AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Enabling efficient NIR-II luminescence in lithium-sublattice core–shell nanocrystals towards Stark sublevel based nanothermometry

Songbin Liu1,2Zhengce An2Jinshu Huang2Bo Zhou2( )
National Rare Earth Functional Material Innovation Center, Key Laboratory of Rare Earth Luminescence Materials and Devices of Jiangxi Province, College of Rare Earths, Jiangxi University of Science and Technology, Ganzhou 341000, China
State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, South China University of Technology, Guangzhou 510641, China
Show Author Information

Graphical Abstract

An ideal lithium sublattice core–shell nanostructure is proposed for efficient near-infrared (NIR)-II emissions from a set of lanthanide ions (Er3+, Tm3+, Ho3+, Pr3+, and Nd3+), and the quantum yield can reach up to 35.74%, showing great promise in NIR-II nanothermometry.

Abstract

The luminescence in the second near-infrared (NIR-II) spectral region (1,000–1,700 nm) has recently attracted great attention for emerging biological applications owing to its merit of deep tissue bioimaging and high spatiotemporal resolution. However, it still remains a challenge to achieve the highly efficient NIR-II emissions of lanthanides in nanomaterials. Herein, we report an ideal design of sensitizing lithium sublattice core–shell nanocrystals for efficient NIR-II emission properties from a set of lanthanide emitters including Er3+, Tm3+, Ho3+, Pr3+, and Nd3+. In particular, the typical NIR-II emission of Er3+ at 1.5 μm was greatly enhanced by further manipulating the energy transfer via Er3+–Ce3+ cross-relaxation, and the quantum yield can reach up to 35.74% under 980 nm excitation (12.5 W·cm−2), which is the highest value to the best of our knowledge. The 808 nm responsive efficient NIR-II emission was also enabled at the single-particle level through rational core–shell–shell structure design. Moreover, the lithium-sublattice provides an obvious spectral Stark-splitting feature, which can be used in the ultrasensitive NIR-II nanothermometer with relative sensitivity of 0.248% K−1 and excellent thermal cycling stability. These results open a door to the research of new kinds of efficient NIR-II luminescent materials, showing great promise in various frontier fields such as deep tissue nanothermometry and in vivo bioimaging.

Electronic Supplementary Material

Download File(s)
12274_2022_5121_MOESM1_ESM.pdf (3.3 MB)

References

[1]

Hong, G. S.; Antaris, A. L.; Dai, H. J. Near-infrared fluorophores for biomedical imaging. Nat. Biomed. Eng. 2017, 1, 0010.

[2]

Dong, H.; Du, S. R.; Zheng, X. Y.; Lyu, G. M.; Sun, L. D.; Li, L. D.; Zhang, P. Z.; Zhang, C.; Yan, C. H. Lanthanide nanoparticles: From design toward bioimaging and therapy. Chem. Rev. 2015, 115, 10725–10815.

[3]

Sun, Q. C.; Ding, Y. C.; Sagar, D. M.; Nagpal, P. Photon upconversion towards applications in energy conversion and bioimaging. Prog. Surf. Sci. 2017, 92, 281–316.

[4]

Wanderi, K.; Cui, Z. Q. Organic fluorescent nanoprobes with NIR-IIb characteristics for deep learning. Exploration 2022, 2, 20210097.

[5]

Yang, Y. J.; Tu, D. T.; Zhang, Y. Q.; Zhang, P.; Chen, X. Y. Recent advances in design of lanthanide-containing NIR-II luminescent nanoprobes. iScience 2021, 24, 102062.

[6]

Hemmer, E.; Benayas, A.; Légaré, F.; Vetrone, F. Exploiting the biological windows: Current perspectives on fluorescent bioprobes emitting above 1,000 nm. Nanoscale Horiz. 2016, 1, 168–184.

[7]
ZhongY. T.MaZ. R.WangF. F.WangX.YangY. J.LiuY. L.ZhaoX.LiJ. C.DuH. T.ZhangM. X. In vivo molecular imaging for immunotherapy using ultra-bright near-infrared-IIb rare-earth nanoparticlesNat. Biotechnol.2019371322133110.1038/s41587-019-0262-4

Zhong, Y. T.; Ma, Z. R.; Wang, F. F.; Wang, X.; Yang, Y. J.; Liu, Y. L.; Zhao, X.; Li, J. C.; Du, H. T.; Zhang, M. X. et al. In vivo molecular imaging for immunotherapy using ultra-bright near-infrared-IIb rare-earth nanoparticles. Nat. Biotechnol. 2019, 37, 1322–1331.

[8]

Zhou, B.; Shi, B. Y.; Jin, D. Y.; Liu, X. G. Controlling upconversion nanocrystals for emerging applications. Nat. Nanotechnol. 2015, 10, 924–936.

[9]

Lei, Z. H.; Zhang, F. Molecular engineering of NIR-II fluorophores for improved biomedical detection. Angew. Chem., Int. Ed. 2021, 60, 16294–16308.

[10]

Wang, S. F.; Li, B. H.; Zhang, F. Molecular fluorophores for deep-tissue bioimaging. ACS Cent. Sci. 2020, 6, 1302–1316.

[11]

Bruns, O. T.; Bischof, T. S.; Harris, D. K.; Franke, D.; Shi, Y. X.; Riedemann, L.; Bartelt, A.; Jaworski, F. B.; Carr, J. A.; Rowlands, C. J. et al. Next-generation in vivo optical imaging with short-wave infrared quantum dots. Nat. Biomed. Eng. 2017, 1, 0056.

[12]

Ren, F.; Liu, H. H.; Zhang, H.; Jiang, Z. L.; Xia, B.; Genevois, C.; He, T.; Allix, M.; Sun, Q.; Li, Z. et al. Engineering NIR-IIb fluorescence of Er-based lanthanide nanoparticles for through-skull targeted imaging and imaging-guided surgery of orthotopic glioma. Nano Today 2020, 34, 100905.

[13]

Xu, J. T.; Gulzar, A.; Yang, P. P.; Bi, H. T.; Yang, D.; Gai, S. L.; He, F.; Lin, J.; Xing, B. G.; Jin, D. Y. Recent advances in near-infrared emitting lanthanide-doped nanoconstructs: Mechanism, design and application for bioimaging. Coord. Chem. Rev. 2019, 381, 104–134.

[14]

Kairdolf, B. A.; Smith, A. M.; Stokes, T. H.; Wang, M. D.; Young, A. N.; Nie, S. M. Semiconductor quantum dots for bioimaging and biodiagnostic applications. Annu. Rev. Anal. Chem. 2013, 6, 143–162.

[15]

Loo, J. F. C.; Chien, Y. H.; Yin, F.; Kong, S. K.; Ho, H. P.; Yong, K. T. Upconversion and downconversion nanoparticles for biophotonics and nanomedicine. Coord. Chem. Rev. 2019, 400, 213042.

[16]

Liu, S. B.; Yan, L.; Huang, J. S.; Zhang, Q. Y.; Zhou, B. Controlling upconversion in emerging multilayer core–shell nanostructures: From fundamentals to frontier applications. Chem. Soc. Rev. 2022, 51, 1729–1765.

[17]

Fan, Y.; Zhang, F. A new generation of NIR-II probes: Lanthanide-based nanocrystals for bioimaging and biosensing. Adv. Opt. Mater. 2019, 7, 1801417.

[18]

Naczynski, D. J.; Tan, M. C.; Zevon, M.; Wall, B.; Kohl, J.; Kulesa, A.; Chen, S.; Roth, C. M.; Riman, R. E.; Moghe, P. V. Rare-earth-doped biological composites as in vivo shortwave infrared reporters. Nat. Commun. 2013, 4, 2199.

[19]

Yu, S. H.; Tu, D. T.; Lian, W.; Xu, J.; Chen, X. Y. Lanthanide-doped near-infrared II luminescent nanoprobes for bioapplications. Sci. China Mater. 2019, 62, 1071–1086.

[20]

Li, H.; Wang, X.; Ohulchanskyy, T. Y.; Chen, G. Y. Lanthanide-doped near-infrared nanoparticles for biophotonics. Adv. Mater. 2021, 33, 2000678.

[21]

Hu, Z. Y.; Huang, J. S.; Yan, L.; Zhou, B. Enhancing NIR-II luminescence of erbium sublattice through lanthanide-mediated energy modulation. Optik 2022, 259, 169037.

[22]

Xie, Y. L.; Chen, Q.; Wang, M.; Chen, W. L.; Quan, Z. W.; Li, C. X. Highly doped NaErF4-based nanocrystals for multi-tasking application. J. Rare Earths 2021, 39, 1467–1476.

[23]

Zhong, Y. T.; Ma, Z. R.; Zhu, S. J.; Yue, J. Y.; Zhang, M. X.; Antaris, A. L.; Yuan, J.; Cui, R.; Wan, H.; Zhou, Y. et al. Boosting the down-shifting luminescence of rare-earth nanocrystals for biological imaging beyond 1,500 nm. Nat. Commun. 2017, 8, 737.

[24]

Liu, S. B.; Huang, J. S.; Yan, L.; Song, N.; Zhang, P.; He, J. S.; Zhou, B. Multiphoton ultraviolet upconversion through selectively controllable energy transfer in confined sensitizing sublattices towards improved solar photocatalysis. J. Mater. Chem. A 2021, 9, 4007–4017.

[25]

Liu, Q.; Zhang, Y. X.; Peng, C. S.; Yang, T. S.; Joubert, L. M.; Chu, S. Single upconversion nanoparticle imaging at sub-10 W·cm−2 irradiance. Nat. Photonics 2018, 12, 548–553.

[26]

Liu, S. B.; Yan, L.; Li, Q. Q.; Huang, J. S.; Tao, L. L.; Zhou, B. Tri-channel photon emission of lanthanides in lithium-sublattice core–shell nanostructures for multiple anti-counterfeiting. Chem. Eng. J. 2020, 397, 125451.

[27]

Cheng, T.; Marin, R.; Skripka, A.; Vetrone, F. Small and bright lithium-based upconverting nanoparticles. J. Am. Chem. Soc. 2018, 140, 12890–12899.

[28]

Jin, L. M.; Wu, Y. K.; Wang, Y. J.; Liu, S.; Zhang, Y. Q.; Li, Z. Y.; Chen, X.; Zhang, W. F.; Xiao, S. M.; Song, Q. H. Mass-manufactural lanthanide-based ultraviolet B microlasers. Adv. Mater. 2019, 31, 1807079.

[29]

Chen, B.; Kong, W.; Wang, N.; Zhu, G. Y.; Wang, F. Oleylamine-mediated synthesis of small NaYbF4 nanoparticles with tunable size. Chem. Mater. 2019, 31, 4779–4786.

[30]

Zhao, J. X.; Chen, B.; Chen, X.; Zhang, X.; Sun, T. Y.; Su, D.; Wang, F. Tuning epitaxial growth on NaYbF4 upconversion nanoparticles by strain management. Nanoscale 2020, 12, 13973–13979.

[31]

Boyer, J. C.; Vetrone, F.; Cuccia, L. A.; Capobianco, J. A. Synthesis of colloidal upconverting NaYF4 nanocrystals doped with Er3+, Yb3+ and Tm3+, Yb3+ via thermal decomposition of lanthanide trifluoroacetate precursors. J. Am. Chem. Soc. 2006, 128, 7444–7445.

[32]

Zhou, B.; Yan, L.; Huang, J. S.; Liu, X. L.; Tao, L. L.; Zhang, Q. Y. NIR II-responsive photon upconversion through energy migration in an ytterbium sublattice. Nat. Photonics 2020, 14, 760–766.

[33]

Fischer, S.; Bronstein, N. D.; Swabeck, J. K.; Chan, E. M.; Alivisatos, A. P. Precise tuning of surface quenching for luminescence enhancement in core–shell lanthanide-doped nanocrystals. Nano Lett. 2016, 16, 7241–7247.

[34]

Lei, X. L.; Li, R. F.; Tu, D. T.; Shang, X. Y.; Liu, Y.; You, W. W.; Sun, C. X.; Zhang, F.; Chen, X. Y. Intense near-infrared-II luminescence from NaCeF4:Er/Yb nanoprobes for in vitro bioassay and in vivo bioimaging. Chem. Sci. 2018, 9, 4682–4688.

[35]

Wang, Y. F.; Liu, G. Y.; Sun, L. D.; Xiao, J. W.; Zhou, J. C.; Yan, C. H. Nd3+-sensitized upconversion nanophosphors: Efficient in vivo bioimaging probes with minimized heating effect. ACS Nano 2013, 7, 7200–7206.

[36]

Huang, P.; Zheng, W.; Tu, D. T.; Shang, X. Y.; Zhang, M. R.; Li, R. F.; Xu, J.; Liu, Y.; Chen, X. Y. Unraveling the electronic structures of neodymium in LiLuF4 nanocrystals for ratiometric temperature sensing. Adv. Sci. 2019, 6, 1802282.

[37]

Wei, S. Q.; Shang, X. Y.; Huang, P.; Zheng, W.; Ma, E.; Xu, J.; Zhang, M. R.; Tu, D. T.; Chen, X. Y. Polarized upconversion luminescence from a single LiLuF4:Yb3+/Er3+ microcrystal for orientation tracking. Sci. China Mater. 2022, 65, 220–228.

[38]

Karayianis, N. Theoretical energy levels and g values for the 4I terms of Nd3+ and Er3+ in LiYF4. J. Phys. Chem. Solids 1971, 32, 2385–2391.

[39]
Absorption and fluorescence of Er3+-doped LiYF4: Measurements and simulationJ. Alloys Compd.1998275–27743544110.1016/S0925-8388(98)00363-6

Couto dos Santos, M. A.; Antic-Fidancev, E.; Gesland, J. Y.; Krupa, J. C.; Lemaı̂tre-Blaise, M.; Porcher, P. Absorption and fluorescence of Er3+-doped LiYF4: Measurements and simulation. J. Alloys Compd. 1998, 275–277, 435–441.

[40]

Heyde, K.; Binnemans, K.; Görller-Walrand, C. Spectroscopic properties of LiErF4. J. Chem. Soc., Faraday Trans. 1998, 94, 843–849.

[41]

Liu, S. F.; Ming, H.; Cui, J.; Liu, S. B.; You, W. X.; Ye, X. Y.; Yang, Y. M.; Nie, H. P.; Wang, R. X. Color-tunable upconversion luminescence and multiple temperature sensing and optical heating properties of Ba3Y4O9:Er3+/Yb3+ phosphors. J. Phys. Chem. C 2018, 122, 16289–16303.

[42]

Liu, H. M.; Yan, L.; Huang, J. S.; An, Z. C.; Sheng, W.; Zhou, B. Ultrasensitive thermochromic upconversion in core–shell–shell nanoparticles for nanothermometry and anticounterfeiting. J. Phys. Chem. Lett. 2022, 13, 2306–2312.

[43]

Yan, L.; Huang, J. S.; An, Z. C.; Zhang, Q. Y.; Zhou, B. Activating ultrahigh thermoresponsive upconversion in an erbium sublattice for nanothermometry and information security. Nano Lett. 2022, 22, 7042–7048.

[44]

Xiang, G. T.; Yang, M. L.; Xia, Q.; Jiang, S.; Wang, Y. J.; Zhou, X. J.; Li, L.; Ma, L.; Wang, X. J.; Zhang, J. H. Ultrasensitive optical thermometer based on abnormal thermal quenching Stark transitions operating beyond 1,500 nm. J. Am. Ceram. Soc. 2021, 104, 5784–5793.

Nano Research
Pages 1626-1633
Cite this article:
Liu S, An Z, Huang J, et al. Enabling efficient NIR-II luminescence in lithium-sublattice core–shell nanocrystals towards Stark sublevel based nanothermometry. Nano Research, 2023, 16(1): 1626-1633. https://doi.org/10.1007/s12274-022-5121-9
Topics:

4861

Views

21

Crossref

20

Web of Science

19

Scopus

0

CSCD

Altmetrics

Received: 18 July 2022
Revised: 13 September 2022
Accepted: 29 September 2022
Published: 09 November 2022
© Tsinghua University Press 2022
Return