AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Diatomic Fe-Fe catalyst enhances the ability to degrade organic contaminants by nonradical peroxymonosulfate activation system

Minghua Li1,2Jinxing Chen2,3Weiwei Wu2,3Shuangli Wu2,3Lili Xu2,3Shaojun Dong1,2,3( )
College of Chemistry, Jilin University, Changchun 130012, China
State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
University of Science and Technology of China, Hefei 230026, China
Show Author Information

Graphical Abstract

Fe2-N-C was prepared by encapsulating nonacarbonyldiiron (Fe2(CO)9) into zeolitic imidazolate framework-8 (ZIF-8) by in situ synthesis. Studies have shown that the catalyst can efficiently catalyze the degradation of dyes and organic pollutants by activating peroxymonosulfate (PMS). The results show that the catalytic degradation activity of Fe2-N-C is twice that of Fe1-N-C and Fe3-N-C due to its unique Fe2N6 coordination structure, which fulfilled the complete degradation of rhodamine B (RhB), bisphenol A (BPA), and 2,4-dichlorophenol (2,4-DP) within 2 min. Electron paramagnetic resonance (EPR) and radical quenching experiments confirmed that 1O2 and Fe(IV) generated by PMS activation were the key active species.

Abstract

Atomically dispersed catalysts have been widely studied due to their high catalytic activity and atom utilization. Single-atom catalysts have achieved breakthrough progress in the degradation of emerging organic contaminants (EOCs) by activating peroxymonosulfate (PMS). However, the construction of atomically dispersed catalysts with diatomic/multiatomic metal active sites by activating PMS to degrade pollutants is still seldom reported, despite the unique merits of atom-pair in synergistic electronic modulation and breaking stubborn restriction of scaling relations on catalytic activity. We have synthesized Fe1-N-C, Fe2-N-C, and Fe3-N-C catalysts with monoatomic iron, diatomic iron, and triatomic iron active center, respectively. The results show that the catalytic degradation activity of Fe2-N-C is twice that of Fe1-N-C and Fe3-N-C due to its unique Fe2N6 coordination structure, which fulfilled the complete degradation of rhodamine B (RhB), bisphenol A (BPA), and 2,4-dichlorophenol (2,4-DP) within 2 min. Electron paramagnetic resonance (EPR) and radical quenching experiments confirmed that the reaction was a non-radical reaction on the catalyst surface. And singlet oxygen and Fe(IV) are the key active species.

Electronic Supplementary Material

Download File(s)
12274_2022_5124_MOESM1_ESM.pdf (1.4 MB)

References

[1]

Ribeiro, J. P.; Nunes, M. I. Recent trends and developments in Fenton processes for industrial wastewater treatment—A critical review. Environ. Res. 2021, 197, 110957.

[2]

Wang, B.; Song, Z. J.; Sun, L. S. A review: Comparison of multi-air-pollutant removal by advanced oxidation processes—Industrial implementation for catalytic oxidation processes. Chem. Eng. J. 2021, 409, 128136.

[3]

Miklos, D. B.; Remy, C.; Jekel, M.; Linden, K. G.; Drewes, J. E.; Hübner, U. Evaluation of advanced oxidation processes for water and wastewater treatment—A critical review. Water Res. 2018, 139, 118–131.

[4]

Hodges, B. C.; Cates, E. L.; Kim, J. H. Challenges and prospects of advanced oxidation water treatment processes using catalytic nanomaterials. Nat. Nanotechnol. 2018, 13, 642–650.

[5]

Hu, P. D.; Long, M. C. Cobalt-catalyzed sulfate radical-based advanced oxidation: A review on heterogeneous catalysts and applications. Appl. Catal. B Environ. 2016, 181, 103–117.

[6]

Lee, J.; Von Gunten, U.; Kim, J. H. Persulfate-based advanced oxidation: Critical assessment of opportunities and roadblocks. Environ. Sci. Technol. 2020, 54, 3064–3081.

[7]

Wang, J. L.; Tang, J. T. Fe-based Fenton-like catalysts for water treatment: Preparation, characterization and modification. Chemosphere 2021, 276, 130177.

[8]

Wang, Y. X.; Duan, X. G.; Xie, Y. B.; Sun, H. Q.; Wang, S. B. Nanocarbon-based catalytic ozonation for aqueous oxidation: Engineering defects for active sites and tunable reaction pathways. ACS Catal. 2020, 10, 13383–13414.

[9]

Wu, H.; Xu, X. Y.; Shi, L.; Yin, Y.; Zhang, L. C.; Wu, Z. T.; Duan, X. G.; Wang, S. B.; Sun, H. Q. Manganese oxide integrated catalytic ceramic membrane for degradation of organic pollutants using sulfate radicals. Water Res. 2019, 167, 115110.

[10]

Duan, X. G.; Ao, Z. M.; Zhou, L.; Sun, H. Q.; Wang, G. X.; Wang, S. B. Occurrence of radical and nonradical pathways from carbocatalysts for aqueous and nonaqueous catalytic oxidation. Appl. Catal. B Environ. 2016, 188, 98–105.

[11]

Gao, Y. W.; Chen, Z. H.; Zhu, Y.; Li, T.; Hu, C. New insights into the generation of singlet oxygen in the metal-free peroxymonosulfate activation process: Important role of electron-deficient carbon atoms. Environ. Sci. Technol. 2020, 54, 1232–1241.

[12]

Duan, X. G.; O'Donnell, K.; Sun, H. Q.; Wang, Y. X.; Wang, S. B. Sulfur and nitrogen co-doped graphene for metal-free catalytic oxidation reactions. Small 2015, 11, 3036–3044.

[13]

Wu, L. Y.; Sun, Z. Q.; Zhen, Y. F.; Zhu, S. S.; Yang, C.; Lu, J.; Tian, Y.; Zhong, D.; Ma, J. Oxygen vacancy-induced nonradical degradation of organics: Critical trigger of oxygen (O2) in the Fe-Co LDH/peroxymonosulfate system. Environ. Sci. Technol. 2021, 55, 15400–15411.

[14]

Oh, W. D.; Dong, Z. L.; Lim, T. T. Generation of sulfate radical through heterogeneous catalysis for organic contaminants removal: Current development, challenges and prospects. Appl. Catal. B Environ. 2016, 194, 169–201.

[15]

Wang, J. L.; Wang, S. Z. Activation of persulfate (PS) and peroxymonosulfate (PMS) and application for the degradation of emerging contaminants. Chem. Eng. J. 2018, 334, 1502–1517.

[16]

Gao, Y. W.; Zhu, Y.; Chen, Z. H.; Zeng, Q. Y.; Hu, C. Insights into the difference in metal-free activation of peroxymonosulfate and peroxydisulfate. Chem. Eng. J. 2020, 394, 123936.

[17]

Zhang, H. X.; Li, C. W.; Lyu, L.; Hu, C. Surface oxygen vacancy inducing peroxymonosulfate activation through electron donation of pollutants over cobalt-zinc ferrite for water purification. Appl. Catal. B Environ. 2020, 270, 118874.

[18]

Li, D. G.; Duan, X. G.; Sun, H. Q.; Kang, J.; Zhang, H. Y.; Tade, M. O.; Wang, S. B. Facile synthesis of nitrogen-doped graphene via low-temperature pyrolysis: The effects of precursors and annealing ambience on metal-free catalytic oxidation. Carbon 2017, 115, 649–658.

[19]

Chen, F.; Liu, L. L.; Chen, J. J.; Li, W. W.; Chen, Y. P.; Zhang, Y. J.; Wu, J. H.; Mei, S. C.; Yang, Q.; Yu, H. Q. Efficient decontamination of organic pollutants under high salinity conditions by a nonradical peroxymonosulfate activation system. Water Res. 2021, 191, 116799.

[20]

Duan, X. G.; Sun, H. Q.; Wang, S. B. Metal-free carbocatalysis in advanced oxidation reactions. Acc. Chem. Res. 2018, 51, 678–687.

[21]

Hou, J. F.; He, X. D.; Zhang, S. Q.; Yu, J. L.; Feng, M. B.; Li, X. D. Recent advances in cobalt-activated sulfate radical-based advanced oxidation processes for water remediation: A review. Sci. Total Environ. 2021, 770, 145311.

[22]

Liu, L. D.; Liu, Q.; Wang, Y.; Huang, J.; Wang, W. J.; Duan, L.; Yang, X.; Yu, X. Y.; Han, X.; Liu, N. Nonradical activation of peroxydisulfate promoted by oxygen vacancy-laden NiO for catalytic phenol oxidative polymerization. Appl. Catal. B Environ. 2019, 254, 166–173.

[23]

Guo, Z.; Xie, Y. B.; Xiao, J. D.; Zhao, Z. J.; Wang, Y. X.; Xu, Z. M.; Zhang, Y.; Yin, L. C.; Cao, H. B.; Gong, J. L. Single-atom Mn-N4 site-catalyzed peroxone reaction for the efficient production of hydroxyl radicals in an acidic solution. J. Am. Chem. Soc. 2019, 141, 12005–12010.

[24]

Yin, Y.; Shi, L.; Li, W. L.; Li, X. M.; Wu, H.; Ao, Z. M.; Tian, W. J.; Liu, S. M.; Wang, S. B.; Sun, H. Q. Boosting fenton-like reactions via single atom Fe catalysis. Environ. Sci. Technol. 2019, 53, 11391–11400.

[25]

Li, X. N.; Huang, X.; Xi, S. B.; Miao, S.; Ding, J.; Cai, W. Z.; Liu, S.; Yang, X. L.; Yang, H. B.; Gao, J. J. et al. Single cobalt atoms anchored on porous N-doped graphene with dual reaction sites for efficient Fenton-like catalysis. J. Am. Chem. Soc. 2018, 140, 12469–12475.

[26]

Miao, J.; Zhu, Y.; Lang, J. Y.; Zhang, J. Z.; Cheng, S. X.; Zhou, B. X.; Zhang, L. Z.; Alvarez, P. J. J.; Long, M. C. Spin-state-dependent peroxymonosulfate activation of single-atom M-N moieties via a radical-free pathway. ACS Catal. 2021, 11, 9569–9577.

[27]

Qi, Y. F.; Li, J.; Zhang, Y. Q.; Cao, Q.; Si, Y. M.; Wu, Z. R.; Akram, M.; Xu, X. Novel lignin-based single atom catalysts as peroxymonosulfate activator for pollutants degradation: Role of single cobalt and electron transfer pathway. Appl. Catal. B Environ. 2021, 286, 119910.

[28]

Qian, K.; Chen, H.; Li, W. L.; Ao, Z. M.; Wu, Y. N.; Guan, X. H. Single-atom Fe catalyst outperforms its homogeneous counterpart for activating peroxymonosulfate to achieve effective degradation of organic contaminants. Environ. Sci. Technol. 2021, 55, 7034–7043.

[29]

Jiang, N.; Xu, H. D.; Wang, L. H.; Jiang, J.; Zhang, T. Nonradical oxidation of pollutants with single-atom-Fe(III)-activated persulfate: Fe(V) being the possible intermediate oxidant. Environ. Sci. Technol. 2020, 54, 14057–14065.

[30]

Yang, L. X.; Yang, H. Q.; Yin, S. Y.; Wang, X. Y.; Xu, M. W.; Lu, G. L.; Liu, Z. N.; Sun, H. Fe single-atom catalyst for efficient and rapid fenton-like degradation of organics and disinfection against bacteria. Small 2022, 18, 2104941.

[31]

Dong, H. Y.; Li, Y.; Wang, S. C.; Liu, W. F.; Zhou, G. M.; Xie, Y. F.; Guan, X. H. Both Fe(IV) and radicals are active oxidants in the Fe(II)/peroxydisulfate process. Environ. Sci. Technol. Lett. 2020, 7, 219–224.

[32]

Zhu, J. B.; Xiao, M. L.; Ren, D. Z.; Gao, R.; Liu, X. Z.; Zhang, Z.; Luo, D.; Xing, W.; Su, D.; Yu, A. P. et al. Quasi-covalently coupled Ni–Cu atomic pair for synergistic electroreduction of CO2. J. Am. Chem. Soc. 2022, 144, 9661–9671.

[33]

Duan, X. G.; Sun, H. Q.; Wang, Y. X.; Kang, J.; Wang, S. B. N-doping-induced nonradical reaction on single-walled carbon nanotubes for catalytic phenol oxidation. ACS Catal. 2015, 5, 553–559.

[34]

Ye, W.; Chen, S. M.; Lin, Y.; Yang, L.; Chen, S. J.; Zheng, X. S.; Qi, Z. M.; Wang, C. M.; Long, R.; Chen, M. et al. Precisely tuning the number of Fe atoms in clusters on N-doped carbon toward acidic oxygen reduction reaction. Chem 2019, 5, 2865–2878.

[35]

Jiao, L.; Ye, W.; Kang, Y. K.; Zhang, Y.; Xu, W. Q.; Wu, Y.; Gu, W. L.; Song, W. Y.; Xiong, Y. J.; Zhu, C. Z. Atomically dispersed N-coordinated Fe-Fe dual-sites with enhanced enzyme-like activities. Nano Res. 2022, 15, 959–964.

[36]

Yao, Y. J.; Chen, H.; Lian, C.; Wei, F. Y.; Zhang, D. W.; Wu, G. D.; Chen, B. J.; Wang, S. B. Fe, Co, Ni nanocrystals encapsulated in nitrogen-doped carbon nanotubes as Fenton-like catalysts for organic pollutant removal. J. Hazard. Mater. 2016, 314, 129–139.

[37]

Li, H. C.; Shan, C.; Pan, B. C. Fe(III)-doped g-C3N4 mediated peroxymonosulfate activation for selective degradation of phenolic compounds via high-valent iron-oxo species. Environ. Sci. Technol. 2018, 52, 2197–2205.

[38]

Li, Y.; Yang, T.; Qiu, S. H.; Lin, W. Q.; Yan, J. T.; Fan, S. S.; Zhou, Q. Uniform N-coordinated single-atomic iron sites dispersed in porous carbon framework to activate PMS for efficient BPA degradation via high-valent iron-oxo species. Chem. Eng. J. 2020, 389, 124382.

[39]

Peng, X. M.; Wu, J. Q.; Zhao, Z. L.; Wang, X.; Dai, H. L.; Xu, L.; Xu, G. P.; Jian, Y.; Hu, F. P. Activation of peroxymonosulfate by single-atom Fe-g-C3N4 catalysts for high efficiency degradation of tetracycline via nonradical pathways: Role of high-valent iron-oxo species and Fe-Nx sites. Chem. Eng. J. 2022, 427, 130803.

[40]

Wang, L. K.; Gennari, M.; Reinhard, F. G. C.; Padamati, S. K.; Philouze, C.; Flot, D.; Demeshko, S.; Browne, W. R.; Meyer, F.; De Visser, S. P. et al. O2 activation by non-heme thiolate-based dinuclear Fe complexes. Inorg. Chem. 2020, 59, 3249–3259.

Nano Research
Pages 4678-4684
Cite this article:
Li M, Chen J, Wu W, et al. Diatomic Fe-Fe catalyst enhances the ability to degrade organic contaminants by nonradical peroxymonosulfate activation system. Nano Research, 2023, 16(4): 4678-4684. https://doi.org/10.1007/s12274-022-5124-6
Topics:

827

Views

13

Crossref

11

Web of Science

14

Scopus

0

CSCD

Altmetrics

Received: 01 August 2022
Revised: 20 September 2022
Accepted: 29 September 2022
Published: 10 January 2023
© Tsinghua University Press 2022
Return