Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Two-dimensional semiconductors such as transition metal dichalcogenides (TMDs) have attracted much interest in the past decade. Herein, we present an all-physical top-down method for the scalable production of the intrinsic TMD quantum sheets (QSs). The phases of the TMDs (e.g., 2H-MoSe2, 2H-WSe2, and Td-WTe2) remain stable during the transformation from bulk to QSs. However, phase transition (from Td to 2H) is detected in MoTe2. Such phase-modulation by size-reduction has never been reported before. The TMD QSs can be well dispersed in solvents, resulting in remarkable photoluminescence with excitation wavelength-, concentration-, and solvent-dependence. Meanwhile, the TMD QSs can be readily solution-processed into hybrid thin films, which demonstrate exceptional nonlinear saturation absorption (NSA). Notably, 2H-MoTe2 QSs in poly(methyl methacrylate) show extremely high NSA performance with (absolute) modulation depth up to 46.6% and saturation intensity down to 0.81 MW·cm−2. Our work paves the way towards quantum-sized TMDs.
Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.
Xu, M. S.; Liang, T.; Shi, M. M.; Chen, H. Z. Graphene-like two-dimensional materials. Chem. Rev. 2013, 113, 3766–3798.
Zhao, B.; Shen, D. Y.; Zhang, Z. C.; Lu, P.; Hossain, M.; Li, J.; Li, B.; Duan, X. D. 2D metallic transition-metal dichalcogenides: Structures, synthesis, properties, and applications. Adv. Funct. Mater. 2021, 31, 2105132.
Wang, Q.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J. N.; Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 2012, 7, 699–712.
Vikraman, D.; Hussain, S.; Rabani, I.; Feroze, A.; Ali, M.; Seo, Y. S.; Chun, S. H.; Jung, J.; Kim, H. S. Engineering MoTe2 and Janus SeMoTe nanosheet structures: First-principles roadmap and practical uses in hydrogen evolution reactions and symmetric supercapacitors. Nano Energy 2021, 87, 106161.
Chen, B.; Wang, D. S.; Tan, J. Y.; Liu, Y. Q.; Jiao, M. L.; Liu, B. L.; Zhao, N. Q.; Zou, X. L.; Zhou, G. M.; Cheng, H. M. Designing electrophilic and nucleophilic dual centers in the ReS2 plane toward efficient bifunctional catalysts for Li-CO2 batteries. J. Am. Chem. Soc. 2022, 144, 3106–3116.
Tang, S. Y.; Yang, C. C.; Su, T. Y.; Yang, T. Y.; Wu, S. C.; Hsu, Y. C.; Chen, Y. Z.; Lin, T. N.; Shen, J. L.; Lin, H. N. et al. Design of core–shell quantum dots-3D WS2 nanowall hybrid nanostructures with high-performance bifunctional sensing applications. ACS Nano 2020, 14, 12668–12678.
Han, C. C.; Zhang, Y.; Gao, P.; Chen, S. L.; Liu, X. F.; Mi, Y.; Zhang, J. Q.; Ma, Y. H.; Jiang, W. Y.; Chang, J. Q. High-yield production of MoS2 and WS2 quantum sheets from their bulk materials. Nano Lett. 2017, 17, 7767–7772.
Xu, Y. Q.; Chen, S. L.; Dou, Z. P.; Ma, Y. H.; Mi, Y.; Du, W. N.; Liu, Y.; Zhang, J. Q.; Chang, J. Q.; Liang, C. et al. Robust production of 2D quantum sheets from bulk layered materials. Mater. Horiz. 2019, 6, 1416–1424.
Liang, C.; Sui, X. Y.; Wang, A. C.; Chang, J. Q.; Wang, W. B.; Chen, Z. X.; Jiang, W. Y.; Ma, Y. H.; Zhang, J. Q.; Liu, X. F. et al. Controlled production of MoS2 full-scale nanosheets and their strong size effects. Adv. Mater. Interfaces 2020, 7, 2001130.
Xu, Y. Q.; Chang, J. Q.; Liang, C.; Sui, X. Y.; Ma, Y. H.; Song, L. T.; Jiang, W. Y.; Zhou, J.; Guo, H. B.; Liu, X. F. et al. Tailoring multi-walled carbon nanotubes into graphene quantum sheets. ACS Appl. Mater. Interfaces 2020, 12, 47784–47791.
Park, S. J.; Pak, S. W.; Qiu, D. R.; Kang, J. H.; Song, D. Y.; Kim, E. K. Structural and optical characterization of MoS2 quantum dots defined by thermal annealing. J. Lumin. 2017, 183, 62–67.
Peng, D.; Zhang, L.; Li, F. F.; Cui, W. R.; Liang, R. P.; Qiu, J. D. Facile and green approach to the synthesis of boron nitride quantum dots for 2,4,6-trinitrophenol sensing. ACS Appl. Mater. Interfaces 2018, 10, 7315–7323.
Gopalakrishnan, D.; Damien, D.; Li, B.; Gullappalli, H.; Pillai, V. K.; Ajayan, P. M.; Shaijumon, M. M. Electrochemical synthesis of luminescent MoS2 quantum dots. Chem. Commun. 2015, 51, 6293–6296.
Zhang, X.; Lai, Z. C.; Liu, Z. D.; Tan, C. L.; Huang, Y.; Li, B.; Zhao, M. T.; Xie, L. H.; Huang, W.; Zhang, H. A facile and universal top-down method for preparation of monodisperse transition-metal dichalcogenide nanodots. Angew. Chem., Int. Ed. 2015, 54, 5425–5428.
Chen, Z. X.; Wang, W. B.; Sui, X. Y.; Wang, K. K.; Zhang, J. Q.; Liu, X. F.; Zhang, Y. Quantum-sized silicon for enhanced photoluminescence and optical nonlinearity. Mater. Chem. Front. 2021, 5, 7817–7823.
Xu, Y. Q.; Wang, W. B.; Chen, Z. X.; Sui, X. Y.; Wang, A. C.; Liang, C.; Chang, J. Q.; Ma, Y. H.; Song, L. T.; Jiang, W. Y. et al. A general strategy for semiconductor quantum dot production. Nanoscale 2021, 13, 8004–8011.
Zhang, M.; Hu, G. H.; Hu, G. Q.; Howe, R. C. T.; Chen, L.; Zheng, Z.; Hasan, T. Yb- and Er-doped fiber laser Q-switched with an optically uniform, broadband WS2 saturable absorber. Sci. Rep. 2015, 5, 17482.
Chen, Z. X.; Li, Y. Q.; Wang, K. K.; Zhang, Y. Scalable production of intrinsic WX2 (X = S, Se, Te) quantum sheets for efficient hydrogen evolution electrocatalysis. Nanotechnology 2021, 32, 495701.
Zazpe, R.; Charvot, J.; Krumpolec, R.; Hromádko, L.; Pavliňák, D.; Dvorak, F.; Knotek, P.; Michalicka, J.; Přikryl, J.; Ng, S. et al. Atomic layer deposition of MoSe2 using new selenium precursors. FlatChem 2020, 21, 100166.
Dawson, W. G.; Bullett, D. W. Electronic structure and crystallography of MoTe2 and WTe2. J. Phys. C Solid State Phys. 1987, 20, 6159–6174.
Chen, Z. X.; Liu, H. Q.; Chen, X. C.; Chu, G.; Chu, S.; Zhang, H. Wafer-size and single-crystal MoSe2 atomically thin films grown on GaN substrate for light emission and harvesting. ACS Appl. Mater. Interfaces 2016, 8, 20267–20273.
Yang, J.; Lü, T. Y.; Myint, Y. W.; Pei, J. J.; Macdonald, D.; Zheng, J. C.; Lu, Y. R. Robust excitons and trions in monolayer MoTe2. ACS Nano 2015, 9, 6603–6609.
Luo, X.; Chen, F. C.; Zhang, J. L.; Pei, Q. L.; Lin, G. T.; Lu, W. J.; Han, Y. Y.; Xi, C. Y.; Song, W. H.; Sun, Y. P. Td-MoTe2: A possible topological superconductor. Appl. Phys. Lett. 2016, 109, 102601.
Zhang, J. J.; Kang, W. P.; Jiang, M.; You, Y.; Cao, Y. L.; Ng, T. W.; Yu, D. Y. W.; Lee, C. S.; Xu, J. Conversion of 1T-MoSe2 to 2H-MoS2xSe2−2x mesoporous nanospheres for superior sodium storage performance. Nanoscale 2017, 9, 1484–1490.
Sun, Y. F.; Pan, J. B.; Zhang, Z. T.; Zhang, K. N.; Liang, J.; Wang, W. J.; Yuan, Z. Q.; Hao, Y. K.; Wang, B. L.; Wang, J. W. et al. Elastic properties and fracture behaviors of biaxially deformed, polymorphic MoTe2. Nano Lett. 2019, 19, 761–769.
Nam, D.; Lee, J. U.; Cheong, H. Excitation energy dependent Raman spectrum of MoSe2. Sci. Rep. 2015, 5, 17113.
Wang, X. L.; Gong, Y. J.; Shi, G.; Chow, W. L.; Keyshar, K.; Ye, G. L.; Vajtai, R.; Lou, J.; Liu, Z.; Ringe, E. et al. Chemical vapor deposition growth of crystalline monolayer MoSe2. ACS Nano 2014, 8, 5125–5131.
Choi, D.; Kim, D.; Jo, Y.; Kim, J. H.; Yoon, E.; Lee, H. C.; Kim, T. Directly grown Te nanowire electrodes and soft plasma etching for high-performance MoTe2 field-effect transistors. Appl. Surf. Sci. 2021, 565, 150521.
Dong, C. W.; Zhou, H. Y.; Jin, B.; Gao, W.; Lang, X. Y.; Li, J. C.; Jiang, Q. Enabling high-performance room-temperature sodium/sulfur batteries with few-layer 2H-MoSe2 embellished nitrogen-doped hollow carbon spheres as polysulfide barriers. J. Mater. Chem. A 2021, 9, 3451–3463.
Sajiv, K. S.; Gopakumar, G.; Shanmugam, M. Integrated photo-absorption and improved charge transport kinetics in atomically thin MoSe2-incorporated nanostructured ZnO photo-anodes for dye-sensitized solar cells. Appl. Phys. A 2021, 127, 966.
Fan, Z. Q.; Zhang, Z. H.; Yang, S. Y. High-performance 5.1 nm in-plane Janus WSeTe Schottky barrier field effect transistors. Nanoscale 2020, 12, 21750–21756.
Joshi, J.; Stone, I. R.; Beams, R.; Krylyuk, S.; Kalish, I.; Davydov, A. V.; Vora, P. M. Phonon anharmonicity in bulk Td-MoTe2. Appl. Phys. Lett. 2016, 109, 031903.
Lee, C. H.; Silva, E. C.; Calderin, L.; Nguyen, M. A. T.; Hollander, M. J.; Bersch, B.; Mallouk, T. E.; Robinson, J. A. Tungsten ditelluride: A layered semimetal. Sci. Rep. 2015, 5, 10013.
Mittal, H.; Khanuja, M. Hydrothermal in-situ synthesis of MoSe2-polypyrrole nanocomposite for efficient photocatalytic degradation of dyes under dark and visible light irradiation. Sep. Purif. Technol. 2021, 254, 117508.
Huang, Y. X.; Zhou, X. Y.; Luo, L. Z.; Zou, J. H.; Liu, H. Z.; Li, X.; Ren, A. B.; Shen, K.; Wu, J. High-performance broadband visible-near infrared photodetector enabled by atomic capping layer. Adv. Opt. Mater. 2022, 10, 2200539.
Hong, Y. N.; Lam, J. W. Y.; Tang, B. Z. Aggregation-induced emission: Phenomenon, mechanism and applications. Chem. Commun. 2009, 29, 4332–4353.
Jin, H.; Baek, B.; Kim, D.; Wu, F. L.; Batteas, J. D.; Cheon, J.; Son, D. H. Effects of direct solvent-quantum dot interaction on the optical properties of colloidal monolayer WS2 quantum dots. Nano Lett. 2017, 17, 7471–7477.
Bao, Q. L.; Zhang, H.; Wang, Y.; Ni, Z. H.; Yan, Y. L.; Shen, Z. X.; Loh, K. P.; Tang, D. Y. Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers. Adv. Funct. Mater. 2009, 19, 3077–3083.
Wang, G. Z.; Liang, G. X.; Baker-Murray, A. A.; Wang, K. P.; Wang, J. J.; Zhang, X. Y.; Bennett, D.; Luo, J. T.; Wang, J.; Fan, P. et al. Nonlinear optical performance of few-layer molybdenum diselenide as a slow-saturable absorber. Photon. Res. 2018, 6, 674–680.
Koo, J.; Park, J.; Lee, J.; Jhon, Y. M.; Lee, J. H. Femtosecond harmonic mode-locking of a fiber laser at 3.27 GHz using a bulk-like, MoSe2-based saturable absorber. Opt. Express 2016, 24, 10575–10589.
Luo, Z. Q.; Li, Y. Y.; Zhong, M.; Huang, Y. Z.; Wan, X. J.; Peng, J.; Weng, J. Nonlinear optical absorption of few-layer molybdenum diselenide (MoSe2) for passively mode-locked soliton fiber laser [Invited]. Photon. Res. 2015, 3, A79–A86.
Liu, W. J.; Liu, M. L.; Ouyang, Y. Y.; Hou, H. R.; Lei, M.; Wei, Z. Y. CVD-grown MoSe2 with high modulation depth for ultrafast mode-locked erbium-doped fiber laser. Nanotechnology 2018, 29, 394002.
Mao, D.; She, X. Y.; Du, B. B.; Yang, D. X.; Zhang, W. D.; Song, K.; Cui, X. Q.; Jiang, B. Q.; Peng, T.; Zhao, J. L. Erbium-doped fiber laser passively mode locked with few-layer WSe2/MoSe2 nanosheets. Sci. Rep. 2016, 6, 23583.
Mao, D.; Du, B. B.; Yang, D. X.; Zhang, S. L.; Wang, Y. D.; Zhang, W. D.; She, X. Y.; Cheng, H. C.; Zeng, H. B.; Zhao, J. L. Nonlinear saturable absorption of liquid-exfoliated molybdenum/tungsten ditelluride nanosheets. Small 2016, 12, 1489–1497.
Liu, M. L.; Liu, W. J.; Wei, Z. Y. MoTe2 saturable absorber with high modulation depth for erbium-doped fiber laser. J. Lightwave Technol. 2019, 37, 3100–3105.
Wang, J. T.; Jiang, Z. K.; Chen, H.; Li, J. R.; Yin, J. D.; Wang, J. Z.; He, T. C.; Yan, P. G.; Ruan, S. C. High energy soliton pulse generation by a magnetron-sputtering-deposition-grown MoTe2 saturable absorber. Photon. Res. 2018, 6, 535–541.
Koo, J.; Jhon, Y. I.; Park, J.; Lee, J.; Jhon, Y. M.; Lee, J. H. Near-infrared saturable absorption of defective bulk-structured WTe2 for femtosecond laser mode-locking. Adv. Funct. Mater. 2016, 26, 7454–7461.