Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
The luminescence in the second near-infrared (NIR-II) spectral region (1,000–1,700 nm) has recently attracted great attention for emerging biological applications owing to its merit of deep tissue bioimaging and high spatiotemporal resolution. However, it still remains a challenge to achieve the highly efficient NIR-II emissions of lanthanides in nanomaterials. Herein, we report an ideal design of sensitizing lithium sublattice core–shell nanocrystals for efficient NIR-II emission properties from a set of lanthanide emitters including Er3+, Tm3+, Ho3+, Pr3+, and Nd3+. In particular, the typical NIR-II emission of Er3+ at 1.5 μm was greatly enhanced by further manipulating the energy transfer via Er3+–Ce3+ cross-relaxation, and the quantum yield can reach up to 35.74% under 980 nm excitation (12.5 W·cm−2), which is the highest value to the best of our knowledge. The 808 nm responsive efficient NIR-II emission was also enabled at the single-particle level through rational core–shell–shell structure design. Moreover, the lithium-sublattice provides an obvious spectral Stark-splitting feature, which can be used in the ultrasensitive NIR-II nanothermometer with relative sensitivity of 0.248% K−1 and excellent thermal cycling stability. These results open a door to the research of new kinds of efficient NIR-II luminescent materials, showing great promise in various frontier fields such as deep tissue nanothermometry and in vivo bioimaging.
Hong, G. S.; Antaris, A. L.; Dai, H. J. Near-infrared fluorophores for biomedical imaging. Nat. Biomed. Eng. 2017, 1, 0010.
Dong, H.; Du, S. R.; Zheng, X. Y.; Lyu, G. M.; Sun, L. D.; Li, L. D.; Zhang, P. Z.; Zhang, C.; Yan, C. H. Lanthanide nanoparticles: From design toward bioimaging and therapy. Chem. Rev. 2015, 115, 10725–10815.
Sun, Q. C.; Ding, Y. C.; Sagar, D. M.; Nagpal, P. Photon upconversion towards applications in energy conversion and bioimaging. Prog. Surf. Sci. 2017, 92, 281–316.
Wanderi, K.; Cui, Z. Q. Organic fluorescent nanoprobes with NIR-IIb characteristics for deep learning. Exploration 2022, 2, 20210097.
Yang, Y. J.; Tu, D. T.; Zhang, Y. Q.; Zhang, P.; Chen, X. Y. Recent advances in design of lanthanide-containing NIR-II luminescent nanoprobes. iScience 2021, 24, 102062.
Hemmer, E.; Benayas, A.; Légaré, F.; Vetrone, F. Exploiting the biological windows: Current perspectives on fluorescent bioprobes emitting above 1,000 nm. Nanoscale Horiz. 2016, 1, 168–184.
Zhong, Y. T.; Ma, Z. R.; Wang, F. F.; Wang, X.; Yang, Y. J.; Liu, Y. L.; Zhao, X.; Li, J. C.; Du, H. T.; Zhang, M. X. et al.
Zhou, B.; Shi, B. Y.; Jin, D. Y.; Liu, X. G. Controlling upconversion nanocrystals for emerging applications. Nat. Nanotechnol. 2015, 10, 924–936.
Lei, Z. H.; Zhang, F. Molecular engineering of NIR-II fluorophores for improved biomedical detection. Angew. Chem., Int. Ed. 2021, 60, 16294–16308.
Wang, S. F.; Li, B. H.; Zhang, F. Molecular fluorophores for deep-tissue bioimaging. ACS Cent. Sci. 2020, 6, 1302–1316.
Bruns, O. T.; Bischof, T. S.; Harris, D. K.; Franke, D.; Shi, Y. X.; Riedemann, L.; Bartelt, A.; Jaworski, F. B.; Carr, J. A.; Rowlands, C. J. et al. Next-generation in vivo optical imaging with short-wave infrared quantum dots. Nat. Biomed. Eng. 2017, 1, 0056.
Ren, F.; Liu, H. H.; Zhang, H.; Jiang, Z. L.; Xia, B.; Genevois, C.; He, T.; Allix, M.; Sun, Q.; Li, Z. et al. Engineering NIR-IIb fluorescence of Er-based lanthanide nanoparticles for through-skull targeted imaging and imaging-guided surgery of orthotopic glioma. Nano Today 2020, 34, 100905.
Xu, J. T.; Gulzar, A.; Yang, P. P.; Bi, H. T.; Yang, D.; Gai, S. L.; He, F.; Lin, J.; Xing, B. G.; Jin, D. Y. Recent advances in near-infrared emitting lanthanide-doped nanoconstructs: Mechanism, design and application for bioimaging. Coord. Chem. Rev. 2019, 381, 104–134.
Kairdolf, B. A.; Smith, A. M.; Stokes, T. H.; Wang, M. D.; Young, A. N.; Nie, S. M. Semiconductor quantum dots for bioimaging and biodiagnostic applications. Annu. Rev. Anal. Chem. 2013, 6, 143–162.
Loo, J. F. C.; Chien, Y. H.; Yin, F.; Kong, S. K.; Ho, H. P.; Yong, K. T. Upconversion and downconversion nanoparticles for biophotonics and nanomedicine. Coord. Chem. Rev. 2019, 400, 213042.
Liu, S. B.; Yan, L.; Huang, J. S.; Zhang, Q. Y.; Zhou, B. Controlling upconversion in emerging multilayer core–shell nanostructures: From fundamentals to frontier applications. Chem. Soc. Rev. 2022, 51, 1729–1765.
Fan, Y.; Zhang, F. A new generation of NIR-II probes: Lanthanide-based nanocrystals for bioimaging and biosensing. Adv. Opt. Mater. 2019, 7, 1801417.
Naczynski, D. J.; Tan, M. C.; Zevon, M.; Wall, B.; Kohl, J.; Kulesa, A.; Chen, S.; Roth, C. M.; Riman, R. E.; Moghe, P. V. Rare-earth-doped biological composites as in vivo shortwave infrared reporters. Nat. Commun. 2013, 4, 2199.
Yu, S. H.; Tu, D. T.; Lian, W.; Xu, J.; Chen, X. Y. Lanthanide-doped near-infrared II luminescent nanoprobes for bioapplications. Sci. China Mater. 2019, 62, 1071–1086.
Li, H.; Wang, X.; Ohulchanskyy, T. Y.; Chen, G. Y. Lanthanide-doped near-infrared nanoparticles for biophotonics. Adv. Mater. 2021, 33, 2000678.
Hu, Z. Y.; Huang, J. S.; Yan, L.; Zhou, B. Enhancing NIR-II luminescence of erbium sublattice through lanthanide-mediated energy modulation. Optik 2022, 259, 169037.
Xie, Y. L.; Chen, Q.; Wang, M.; Chen, W. L.; Quan, Z. W.; Li, C. X. Highly doped NaErF4-based nanocrystals for multi-tasking application. J. Rare Earths 2021, 39, 1467–1476.
Zhong, Y. T.; Ma, Z. R.; Zhu, S. J.; Yue, J. Y.; Zhang, M. X.; Antaris, A. L.; Yuan, J.; Cui, R.; Wan, H.; Zhou, Y. et al. Boosting the down-shifting luminescence of rare-earth nanocrystals for biological imaging beyond 1,500 nm. Nat. Commun. 2017, 8, 737.
Liu, S. B.; Huang, J. S.; Yan, L.; Song, N.; Zhang, P.; He, J. S.; Zhou, B. Multiphoton ultraviolet upconversion through selectively controllable energy transfer in confined sensitizing sublattices towards improved solar photocatalysis. J. Mater. Chem. A 2021, 9, 4007–4017.
Liu, Q.; Zhang, Y. X.; Peng, C. S.; Yang, T. S.; Joubert, L. M.; Chu, S. Single upconversion nanoparticle imaging at sub-10 W·cm−2 irradiance. Nat. Photonics 2018, 12, 548–553.
Liu, S. B.; Yan, L.; Li, Q. Q.; Huang, J. S.; Tao, L. L.; Zhou, B. Tri-channel photon emission of lanthanides in lithium-sublattice core–shell nanostructures for multiple anti-counterfeiting. Chem. Eng. J. 2020, 397, 125451.
Cheng, T.; Marin, R.; Skripka, A.; Vetrone, F. Small and bright lithium-based upconverting nanoparticles. J. Am. Chem. Soc. 2018, 140, 12890–12899.
Jin, L. M.; Wu, Y. K.; Wang, Y. J.; Liu, S.; Zhang, Y. Q.; Li, Z. Y.; Chen, X.; Zhang, W. F.; Xiao, S. M.; Song, Q. H. Mass-manufactural lanthanide-based ultraviolet B microlasers. Adv. Mater. 2019, 31, 1807079.
Chen, B.; Kong, W.; Wang, N.; Zhu, G. Y.; Wang, F. Oleylamine-mediated synthesis of small NaYbF4 nanoparticles with tunable size. Chem. Mater. 2019, 31, 4779–4786.
Zhao, J. X.; Chen, B.; Chen, X.; Zhang, X.; Sun, T. Y.; Su, D.; Wang, F. Tuning epitaxial growth on NaYbF4 upconversion nanoparticles by strain management. Nanoscale 2020, 12, 13973–13979.
Boyer, J. C.; Vetrone, F.; Cuccia, L. A.; Capobianco, J. A. Synthesis of colloidal upconverting NaYF4 nanocrystals doped with Er3+, Yb3+ and Tm3+, Yb3+ via thermal decomposition of lanthanide trifluoroacetate precursors. J. Am. Chem. Soc. 2006, 128, 7444–7445.
Zhou, B.; Yan, L.; Huang, J. S.; Liu, X. L.; Tao, L. L.; Zhang, Q. Y. NIR II-responsive photon upconversion through energy migration in an ytterbium sublattice. Nat. Photonics 2020, 14, 760–766.
Fischer, S.; Bronstein, N. D.; Swabeck, J. K.; Chan, E. M.; Alivisatos, A. P. Precise tuning of surface quenching for luminescence enhancement in core–shell lanthanide-doped nanocrystals. Nano Lett. 2016, 16, 7241–7247.
Lei, X. L.; Li, R. F.; Tu, D. T.; Shang, X. Y.; Liu, Y.; You, W. W.; Sun, C. X.; Zhang, F.; Chen, X. Y. Intense near-infrared-II luminescence from NaCeF4:Er/Yb nanoprobes for in vitro bioassay and in vivo bioimaging. Chem. Sci. 2018, 9, 4682–4688.
Wang, Y. F.; Liu, G. Y.; Sun, L. D.; Xiao, J. W.; Zhou, J. C.; Yan, C. H. Nd3+-sensitized upconversion nanophosphors: Efficient in vivo bioimaging probes with minimized heating effect. ACS Nano 2013, 7, 7200–7206.
Huang, P.; Zheng, W.; Tu, D. T.; Shang, X. Y.; Zhang, M. R.; Li, R. F.; Xu, J.; Liu, Y.; Chen, X. Y. Unraveling the electronic structures of neodymium in LiLuF4 nanocrystals for ratiometric temperature sensing. Adv. Sci. 2019, 6, 1802282.
Wei, S. Q.; Shang, X. Y.; Huang, P.; Zheng, W.; Ma, E.; Xu, J.; Zhang, M. R.; Tu, D. T.; Chen, X. Y. Polarized upconversion luminescence from a single LiLuF4:Yb3+/Er3+ microcrystal for orientation tracking. Sci. China Mater. 2022, 65, 220–228.
Karayianis, N. Theoretical energy levels and g values for the 4I terms of Nd3+ and Er3+ in LiYF4. J. Phys. Chem. Solids 1971, 32, 2385–2391.
Couto dos Santos, M. A.; Antic-Fidancev, E.; Gesland, J. Y.; Krupa, J. C.; Lemaı̂tre-Blaise, M.; Porcher, P. Absorption and fluorescence of Er3+-doped LiYF4: Measurements and simulation.
Heyde, K.; Binnemans, K.; Görller-Walrand, C. Spectroscopic properties of LiErF4. J. Chem. Soc., Faraday Trans. 1998, 94, 843–849.
Liu, S. F.; Ming, H.; Cui, J.; Liu, S. B.; You, W. X.; Ye, X. Y.; Yang, Y. M.; Nie, H. P.; Wang, R. X. Color-tunable upconversion luminescence and multiple temperature sensing and optical heating properties of Ba3Y4O9:Er3+/Yb3+ phosphors. J. Phys. Chem. C 2018, 122, 16289–16303.
Liu, H. M.; Yan, L.; Huang, J. S.; An, Z. C.; Sheng, W.; Zhou, B. Ultrasensitive thermochromic upconversion in core–shell–shell nanoparticles for nanothermometry and anticounterfeiting. J. Phys. Chem. Lett. 2022, 13, 2306–2312.
Yan, L.; Huang, J. S.; An, Z. C.; Zhang, Q. Y.; Zhou, B. Activating ultrahigh thermoresponsive upconversion in an erbium sublattice for nanothermometry and information security. Nano Lett. 2022, 22, 7042–7048.
Xiang, G. T.; Yang, M. L.; Xia, Q.; Jiang, S.; Wang, Y. J.; Zhou, X. J.; Li, L.; Ma, L.; Wang, X. J.; Zhang, J. H. Ultrasensitive optical thermometer based on abnormal thermal quenching Stark transitions operating beyond 1,500 nm. J. Am. Ceram. Soc. 2021, 104, 5784–5793.