stable mesoporous C3N7 and C3N6 with ordered structure and their excellent performance for oxygen reduction reaction. Small 2020, 16, 1903572.

[19]

Yang, H.; Zhou, Q.; Fang, Z. Z.; Li, W.; Zheng, Y. J.; Ma, J.; Wang, Z.; Zhao, L. F.; Liu, S. Q.; Shen, Y. F. et al. Carbon nitride of five-membered rings with low optical bandgap for photoelectrochemical biosensing. Chem 2021, 7, 2708–2721.

[20]

Sathish, C.; Premkumar, S.; Chu, X. Z.; Yu, X. J.; Breese, M. B. H.; Al-Abri, M.; Al-Muhtaseb, A. H.; Karakoti, A.; Yi, J. B.; Vinu, A. Microporous carbon nitride (C3N5.4) with tetrazine based molecular structure for efficient adsorption of CO2 and water. Angew. Chem., Int. Ed. 2021, 60, 21242–21249.

[21]

Yang, H.; Wang, Z.; Liu, S. Q.; Shen, Y. F.; Zhang, Y. J. Molecular engineering of CxNy: Topologies, electronic structures and multidisciplinary applications. Chin. Chem. Lett. 2020, 31, 3047–3054.

[22]

Talapaneni, S. N.; Singh, G.; Kim, I. Y.; AlBahily, K.; Al-Muhtaseb, A. H.; Karakoti, A. S.; Tavakkoli, E.; Vinu, A. Nanostructured carbon nitrides for CO2 capture and conversion. Adv. Mater. 2020, 32, 1904635.

[23]

Peng, G. M.; Albero, J.; Garcia, H.; Shalom, M. A water-splitting carbon nitride photoelectrochemical cell with efficient charge separation and remarkably low onset potential. Angew. Chem., Int. Ed. 2018, 57, 15807–15811.

[24]
Ma, J.; Peng, X. X.; Zhou, Z. X.; Yang, H.; Wu, K. Q.; Fang, Z. Z.; Han, D.; Fang, Y. F.; Liu, S. Q.; Shen, Y. F. et al. Extended conjugation tuning carbon nitride for non-sacrificial H2O2 photosynthesis and hypoxic tumor therapy. Angew. Chem. , Int. Ed. , in press,DOI: 10.1002/anie.202210856.
[25]

Kunitski, M.; Eicke, N.; Huber, P.; Köhler, J.; Zeller, S.; Voigtsberger, J.; Schlott, N.; Henrichs, K.; Sann, H.; Trinter, F. et al. Double-slit photoelectron interference in strong-field ionization of the neon dimer. Nat. Commun. 2019, 10, 1.

[26]

Wang, Y.; Xu, W.; Zhang, Y.; Wu, Y. Z.; Wang, Z. K.; Fu, L.; Bai, F. L.; Zhou, B. Y.; Wang, T. T.; Cheng, L. et al. Introducing spin polarization into atomically thin 2D carbon nitride sheets for greatly extended visible-light photocatalytic water splitting. Nano Energy 2021, 83, 105783.

[27]

Ou, B.; Wang, J. X.; Wu, Y.; Zhao, S.; Wang, Z. Efficient removal of Cr (VI) by magnetic and recyclable calcined CoFe-LDH/g-C3N4 via the synergy of adsorption and photocatalysis under visible light. Chem. Eng. J. 2020, 380, 122600.

[28]

Chen, X. H.; Lu, H. P.; Wang, K.; Zhai, Y. X.; Lunin, V.; Sercel, P. C.; Beard, M. C. Tuning spin-polarized lifetime in two-dimensional metal-halide perovskite through exciton binding energy. J. Am. Chem. Soc. 2021, 143, 19438–19445.

[29]

Li, Y. J.; Wang, H.; Zhang, X. D.; Wang, S. H.; Jin, S.; Xu, X. L.; Liu, W. X.; Zhao, Z.; Xie, Y. Exciton-mediated energy transfer in heterojunction enables infrared light photocatalysis. Angew. Chem., Int. Ed. 2021, 60, 12891–12896.

[30]

Fina, F.; Callear, S. K.; Carins, G. M.; Irvine, J. T. S. Structural investigation of graphitic carbon nitride via XRD and neutron diffraction. Chem. Mater. 2015, 27, 2612–2618.

[31]

Wang, H. Y.; Li, M. X.; Lu, Q. J.; Cen, Y. M.; Zhang, Y. Y.; Yao, S. Z. A mesoporous rod-like g-C3N5 synthesized by salt-guided strategy: As a superior photocatalyst for degradation of organic pollutant. ACS Sustainable Chem. Eng. 2019, 7, 625–631.

[32]

Talapaneni, S. N.; Mane, G. P.; Mano, A.; Anand, C.; Dhawale, D. S.; Mori, T.; Vinu, A. Synthesis of nitrogen-rich mesoporous carbon nitride with tunable pores, band gaps and nitrogen content from a single aminoguanidine precursor. ChemSusChem 2012, 5, 700–708.

[33]

Hu, S. Z.; Ma, L.; You, J. G.; Li, F. Y.; Fan, Z. P.; Lu, G.; Liu, D.; Gui, J. Z. Enhanced visible light photocatalytic performance of g-C3N4 photocatalysts co-doped with iron and phosphorus. Appl. Surf. Sci. 2014, 311, 164–171.

[34]

Aydemir, M.; Baysal, A.; Gümgüm, B. A modular design of metal catalysts for the transfer hydrogenation of aromatic ketones. Appl. Organometal. Chem. 2012, 26, 1–8.

[35]

Akaike, K.; Aoyama, K.; Dekubo, S.; Onishi, A.; Kanai, K. Characterizing electronic structure near the energy gap of graphitic carbon nitride based on rational interpretation of chemical analysis. Chem. Mater. 2018, 30, 2341–2352.

[36]

Titantah, J. T.; Lamoen, D. Carbon and nitrogen 1s energy levels in amorphous carbon nitride systems: XPS interpretation using first-principles. Diamond Relat. Mater. 2007, 16, 581–588.

[37]

Yang, S. L.; Wang, Q.; Wang, Q. C.; Li, G.; Zhao, T. X.; Chen, P.; Liu, F.; Yin, S. F. Linkage engineering mediated carriers transfer and surface reaction over carbon nitride for enhanced photocatalytic activity. J. Mater. Chem. A 2021, 9, 21732–21740.

[38]

Zhang, G.; Yang, F.; Liu, X. D.; Zhao, H. Y.; Che, S.; Li, J. Z.; Yan, X. R.; Sun, S. Y.; Chen, F. J.; Xu, C. et al. Tuning surface chemical property in hierarchical porous carbon via nitrogen and phosphorus doping for deep desulfurization. Sep. Purif. Technol. 2022, 280, 119923.

[39]

Kim, I. Y.; Kim, S.; Jin, X. Y.; Premkumar, S.; Chandra, G.; Lee, N. S.; Mane, G. P.; Hwang, S. J.; Umapathy, S.; Vinu, A. Ordered mesoporous C3N5 with a combined triazole and triazine framework and its graphene hybrids for the oxygen reduction reaction (ORR). Angew. Chem., Int. Ed. 2018, 57, 17135–17140.

[40]

Wang, S. J.; He, F. T.; Zhao, X. L.; Zhang, J. Q.; Ao, Z. M.; Wu, H.; Yin, Y.; Shi, L.; Xu, X. Y.; Zhao, C. C. et al. Phosphorous doped carbon nitride nanobelts for photodegradation of emerging contaminants and hydrogen evolution. Appl. Catal. B:Environ. 2019, 257, 117931.

[41]

Huang, J. X.; Li, D. G.; Li, R. B.; Zhang, Q. X.; Chen, T. S.; Liu, H. J.; Liu, Y.; Lv, W. Y.; Liu, G. G. An efficient metal-free phosphorus and oxygen co-doped g-C3N4 photocatalyst with enhanced visible light photocatalytic activity for the degradation of fluoroquinolone antibiotics. Chem. Eng. J. 2019, 374, 242–253.

[42]

Zhang, Y. J.; Antonietti, M. Photocurrent generation by polymeric carbon nitride solids: An initial step towards a novel photovoltaic system. Chem.—Asian J. 2010, 5, 1307–1311.

[43]

Zhou, Y. J.; Zhang, L. X.; Liu, J. J.; Fan, X. Q.; Wang, B. Z.; Wang, M.; Ren, W. C.; Wang, J.; Li, M. L.; Shi, J. L. Brand new P-doped g-C3N4: Enhanced photocatalytic activity for H2 evolution and Rhodamine B degradation under visible light. J. Mater. Chem. A 2015, 3, 3862–3867.

[44]

Yang, S. L.; Deng, X. X.; Chen, P.; Zhao, T. X.; Liu, F.; Deng, C. Y.; Yin, S. F. Linker functionalized poly(heptazine imide) as charge channel and activation site for enhancing photocatalytic nitrogen fixation in pure water. Appl. Catal. B:Environ. 2022, 311, 121370.

[45]

Jun, Y. S.; Lee, E. Z.; Wang, X. C.; Hong, W. H.; Stucky, G. D.; Thomas, A. From melamine-cyanuric acid supramolecular aggregates to carbon nitride hollow spheres. Adv. Funct. Mater. 2013, 23, 3661–3667.

[46]

Pan, H. Z.; Zhang, H. Y.; Liu, H. M.; Chen, L. Interstitial boron doping effects on the electronic and magnetic properties of graphitic carbon nitride materials. Solid State Commun. 2015, 203, 35–40.

[47]

Li, P. X.; Zhao, H.; Yan, X. Y.; Yang, X.; Li, J. J.; Gao, S. Y.; Cao, R. Visible-light-driven photocatalytic hydrogen production coupled with selective oxidation of benzyl alcohol over CdS@MoS2 heterostructures. Sci. China Mater. 2020, 63, 2239–2250.

[48]

Pan, L.; Ai, M. H.; Huang, C. Y.; Yin, L.; Liu, X.; Zhang, R. R.; Wang, S. B.; Jiang, Z.; Zhang, X. W.; Zou, J. J. et al. Manipulating spin polarization of titanium dioxide for efficient photocatalysis. Nat. Commun. 2020, 11, 418.

[49]

Bai, T.; Ai, J.; Liao, L. Y.; Luo, J. W.; Song, C.; Duan, Y. Y.; Han, L.; Che, S. N. Chiral mesostructured NiO films with spin polarisation. Angew. Chem., Int. Ed. 2021, 60, 9421–9426.

[50]

Marrows, C. H. Spin-polarised currents and magnetic domain walls. Adv. Phys. 2005, 54, 585–713.

[51]

Kirichenko, E. V.; Stephanovich, V. A. The influence of Coulomb interaction screening on the excitons in disordered two-dimensional insulators. Sci. Rep. 2021, 11, 11956.

[52]

Dinu, I. V.; Ţolea, M.; Gartner, P. Quantum dot exciton dephasing by coulomb interaction: A fermionic analog of the independent boson model. Phys. Rev. B 2020, 101, 085304.

[53]

Gao, C. Y.; Xia, B. R.; Gao, D. Q.; Liu, Y. G. Structural distortion induced ferromagnetism in two-dimensional metal-free graphitic-C3N4 nanosheets. RSC. Adv. 2019, 9, 21391–21395.

[54]

Hsiao, Y. C.; Wu, T.; Li, M. X.; Hu, B. Magneto-optical studies on spin-dependent charge recombination and dissociation in perovskite solar cells. Adv. Mater. 2015, 27, 2899–2906.

[55]

Thilagam, A. Effect of the pauli exclusion principle on the singlet exciton yield in conjugated polymers. Appl. Phys. A 2016, 122, 254.

[56]

Köppen, T.; Franz, D.; Schramm, A.; Heyn, C.; Heitmann, D.; Kipp, T. Resonant Raman transitions into singlet and triplet states in InGaAs quantum dots containing two electrons. Phys. Rev. Lett. 2009, 103, 037402.

[57]

Yoo, M. S.; Lee, H. C.; Wolf, C.; Nguyen, N. N.; Park, D. H.; Kim, J.; Lee, E.; Chung, H. J.; Cho, K. Growth of multilayer graphene with a built-in vertical electric field. Chem. Mater. 2020, 32, 5142–5152.

[58]

Ben, H.; Yan, G. J.; Liu, H. Y.; Ling, C. C.; Fan, Y.; Zhang, X. J. Local spatial polarization induced efficient charge separation of squaraine-linked COF for enhanced photocatalytic performance. Adv. Funct. Mater. 2022, 32, 2104519.

[59]

Wei, J.; Xia, Y. G.; Qayum, A.; Jiao, X. L.; Chen, D. R.; Wang, T. Unexpected photoinduced room temperature magnetization in Bi2WO6 nanosheets. Small 2020, 16, 2005704.

[60]

Peng, S. M.; Yang, X.; Yang, Y.; Wang, S. J.; Zhou, Y.; Hu, J.; Li, Q.; He, J. L. Direct detection of local electric polarization in the interfacial region in ferroelectric polymer nanocomposites. Adv. Mater. 2019, 31, 1807722.

[61]

Ren, L. P.; Zhou, W.; Sun, B. J.; Li, H. Z.; Qiao, P. Z.; Xu, Y. C.; Wu, J. X.; Lin, K.; Fu, H. G. Defects-engineering of magnetic γ-Fe2O3 ultrathin nanosheets/mesoporous black TiO2 hollow sphere heterojunctions for efficient charge separation and the solar-driven photocatalytic mechanism of tetracycline degradation. Appl. Catal. B:Environ. 2019, 240, 319–328.

[62]

Liu, H.; Xu, C. Y.; Li, D. D.; Jiang, H. L. Photocatalytic hydrogen production coupled with selective benzylamine oxidation over MOF composites. Angew. Chem., Int. Ed. 2018, 57, 5379–5383.

[63]

She, P.; Qin, J. S.; Sheng, J. Y.; Qi, Y. Y.; Rui, H. B.; Zhang, W.; Ge, X.; Lu, G. Y.; Song, X. W.; Rao, H. Dual-functional photocatalysis for cooperative hydrogen evolution and benzylamine oxidation coupling over sandwiched-like Pd@TiO2@ZnIn2S4 nanobox. Small 2022, 18, 2105114.

[64]

He, B.; Zhang, S. K.; Zhang, Y. Y.; Li, G. P.; Zhang, B. J.; Ma, W. Q.; Rao, B.; Song, R. T.; Zhang, L.; Zhang, Y. F. et al. Ortho-terphenylene viologens with through-space conjugation for enhanced photocatalytic oxidative coupling and hydrogen evolution. J. Am. Chem. Soc. 2022, 144, 4422–4430.

Nano Research
Pages 4225-4232
Cite this article:
Wang Q, Deng X, Pen H, et al. Insights into the synergistic promotion of spin polarization over C3N5.4 for enhancing cooperative hydrogen evolution and benzylamine oxidation coupling. Nano Research, 2023, 16(4): 4225-4232. https://doi.org/10.1007/s12274-022-5105-9
Topics:

1040

Views

14

Crossref

11

Web of Science

12

Scopus

0

CSCD

Altmetrics

Received: 01 August 2022
Revised: 21 September 2022
Accepted: 26 September 2022
Published: 24 October 2022
© Tsinghua University Press 2022
Return