AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Communication

One droplet reaction for synthesis of multi-sized nanoparticles

Bingda Chen1,2,§Feifei Qin3,§Meng Su1,2( )Daixi Xie1,2Zeying Zhang1Qi Pan1Huadong Wang1,2Xu Yang1,2Sisi Chen1,2Jingwei Huang3Dominique Derome4Jan Carmeliet3Yanlin Song1,2( )
Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS), Beijing 100190, China
University of Chinese Academy of Sciences, Beijing 100049, China
Chair of Building Physics, Department of Mechanical and Process Engineering, ETH Zürich (Swiss Federal Institute of Technology in Zürich), Zürich 8092, Switzerland
Department of Civil and Building Engineering, Université de Sherbrooke, Sherbrooke QC J1K 2R1, Canada

§ Bingda Chen and Feifei Qin contributed equally to this work.

Show Author Information

Graphical Abstract

By controlling the Peclet number (Pe > 1) at the gas–liquid interface via the accumulation effect, one droplet reaction in a self-driven multi-dimension microchannels reactor is demonstrated for the synchronous synthesis of multi-sized nanoparticles. This strategy is extended to the synthesis of Ag, Au, Pt, and Pd nanoparticles, which provides an effective strategy for the fabrication of nanomaterials.

Abstract

Reaction kinetics of nanoparticles can be controlled by tuning the Peclet number (Pe) as it is an essential parameter in synthesis of multi-sized nanoparticles. Herein, we propose to implement a self-driven multi-dimension microchannels reactor (MMR) for the one droplet synthesis of multi-sized nanoparticles. By carefully controlling the Pe at the gas–liquid interface, the newly formed seed crystals selectively accumulate and grow to a specific size. By the combination of microchannels of different widths and lengths, one droplet reaction in the same apparatus achieves the synchronous synthesis of diverse nanoparticles. MMR enables precise control of nanoparticle diameter at 5 nm precision in the range of 10–110 nm. The use of MMR can be extended to the synthesis of uniform Ag, Au, Pt, and Pd nanoparticles, opening towards the production and engineering of nanostructured materials. This approach gives the chance to regulate the accumulation probability for precise synthesis of nanoparticles with different diameters.

Electronic Supplementary Material

Download File(s)
12274_2022_5115_MOESM1_ESM.pdf (2.8 MB)

References

[1]

Garlyyev, B.; Watzele, S.; Fichtner, J.; Michalička, J.; Schökel, A.; Senyshyn, A.; Perego, A.; Pan, D. J.; El-Sayed, H. A.; Macak, J. M. et al. Electrochemical top-down synthesis of C-supported Pt nano-particles with controllable shape and size: Mechanistic insights and application. Nano Res. 2021, 14, 2762–2769.

[2]

Yu, S.; Kim, D.; Qi, Z. Y.; Louisia, S.; Li, Y. F.; Somorjai, G. A.; Yang, P. D. Nanoparticle assembly induced ligand interactions for enhanced electrocatalytic CO2 conversion. J. Am. Chem. Soc. 2021, 143, 19919–19927.

[3]

Sun, Q. M.; Wang, N.; Fan, Q. Y.; Zeng, L.; Mayoral, A.; Miao, S.; Yang, R. O.; Jiang, Z.; Zhou, W.; Zhang, J. C. et al. Subnanometer bimetallic platinum–zinc clusters in zeolites for propane dehydrogenation. Angew. Chem., Int. Ed. 2020, 59, 19450–19459.

[4]

Zhong, Q. X.; Feng, J.; Jiang, B.; Fan, Y. L.; Zhang, Q.; Chen, J. X.; Yin, Y. D. Strain-modulated seeded growth of highly branched black Au superparticles for efficient photothermal conversion. J. Am. Chem. Soc. 2021, 143, 20513–20523.

[5]

Zhao, S. L.; Tan, C. H.; He, C. T.; An, P. F.; Xie, F.; Jiang, S.; Zhu, Y. F.; Wu, K. H.; Zhang, B. W.; Li, H. J. et al. Structural transformation of highly active metal–organic framework electrocatalysts during the oxygen evolution reaction. Nat. Energy 2020, 5, 881–890.

[6]

Liu, Y. N.; Chen, C. S.; Valdez, J.; Motta Meira, D.; He, W. T.; Wang, Y.; Harnagea, C.; Lu, Q. Q.; Guner, T.; Wang, H. et al. Phase-enabled metal–organic framework homojunction for highly selective CO2 photoreduction. Nat. Commun. 2021, 12, 1231.

[7]

Zhang, J. M.; Chen, G. Z.; Guay, D.; Chaker, M.; Ma, D. L. Highly active PtAu alloy nanoparticle catalysts for the reduction of 4-nitrophenol. Nanoscale 2014, 6, 2125–2130.

[8]

Yang, M.; Chan, H.; Zhao, G. P.; Bahng, J. H.; Zhang, P. J.; Král, P.; Kotov, N. A. Self-assembly of nanoparticles into biomimetic capsid-like nanoshells. Nat. Chem. 2017, 9, 287–294.

[9]

Li, Y. T.; Liu, J. M.; Wang, Z. C.; Jin, J.; Liu, Y. L.; Chen, C. Y.; Tang, Z. Y. Optimizing energy transfer in nanostructures enables in vivo cancer lesion tracking via near-infrared excited hypoxia imaging. Adv. Mater. 2020, 32, 1907718.

[10]

Chen, J. X.; Gong, M. F.; Fan, Y. L.; Feng, J.; Han, L. L.; Xin, H. L.; Cao, M. H.; Zhang, Q.; Zhang, D.; Lei, D. Y. et al. Collective plasmon coupling in gold nanoparticle clusters for highly efficient photothermal therapy. ACS Nano 2022, 16, 910–920.

[11]

Kim, H. N.; Yang, S. Responsive smart windows from nanoparticle–polymer composites. Adv. Funct. Mater. 2020, 30, 1902597.

[12]

Ding, Y. Z.; Huang, E.; Lam, K. S.; Pan, T. R. Microfluidic impact printer with interchangeable cartridges for versatile non-contact multiplexed micropatterning. Lab Chip 2013, 13, 1902–1910.

[13]

Yao, Y. G.; Huang, Z. N.; Li, T. Y.; Wang, H.; Liu, Y. F.; Stein, H. S.; Mao, Y. M.; Gao, J. L.; Jiao, M. L.; Dong, Q. et al. High-throughput, combinatorial synthesis of multimetallic nanoclusters. Proc. Natl. Acad. Sci. USA 2020, 117, 6316–6322.

[14]

DeMello, A. J. Control and detection of chemical reactions in microfluidic systems. Nature 2006, 442, 394–402.

[15]

Zhu, C.; Zeng, J.; Tao, J.; Johnson, M. C.; Schmidt-Krey, I.; Blubaugh, L.; Zhu, Y. M.; Gu, Z. Z.; Xia, Y. N. Kinetically controlled overgrowth of Ag or Au on Pd nanocrystal seeds: From hybrid dimers to nonconcentric and concentric bimetallic nanocrystals. J. Am. Chem. Soc. 2012, 134, 15822–15831.

[16]

Zhao, M.; Chen, Z. T.; Shi, Y. F.; Hood, Z. D.; Lyu, Z.; Xie, M. H.; Chi, M. F.; Xia, Y. N. Kinetically controlled synthesis of rhodium nanocrystals with different shapes and a comparison study of their thermal and catalytic properties. J. Am. Chem. Soc. 2021, 143, 6293–6302.

[17]

Wang, Y.; Zheng, Y. Q.; Huang, C. Z.; Xia, Y. N. Synthesis of Ag nanocubes 18–32 nm in edge length: The effects of polyol on reduction kinetics, size control, and reproducibility. J. Am. Chem. Soc. 2013, 135, 1941–1951.

[18]

Loh, N. D.; Sen, S.; Bosman, M.; Tan, S. F.; Zhong, J.; Nijhuis, C. A.; Král, P.; Matsudaira, P.; Mirsaidov, U. Multistep nucleation of nanocrystals in aqueous solution. Nat. Chem. 2017, 9, 77–82.

[19]

Gao, C. B.; Hu, Y. X.; Wang, M. S.; Chi, M. F.; Yin, Y. D. Fully alloyed Ag/Au nanospheres: Combining the plasmonic property of Ag with the stability of Au. J. Am. Chem. Soc. 2014, 136, 7474–7479.

[20]

Luo, G. S.; Du, L.; Wang, Y. J.; Lu, Y. C.; Xu, J. H. Controllable preparation of particles with microfluidics. Particuology 2011, 9, 545–558.

[21]

Dunne, P.; Adachi, T.; Dev, A. A.; Sorrenti, A.; Giacchetti, L.; Bonnin, A.; Bourdon, C.; Mangin, P. H.; Coey, J. M. D.; Doudin, B. et al. Liquid flow and control without solid walls. Nature 2020, 581, 58–62.

[22]

Yang, M.; Yang, L. N.; Zheng, J.; Hondow, N.; Bourne, R. A.; Bailey, T.; Irons, G.; Sutherland, E.; Lavric, D.; Wu, K. J. Mixing performance and continuous production of nanomaterials in an advanced-flow reactor. Chem. Eng. J. 2021, 412, 128565.

[23]

Hall, B. L.; Taylor, C. J.; Labes, R.; Massey, A. F.; Menzel, R.; Bourne, R. A.; Chamberlain, T. W. Autonomous optimisation of a nanoparticle catalysed reduction reaction in continuous flow. Chem. Commun. 2021, 57, 4926–4929.

[24]

Yuan, K.; Song, T. Q.; Yang, C. H.; Guo, J.; Sun, Q. S.; Zou, Y.; Jiao, F.; Li, L. J.; Zhang, X. T.; Dong, H. L. et al. Polymer-assisted space-confined strategy for the foot-scale synthesis of flexible metal–organic framework-based composite films. J. Am. Chem. Soc. 2021, 143, 17526–17534.

[25]
Fan, J.; Li, S. J.; Wu, Z. Q.; Chen, Z. Diffusion and mixing in microfluidic devices. In Microfluidics for Pharmaceutical Applications: From Nano/Micro Systems Fabrication to Controlled Drug Delivery. Santos, H. A.; Liu, D. F.; Zhang, H. B. , Eds.; Elsevier: Amsterdam, 2019; pp 79–100.
[26]

Chen, B. D.; Qin, F. F.; Su, M.; Zhang, Z. Y.; Pan, Q.; Zou, M. M.; Yang, X.; Chen, S. S.; Derome, D.; Carmeliet, J. et al. Self-driven multiplex reaction: Reactant and product diffusion via a transpiration-inspired capillary. ACS Appl. Mater. Interfaces 2021, 13, 22031–22039.

[27]

Elvira, K. S.; Casadevall i Solvas, X.; Wootton, R. C. R.; deMello, A. J. The past, present and potential for microfluidic reactor technology in chemical synthesis. Nat. Chem. 2013, 5, 905–915.

[28]

Atencia, J.; Beebe, D. J. Controlled microfluidic interfaces. Nature 2005, 437, 648–655.

[29]

Qin, F. F.; Su, M.; Zhao, J. L.; Mazloomi Moqaddam, A.; Carro, L. D.; Brunschwiler, T.; Kang, Q. J.; Song, Y. L.; Derome, D.; Carmeliet, J. Controlled 3D nanoparticle deposition by drying of colloidal suspension in designed thin micro-porous architectures. Int. J. Heat Mass Transfer 2020, 158, 120000.

[30]

Wang, H. S.; Qiao, X. L.; Chen, J. G.; Wang, X. J.; Ding, S. Y. Mechanisms of PVP in the preparation of silver nanoparticles. Mater. Chem. Phys. 2005, 94, 449–453.

[31]

Lin, L.; Chen, M.; Qin, H. Y.; Peng, X. G. Ag nanocrystals with nearly ideal optical quality: Synthesis, growth mechanism, and characterizations. J. Am. Chem. Soc. 2018, 140, 17734–17742.

[32]

Zhang, Z. L.; Zhang, X. Y.; Xin, Z. Q.; Deng, M. M.; Wen, Y. Q.; Song, Y. L. Synthesis of monodisperse silver nanoparticles for ink-jet printed flexible electronics. Nanotechnology 2011, 22, 425601.

[33]

Qin, F. F.; Del Carro, L.; Mazloomi Moqaddam, A.; Kang, Q. J.; Brunschwiler, T.; Derome, D.; Carmeliet, J. Study of non-isothermal liquid evaporation in synthetic micro-pore structures with hybrid lattice Boltzmann model. J. Fluid Mech. 2019, 866, 33–60.

[34]

Qin, F. F.; Mazloomi Moqaddam, A.; Kang, Q. J.; Derome, D.; Carmeliet, J. Entropic multiple-relaxation-time multirange pseudopotential lattice Boltzmann model for two-phase flow. Phys. Fluids 2018, 30, 032104.

[35]

Zhang, Q.; Ge, J. P.; Pham, T.; Goebl, J.; Hu, Y. X.; Lu, Z. D.; Yin, Y. D. Reconstruction of silver nanoplates by UV irradiation: Tailored optical properties and enhanced stability. Angew. Chem., Int. Ed. 2009, 48, 3516–3519.

Nano Research
Pages 5850-5856
Cite this article:
Chen B, Qin F, Su M, et al. One droplet reaction for synthesis of multi-sized nanoparticles. Nano Research, 2023, 16(4): 5850-5856. https://doi.org/10.1007/s12274-022-5115-7
Topics:

1132

Views

3

Crossref

3

Web of Science

2

Scopus

1

CSCD

Altmetrics

Received: 02 July 2022
Revised: 27 September 2022
Accepted: 28 September 2022
Published: 02 November 2022
© Tsinghua University Press 2022
Return