AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Phase-modulated quantum-sized TMDs for extreme saturable absorption

Zhexue Chen1,2,§Xinyu Sui2,3,§Zhangqiang Li1,2Yueqi Li1,2Xinfeng Liu2,3( )Yong Zhang1,2( )
CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
University of Chinese Academy of Sciences, Beijing 100049, China
CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China

§ Zhexue Chen and Xinyu Sui contributed equally to this work.

Show Author Information

Graphical Abstract

Phase-transition by size-reduction is first demonstrated in MoTe2. The phase-modulated quantum-sized transition metal dichalcogenides (TMDs) show extreme and broadband nonlinear saturation absorption.

Abstract

Two-dimensional semiconductors such as transition metal dichalcogenides (TMDs) have attracted much interest in the past decade. Herein, we present an all-physical top-down method for the scalable production of the intrinsic TMD quantum sheets (QSs). The phases of the TMDs (e.g., 2H-MoSe2, 2H-WSe2, and Td-WTe2) remain stable during the transformation from bulk to QSs. However, phase transition (from Td to 2H) is detected in MoTe2. Such phase-modulation by size-reduction has never been reported before. The TMD QSs can be well dispersed in solvents, resulting in remarkable photoluminescence with excitation wavelength-, concentration-, and solvent-dependence. Meanwhile, the TMD QSs can be readily solution-processed into hybrid thin films, which demonstrate exceptional nonlinear saturation absorption (NSA). Notably, 2H-MoTe2 QSs in poly(methyl methacrylate) show extremely high NSA performance with (absolute) modulation depth up to 46.6% and saturation intensity down to 0.81 MW·cm−2. Our work paves the way towards quantum-sized TMDs.

Electronic Supplementary Material

Download File(s)
12274_2022_5119_MOESM1_ESM.pdf (2.6 MB)

References

[1]

Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.

[2]

Xu, M. S.; Liang, T.; Shi, M. M.; Chen, H. Z. Graphene-like two-dimensional materials. Chem. Rev. 2013, 113, 3766–3798.

[3]

Zhao, B.; Shen, D. Y.; Zhang, Z. C.; Lu, P.; Hossain, M.; Li, J.; Li, B.; Duan, X. D. 2D metallic transition-metal dichalcogenides: Structures, synthesis, properties, and applications. Adv. Funct. Mater. 2021, 31, 2105132.

[4]

Wang, Q.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J. N.; Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 2012, 7, 699–712.

[5]

Vikraman, D.; Hussain, S.; Rabani, I.; Feroze, A.; Ali, M.; Seo, Y. S.; Chun, S. H.; Jung, J.; Kim, H. S. Engineering MoTe2 and Janus SeMoTe nanosheet structures: First-principles roadmap and practical uses in hydrogen evolution reactions and symmetric supercapacitors. Nano Energy 2021, 87, 106161.

[6]

Chen, B.; Wang, D. S.; Tan, J. Y.; Liu, Y. Q.; Jiao, M. L.; Liu, B. L.; Zhao, N. Q.; Zou, X. L.; Zhou, G. M.; Cheng, H. M. Designing electrophilic and nucleophilic dual centers in the ReS2 plane toward efficient bifunctional catalysts for Li-CO2 batteries. J. Am. Chem. Soc. 2022, 144, 3106–3116.

[7]

Tang, S. Y.; Yang, C. C.; Su, T. Y.; Yang, T. Y.; Wu, S. C.; Hsu, Y. C.; Chen, Y. Z.; Lin, T. N.; Shen, J. L.; Lin, H. N. et al. Design of core–shell quantum dots-3D WS2 nanowall hybrid nanostructures with high-performance bifunctional sensing applications. ACS Nano 2020, 14, 12668–12678.

[8]

Han, C. C.; Zhang, Y.; Gao, P.; Chen, S. L.; Liu, X. F.; Mi, Y.; Zhang, J. Q.; Ma, Y. H.; Jiang, W. Y.; Chang, J. Q. High-yield production of MoS2 and WS2 quantum sheets from their bulk materials. Nano Lett. 2017, 17, 7767–7772.

[9]

Xu, Y. Q.; Chen, S. L.; Dou, Z. P.; Ma, Y. H.; Mi, Y.; Du, W. N.; Liu, Y.; Zhang, J. Q.; Chang, J. Q.; Liang, C. et al. Robust production of 2D quantum sheets from bulk layered materials. Mater. Horiz. 2019, 6, 1416–1424.

[10]

Liang, C.; Sui, X. Y.; Wang, A. C.; Chang, J. Q.; Wang, W. B.; Chen, Z. X.; Jiang, W. Y.; Ma, Y. H.; Zhang, J. Q.; Liu, X. F. et al. Controlled production of MoS2 full-scale nanosheets and their strong size effects. Adv. Mater. Interfaces 2020, 7, 2001130.

[11]

Xu, Y. Q.; Chang, J. Q.; Liang, C.; Sui, X. Y.; Ma, Y. H.; Song, L. T.; Jiang, W. Y.; Zhou, J.; Guo, H. B.; Liu, X. F. et al. Tailoring multi-walled carbon nanotubes into graphene quantum sheets. ACS Appl. Mater. Interfaces 2020, 12, 47784–47791.

[12]

Park, S. J.; Pak, S. W.; Qiu, D. R.; Kang, J. H.; Song, D. Y.; Kim, E. K. Structural and optical characterization of MoS2 quantum dots defined by thermal annealing. J. Lumin. 2017, 183, 62–67.

[13]

Peng, D.; Zhang, L.; Li, F. F.; Cui, W. R.; Liang, R. P.; Qiu, J. D. Facile and green approach to the synthesis of boron nitride quantum dots for 2,4,6-trinitrophenol sensing. ACS Appl. Mater. Interfaces 2018, 10, 7315–7323.

[14]

Gopalakrishnan, D.; Damien, D.; Li, B.; Gullappalli, H.; Pillai, V. K.; Ajayan, P. M.; Shaijumon, M. M. Electrochemical synthesis of luminescent MoS2 quantum dots. Chem. Commun. 2015, 51, 6293–6296.

[15]

Zhang, X.; Lai, Z. C.; Liu, Z. D.; Tan, C. L.; Huang, Y.; Li, B.; Zhao, M. T.; Xie, L. H.; Huang, W.; Zhang, H. A facile and universal top-down method for preparation of monodisperse transition-metal dichalcogenide nanodots. Angew. Chem., Int. Ed. 2015, 54, 5425–5428.

[16]

Chen, Z. X.; Wang, W. B.; Sui, X. Y.; Wang, K. K.; Zhang, J. Q.; Liu, X. F.; Zhang, Y. Quantum-sized silicon for enhanced photoluminescence and optical nonlinearity. Mater. Chem. Front. 2021, 5, 7817–7823.

[17]

Xu, Y. Q.; Wang, W. B.; Chen, Z. X.; Sui, X. Y.; Wang, A. C.; Liang, C.; Chang, J. Q.; Ma, Y. H.; Song, L. T.; Jiang, W. Y. et al. A general strategy for semiconductor quantum dot production. Nanoscale 2021, 13, 8004–8011.

[18]

Zhang, M.; Hu, G. H.; Hu, G. Q.; Howe, R. C. T.; Chen, L.; Zheng, Z.; Hasan, T. Yb- and Er-doped fiber laser Q-switched with an optically uniform, broadband WS2 saturable absorber. Sci. Rep. 2015, 5, 17482.

[19]

Chen, Z. X.; Li, Y. Q.; Wang, K. K.; Zhang, Y. Scalable production of intrinsic WX2 (X = S, Se, Te) quantum sheets for efficient hydrogen evolution electrocatalysis. Nanotechnology 2021, 32, 495701.

[20]

Zazpe, R.; Charvot, J.; Krumpolec, R.; Hromádko, L.; Pavliňák, D.; Dvorak, F.; Knotek, P.; Michalicka, J.; Přikryl, J.; Ng, S. et al. Atomic layer deposition of MoSe2 using new selenium precursors. FlatChem 2020, 21, 100166.

[21]

Dawson, W. G.; Bullett, D. W. Electronic structure and crystallography of MoTe2 and WTe2. J. Phys. C Solid State Phys. 1987, 20, 6159–6174.

[22]

Chen, Z. X.; Liu, H. Q.; Chen, X. C.; Chu, G.; Chu, S.; Zhang, H. Wafer-size and single-crystal MoSe2 atomically thin films grown on GaN substrate for light emission and harvesting. ACS Appl. Mater. Interfaces 2016, 8, 20267–20273.

[23]

Yang, J.; Lü, T. Y.; Myint, Y. W.; Pei, J. J.; Macdonald, D.; Zheng, J. C.; Lu, Y. R. Robust excitons and trions in monolayer MoTe2. ACS Nano 2015, 9, 6603–6609.

[24]

Luo, X.; Chen, F. C.; Zhang, J. L.; Pei, Q. L.; Lin, G. T.; Lu, W. J.; Han, Y. Y.; Xi, C. Y.; Song, W. H.; Sun, Y. P. Td-MoTe2: A possible topological superconductor. Appl. Phys. Lett. 2016, 109, 102601.

[25]

Zhang, J. J.; Kang, W. P.; Jiang, M.; You, Y.; Cao, Y. L.; Ng, T. W.; Yu, D. Y. W.; Lee, C. S.; Xu, J. Conversion of 1T-MoSe2 to 2H-MoS2xSe2−2x mesoporous nanospheres for superior sodium storage performance. Nanoscale 2017, 9, 1484–1490.

[26]

Sun, Y. F.; Pan, J. B.; Zhang, Z. T.; Zhang, K. N.; Liang, J.; Wang, W. J.; Yuan, Z. Q.; Hao, Y. K.; Wang, B. L.; Wang, J. W. et al. Elastic properties and fracture behaviors of biaxially deformed, polymorphic MoTe2. Nano Lett. 2019, 19, 761–769.

[27]

Nam, D.; Lee, J. U.; Cheong, H. Excitation energy dependent Raman spectrum of MoSe2. Sci. Rep. 2015, 5, 17113.

[28]

Wang, X. L.; Gong, Y. J.; Shi, G.; Chow, W. L.; Keyshar, K.; Ye, G. L.; Vajtai, R.; Lou, J.; Liu, Z.; Ringe, E. et al. Chemical vapor deposition growth of crystalline monolayer MoSe2. ACS Nano 2014, 8, 5125–5131.

[29]

Choi, D.; Kim, D.; Jo, Y.; Kim, J. H.; Yoon, E.; Lee, H. C.; Kim, T. Directly grown Te nanowire electrodes and soft plasma etching for high-performance MoTe2 field-effect transistors. Appl. Surf. Sci. 2021, 565, 150521.

[30]

Dong, C. W.; Zhou, H. Y.; Jin, B.; Gao, W.; Lang, X. Y.; Li, J. C.; Jiang, Q. Enabling high-performance room-temperature sodium/sulfur batteries with few-layer 2H-MoSe2 embellished nitrogen-doped hollow carbon spheres as polysulfide barriers. J. Mater. Chem. A 2021, 9, 3451–3463.

[31]

Sajiv, K. S.; Gopakumar, G.; Shanmugam, M. Integrated photo-absorption and improved charge transport kinetics in atomically thin MoSe2-incorporated nanostructured ZnO photo-anodes for dye-sensitized solar cells. Appl. Phys. A 2021, 127, 966.

[32]

Fan, Z. Q.; Zhang, Z. H.; Yang, S. Y. High-performance 5.1 nm in-plane Janus WSeTe Schottky barrier field effect transistors. Nanoscale 2020, 12, 21750–21756.

[33]

Joshi, J.; Stone, I. R.; Beams, R.; Krylyuk, S.; Kalish, I.; Davydov, A. V.; Vora, P. M. Phonon anharmonicity in bulk Td-MoTe2. Appl. Phys. Lett. 2016, 109, 031903.

[34]

Lee, C. H.; Silva, E. C.; Calderin, L.; Nguyen, M. A. T.; Hollander, M. J.; Bersch, B.; Mallouk, T. E.; Robinson, J. A. Tungsten ditelluride: A layered semimetal. Sci. Rep. 2015, 5, 10013.

[35]

Mittal, H.; Khanuja, M. Hydrothermal in-situ synthesis of MoSe2-polypyrrole nanocomposite for efficient photocatalytic degradation of dyes under dark and visible light irradiation. Sep. Purif. Technol. 2021, 254, 117508.

[36]

Huang, Y. X.; Zhou, X. Y.; Luo, L. Z.; Zou, J. H.; Liu, H. Z.; Li, X.; Ren, A. B.; Shen, K.; Wu, J. High-performance broadband visible-near infrared photodetector enabled by atomic capping layer. Adv. Opt. Mater. 2022, 10, 2200539.

[37]

Hong, Y. N.; Lam, J. W. Y.; Tang, B. Z. Aggregation-induced emission: Phenomenon, mechanism and applications. Chem. Commun. 2009, 29, 4332–4353.

[38]

Jin, H.; Baek, B.; Kim, D.; Wu, F. L.; Batteas, J. D.; Cheon, J.; Son, D. H. Effects of direct solvent-quantum dot interaction on the optical properties of colloidal monolayer WS2 quantum dots. Nano Lett. 2017, 17, 7471–7477.

[39]

Bao, Q. L.; Zhang, H.; Wang, Y.; Ni, Z. H.; Yan, Y. L.; Shen, Z. X.; Loh, K. P.; Tang, D. Y. Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers. Adv. Funct. Mater. 2009, 19, 3077–3083.

[40]

Wang, G. Z.; Liang, G. X.; Baker-Murray, A. A.; Wang, K. P.; Wang, J. J.; Zhang, X. Y.; Bennett, D.; Luo, J. T.; Wang, J.; Fan, P. et al. Nonlinear optical performance of few-layer molybdenum diselenide as a slow-saturable absorber. Photon. Res. 2018, 6, 674–680.

[41]

Koo, J.; Park, J.; Lee, J.; Jhon, Y. M.; Lee, J. H. Femtosecond harmonic mode-locking of a fiber laser at 3.27 GHz using a bulk-like, MoSe2-based saturable absorber. Opt. Express 2016, 24, 10575–10589.

[42]

Luo, Z. Q.; Li, Y. Y.; Zhong, M.; Huang, Y. Z.; Wan, X. J.; Peng, J.; Weng, J. Nonlinear optical absorption of few-layer molybdenum diselenide (MoSe2) for passively mode-locked soliton fiber laser [Invited]. Photon. Res. 2015, 3, A79–A86.

[43]

Liu, W. J.; Liu, M. L.; Ouyang, Y. Y.; Hou, H. R.; Lei, M.; Wei, Z. Y. CVD-grown MoSe2 with high modulation depth for ultrafast mode-locked erbium-doped fiber laser. Nanotechnology 2018, 29, 394002.

[44]

Mao, D.; She, X. Y.; Du, B. B.; Yang, D. X.; Zhang, W. D.; Song, K.; Cui, X. Q.; Jiang, B. Q.; Peng, T.; Zhao, J. L. Erbium-doped fiber laser passively mode locked with few-layer WSe2/MoSe2 nanosheets. Sci. Rep. 2016, 6, 23583.

[45]

Mao, D.; Du, B. B.; Yang, D. X.; Zhang, S. L.; Wang, Y. D.; Zhang, W. D.; She, X. Y.; Cheng, H. C.; Zeng, H. B.; Zhao, J. L. Nonlinear saturable absorption of liquid-exfoliated molybdenum/tungsten ditelluride nanosheets. Small 2016, 12, 1489–1497.

[46]

Liu, M. L.; Liu, W. J.; Wei, Z. Y. MoTe2 saturable absorber with high modulation depth for erbium-doped fiber laser. J. Lightwave Technol. 2019, 37, 3100–3105.

[47]

Wang, J. T.; Jiang, Z. K.; Chen, H.; Li, J. R.; Yin, J. D.; Wang, J. Z.; He, T. C.; Yan, P. G.; Ruan, S. C. High energy soliton pulse generation by a magnetron-sputtering-deposition-grown MoTe2 saturable absorber. Photon. Res. 2018, 6, 535–541.

[48]

Koo, J.; Jhon, Y. I.; Park, J.; Lee, J.; Jhon, Y. M.; Lee, J. H. Near-infrared saturable absorption of defective bulk-structured WTe2 for femtosecond laser mode-locking. Adv. Funct. Mater. 2016, 26, 7454–7461.

Nano Research
Pages 5803-5808
Cite this article:
Chen Z, Sui X, Li Z, et al. Phase-modulated quantum-sized TMDs for extreme saturable absorption. Nano Research, 2023, 16(4): 5803-5808. https://doi.org/10.1007/s12274-022-5119-3
Topics:

4687

Views

6

Crossref

5

Web of Science

5

Scopus

0

CSCD

Altmetrics

Received: 12 July 2022
Revised: 14 September 2022
Accepted: 30 September 2022
Published: 14 November 2022
© Tsinghua University Press 2022
Return