Graphical Abstract

Microwave absorbing materials (MAMs) has been intensively investigated in order to meet the requirement of electromagnetic radiation control, especially in S and C band. In this work, FeCo-based magnetic MAMs are hydrothermally synthesized via a magnetic-field-induced process. The composition and morphology of the MAMs are capable of being adjusted simultaneously by the atomic ratio of Fe2+ to Co2+ in the precursor. The hierarchical magnetic microchain, which has a core–shell structure of two-dimensional FexCo1−xOOH nanosheets anchored vertically on the surface of a one-dimensional (1D) Co microchain, shows significantly enhanced microwave absorption in C band, resulting in a reflection loss (RL) of lower than −20 dB at frequencies ranging from 4.4 to 8.0 GHz under a suitable matching thickness. The magnetic coupling of Co microcrystals and the double-loss mechanisms out of the core-shell structure are considered to promote the microwave attenuation capability. The hierarchical design of 1D magnetic MAMs provides a feasible strategy to solve the electromagnetic pollution in C band.
Zhang, F.; Jia, Z. R.; Wang, Z.; Zhang, C. H.; Wang, B. B.; Xu, B. H.; Liu, X. H.; Wu, G. L. Tailoring nanoparticles composites derived from metal-organic framework as electromagnetic wave absorber. Mater. Today Phys. 2021, 20, 100475.
Yang, K.; Cui, Y. H.; Liu, Z. H.; Liu, P.; Zhang, Q. Y.; Zhang, B. L. Design of core-shell structure NC@MoS2 hierarchical nanotubes as high-performance electromagnetic wave absorber. Chem. Eng. J. 2021, 426, 131308.
Wei, H. J.; Tian, Y.; Chen, Q.; Estevez, D.; Xu, P.; Peng, H. X.; Qin, F. X. Microwave absorption performance of 2D iron-quinoid MOF. Chem. Eng. J. 2021, 405, 126637.
Yuan, M. Y.; Zhao, B.; Yang, C. D.; Pei, K.; Wang, L. Y.; Zhang, R. X.; You, W. B.; Liu, X. H.; Zhang, X. F.; Che, R. C. Remarkable magnetic exchange coupling via constructing Bi-magnetic interface for broadband lower-frequency microwave absorption. Adv. Funct. Mater. 2022, 32, 2203161.
Zeng, X. J.; Cheng, X. Y.; Yu, R. H.; Stucky, G. D. Electromagnetic microwave absorption theory and recent achievements in microwave absorbers. Carbon 2020, 168, 606–623.
Elmahaishi, M. F.; Azis, R. S.; Ismail, I.; Muhammad, F. D. A review on electromagnetic microwave absorption properties: Their materials and performance. J. Mater. Res. Technol. 2022, 20, 2188–2220.
Cao, M. S.; Cai, Y. Z.; He, P.; Shu, J. C.; Cao, W. Q.; Yuan, J. 2D MXenes: Electromagnetic property for microwave absorption and electromagnetic interference shielding. Chem. Eng. J. 2019, 359, 1265–1302.
Zhang, M. M.; Zhang, J. W.; Lv, X. Y.; Zhang, L.; Wei, Y.; Liu, S. C.; Shi, Y. P.; Gong, C. H. How to exhibit the efficient electromagnetic wave absorbing performance of RGO aerogels: Less might be better. J. Mater. Sci. Mater. Electron. 2018, 29, 5496–5500.
Cai, Z. X.; Su, L.; Wang, H. J.; Xie, Q.; Gao, H. F.; Niu, M.; Lu, D. Hierarchically assembled carbon microtube@SiC nanowire/Ni nanoparticle aerogel for highly efficient electromagnetic wave absorption and multifunction. Carbon 2022, 191, 227–235.
Gao, X. H.; Wu, X. Y.; Qiu, J. High electromagnetic waves absorbing performance of a multilayer-like structure absorber containing activated carbon hollow porous fibers-carbon nanotubes and Fe3O4 nanoparticles. Adv. Electron. Mater. 2018, 4, 1700565.
Wen, F. S.; Zhang, F.; Liu, Z. Y. Investigation on microwave absorption properties for multiwalled carbon nanotubes/Fe/Co/Ni nanopowders as lightweight absorbers. J. Phys. Chem. C 2011, 115, 14025–14030.
Zhang, Y. L.; Ruan, K. P.; Gu, J. W. Flexible sandwich-structured electromagnetic interference shielding nanocomposite films with excellent thermal conductivities. Small 2021, 17, 2101951.
Feng, J.; Pu, F. Z.; Li, Z. X.; Li, X. H.; Hu, X. Y.; Bai, J. T. Interfacial interactions and synergistic effect of CoNi nanocrystals and nitrogen-doped graphene in a composite microwave absorber. Carbon 2016, 104, 214–225.
Cheng, Y.; Ji, G. B.; Li, Z. Y.; Lv, H. L.; Liu, W.; Zhao, Y.; Cao, J. M.; Du, Y. W. Facile synthesis of FeCo alloys with excellent microwave absorption in the whole Ku-band: Effect of Fe/Co atomic ratio. J. Alloys Compd. 2017, 704, 289–295.
Huang, L.; Li, J. J.; Wang, Z. J.; Li, Y. B.; He, X. D.; Yuan, Y. Microwave absorption enhancement of porous C@CoFe2O4 nanocomposites derived from eggshell membrane. Carbon 2019, 143, 507–516.
Xiang, J.; Zhang, X. H.; Ye, Q.; Li, J. L.; Shen, X. Q. Synthesis and characterization of FeCo/C hybrid nanofibers with high performance of microwave absorption. Mater. Res. Bull. 2014, 60, 589–595.
Wu, H. J.; Zhao, Z. H.; Wu, G. L. Facile synthesis of FeCo layered double oxide/raspberry-like carbon microspheres with hierarchical structure for electromagnetic wave absorption. J. Colloid Interface Sci. 2020, 566, 21–32.
Afghahi, S. S. S.; Shokuhfar, A. Two step synthesis, electromagnetic and microwave absorbing properties of FeCo@C core-shell nanostructure. J. Magn. Magn. Mater. 2014, 370, 37–44.
Liang, X. H.; Man, Z. M.; Quan, B.; Zheng, J.; Gu, W. H.; Zhang, Z.; Ji, G. B. Environment-stable CoxNiy encapsulation in stacked porous carbon nanosheets for enhanced microwave absorption. Nano-Micro Lett. 2020, 12, 102.
Zare, Y.; Shams, M. H.; Jazirehpour, M. Tuning microwave permittivity coefficients for enhancing electromagnetic wave absorption properties of FeCo alloy particles by means of sodium stearate surfactant. J. Alloys Compd. 2017, 717, 294–302.
Zhang, T.; Zhao, D. C.; Wang, L. J.; Meng, R.; Zhao, H.; Zhou, P. Y.; Xia, L.; Zhong, B.; Wang, H. T.; Wen, G. W. A facile precursor pyrolysis route to bio-carbon/ferrite porous architecture with enhanced electromagnetic wave absorption in S-band. J. Alloys Compd. 2020, 819, 153269.
Huang, Z. H.; Cheng, J. Y.; Zhang, H. B.; Xiong, Y. F.; Zhou, Z. X.; Zheng, Q. B.; Zheng, G. P.; Zhang, D. Q.; Cao, M. S. High-performance microwave absorption enabled by Co3O4 modified VB-group laminated VS2 with frequency modulation from S-band to Ku-band. J. Mater. Sci. Technol. 2022, 107, 155–164.
Wu, Z. C.; Pei, K.; Xing, L. S.; Yu, X. F.; You, W. B.; Che, R. C. Enhanced microwave absorption performance from magnetic coupling of magnetic nanoparticles suspended within hierarchically tubular composite. Adv. Funct. Mater. 2019, 29, 1901448.
Wu, Z. C.; Cheng, H. W.; Jin, C.; Yang, B. T.; Xu, C. Y.; Pei, K.; Zhang, H. B.; Yang, Z. Q.; Che, R. C. Dimensional design and core-shell engineering of nanomaterials for electromagnetic wave absorption. Adv. Mater. 2022, 34, 2107538.
Shi, X. F.; You, W. B.; Li, X.; Wang, L.; Shao, Z. Z.; Che, R. C. In-situ regrowth constructed magnetic coupling 1D/2D Fe assembly as broadband and high-efficient microwave absorber. Chem. Eng. J. 2021, 415, 128951.
Liu, P. B.; Wang, Y.; Zhang, G. Z.; Huang, Y.; Zhang, R. X.; Liu, X. H.; Zhang, X. F.; Che, R. C. Hierarchical engineering of double-shelled nanotubes toward hetero-interfaces induced polarization and microscale magnetic interaction. Adv. Funct. Mater. 2022, 32, 2202588.
Sun, X. X.; Yang, M. L.; Yang, S.; Wang, S. S.; Yin, W. L.; Che, R. C.; Li, Y. B. Ultrabroad band microwave absorption of carbonized waxberry with hierarchical structure. Small 2019, 15, 1902974.
Zhang, X.; Dong, Y. Y.; Pan, F.; Xiang, Z.; Zhu, X. J.; Lu, W. Electrostatic self-assembly construction of 2D MoS2 wrapped hollow Fe3O4 nanoflowers@1D carbon tube hybrids for self-cleaning high-performance microwave absorbers. Carbon 2021, 177, 332–343.
Zhang, Y. L.; Ma, Z. L.; Ruan, K. P.; Gu, J. W. Multifunctional Ti3C2Tx-(Fe3O4/polyimide) composite films with Janus structure for outstanding electromagnetic interference shielding and superior visual thermal management. Nano Res. 2022, 15, 5601–5609.
Zhang, L.; He, R.; Gu, H. C. Synthesis and kinetic shape and size evolution of magnetite nanoparticles. Mater. Res. Bull. 2006, 41, 260–267.
Karipoth, P.; Thirumurugan, A.; Velaga, S.; Greneche, J. M.; Joseyphus, R. J. Magnetic properties of FeCo alloy nanoparticles synthesized through instant chemical reduction. J. Appl. Phys. 2016, 120, 123906.
Zhou, J.; Shu, X. F.; Wang, Z. C.; Liu, Y.; Wang, Y. Q.; Zhou, C.; Kong, L. B. Hydrothermal synthesis of polyhedral FeCo alloys with enhanced electromagnetic absorption performances. J. Alloys Compd. 2019, 794, 68–75.
Deng, J. S.; Zhang, X.; Zhao, B.; Bai, Z. Y.; Wen, S. M.; Li, S. M.; Li, S. Y.; Yang, J.; Zhang, R. Fluffy microrods to heighten the microwave absorption properties through tuning the electronic state of Co/CoO. J. Mater. Chem. C 2018, 6, 7128–7140.
Aguilera, L.; Aguiar, P. C. M.; Ruiz, Y. L.; Almeida, A.; Moreira, J. A.; Passos, R. R.; Pocrifka, L. A. Electrochemical synthesis of γ-CoOOH films from α-Co(OH)2 with a high electrochemical performance for energy storage device applications. J. Mater. Sci. Mater. Electron. 2020, 31, 3084–3091.
Hu, E. L.; Yao, Y.; Cui, Y. J.; Wang, Z. Y.; Qian, G. D. Designed construction of hierarchical CoOOH@Co-FeOOH double-shelled arrays as superior water oxidation electrocatalyst. J. Solid State Chem. 2021, 294, 121867.
Kuhrt, C.; Schultz, L. Formation and magnetic properties of nanocrystalline mechanically alloyed Fe-Co and Fe-Ni. J. Appl. Phys. 1993, 73, 6588–6590.
Wei, H. Y.; Zhang, Z. P.; Hussain, G.; Zhou, L. S.; Li, Q.; Ostrikov, K. Techniques to enhance magnetic permeability in microwave absorbing materials. Appl. Mater. Today 2020, 19, 100596.
Dou, Y. H.; He, C. T.; Zhang, L.; Yin, H. J.; Al-Mamun, M.; Ma, J. M.; Zhao, H. J. Approaching the activity limit of CoSe2 for oxygen evolution via Fe doping and Co vacancy. Nat. Commun. 2020, 11, 1664.
Ye, S. H.; Shi, Z. X.; Feng, J. X.; Tong, Y. X.; Li, G. R. Activating CoOOH porous nanosheet arrays by partial iron substitution for efficient oxygen evolution reaction. Angew. Chem., Int. Ed. 2018, 57, 2672–2676.
Gao, S.; Zhang, G. Z.; Wang, Y.; Han, X. P.; Huang, Y.; Liu, P. B. MOFs derived magnetic porous carbon microspheres constructed by core-shell Ni@C with high-performance microwave absorption. J. Mater. Sci. Technol. 2021, 88, 56–65.
Xu, H. X.; Zhang, G. Z.; Wang, Y.; Ning, M. Q.; Ouyang, B.; Zhao, Y.; Huang, Y.; Liu, P. B. Size-dependent oxidation-induced phase engineering for MOFs derivatives via spatial confinement strategy toward enhanced microwave absorption. Nano-Micro Lett. 2022, 14, 102.
Ma, Z. L.; Xiang, X. L.; Shao. L.; Zhang, Y. L.; Gu, J. W. Multifunctional wearable silver nanowire decorated leather nanocomposites for joule heating, electromagnetic interference shielding and piezoresistive sensing. Angew. Chem., Int. Ed. 2022, 61, e202200705.
Zhang, Y. L.; Kong, J.; Gu, J. W. New generation electromagnetic materials: Harvesting instead of dissipation solo. Sci. Bull. 2022, 67, 1413–1415.
Vansteenkiste, A.; Leliaert, J.; Dvornik, M.; Helsen, M.; Gaecia-Sanchez, F.; Van Waeyenberge, B. The design and verification of MuMax3. AIP Adv. 2014, 4, 107133.