Graphical Abstract

Atomically dispersed catalysts have been widely studied due to their high catalytic activity and atom utilization. Single-atom catalysts have achieved breakthrough progress in the degradation of emerging organic contaminants (EOCs) by activating peroxymonosulfate (PMS). However, the construction of atomically dispersed catalysts with diatomic/multiatomic metal active sites by activating PMS to degrade pollutants is still seldom reported, despite the unique merits of atom-pair in synergistic electronic modulation and breaking stubborn restriction of scaling relations on catalytic activity. We have synthesized Fe1-N-C, Fe2-N-C, and Fe3-N-C catalysts with monoatomic iron, diatomic iron, and triatomic iron active center, respectively. The results show that the catalytic degradation activity of Fe2-N-C is twice that of Fe1-N-C and Fe3-N-C due to its unique Fe2N6 coordination structure, which fulfilled the complete degradation of rhodamine B (RhB), bisphenol A (BPA), and 2,4-dichlorophenol (2,4-DP) within 2 min. Electron paramagnetic resonance (EPR) and radical quenching experiments confirmed that the reaction was a non-radical reaction on the catalyst surface. And singlet oxygen and Fe(IV) are the key active species.
Ribeiro, J. P.; Nunes, M. I. Recent trends and developments in Fenton processes for industrial wastewater treatment—A critical review. Environ. Res. 2021, 197, 110957.
Wang, B.; Song, Z. J.; Sun, L. S. A review: Comparison of multi-air-pollutant removal by advanced oxidation processes—Industrial implementation for catalytic oxidation processes. Chem. Eng. J. 2021, 409, 128136.
Miklos, D. B.; Remy, C.; Jekel, M.; Linden, K. G.; Drewes, J. E.; Hübner, U. Evaluation of advanced oxidation processes for water and wastewater treatment—A critical review. Water Res. 2018, 139, 118–131.
Hodges, B. C.; Cates, E. L.; Kim, J. H. Challenges and prospects of advanced oxidation water treatment processes using catalytic nanomaterials. Nat. Nanotechnol. 2018, 13, 642–650.
Hu, P. D.; Long, M. C. Cobalt-catalyzed sulfate radical-based advanced oxidation: A review on heterogeneous catalysts and applications. Appl. Catal. B Environ. 2016, 181, 103–117.
Lee, J.; Von Gunten, U.; Kim, J. H. Persulfate-based advanced oxidation: Critical assessment of opportunities and roadblocks. Environ. Sci. Technol. 2020, 54, 3064–3081.
Wang, J. L.; Tang, J. T. Fe-based Fenton-like catalysts for water treatment: Preparation, characterization and modification. Chemosphere 2021, 276, 130177.
Wang, Y. X.; Duan, X. G.; Xie, Y. B.; Sun, H. Q.; Wang, S. B. Nanocarbon-based catalytic ozonation for aqueous oxidation: Engineering defects for active sites and tunable reaction pathways. ACS Catal. 2020, 10, 13383–13414.
Wu, H.; Xu, X. Y.; Shi, L.; Yin, Y.; Zhang, L. C.; Wu, Z. T.; Duan, X. G.; Wang, S. B.; Sun, H. Q. Manganese oxide integrated catalytic ceramic membrane for degradation of organic pollutants using sulfate radicals. Water Res. 2019, 167, 115110.
Duan, X. G.; Ao, Z. M.; Zhou, L.; Sun, H. Q.; Wang, G. X.; Wang, S. B. Occurrence of radical and nonradical pathways from carbocatalysts for aqueous and nonaqueous catalytic oxidation. Appl. Catal. B Environ. 2016, 188, 98–105.
Gao, Y. W.; Chen, Z. H.; Zhu, Y.; Li, T.; Hu, C. New insights into the generation of singlet oxygen in the metal-free peroxymonosulfate activation process: Important role of electron-deficient carbon atoms. Environ. Sci. Technol. 2020, 54, 1232–1241.
Duan, X. G.; O'Donnell, K.; Sun, H. Q.; Wang, Y. X.; Wang, S. B. Sulfur and nitrogen co-doped graphene for metal-free catalytic oxidation reactions. Small 2015, 11, 3036–3044.
Wu, L. Y.; Sun, Z. Q.; Zhen, Y. F.; Zhu, S. S.; Yang, C.; Lu, J.; Tian, Y.; Zhong, D.; Ma, J. Oxygen vacancy-induced nonradical degradation of organics: Critical trigger of oxygen (O2) in the Fe-Co LDH/peroxymonosulfate system. Environ. Sci. Technol. 2021, 55, 15400–15411.
Oh, W. D.; Dong, Z. L.; Lim, T. T. Generation of sulfate radical through heterogeneous catalysis for organic contaminants removal: Current development, challenges and prospects. Appl. Catal. B Environ. 2016, 194, 169–201.
Wang, J. L.; Wang, S. Z. Activation of persulfate (PS) and peroxymonosulfate (PMS) and application for the degradation of emerging contaminants. Chem. Eng. J. 2018, 334, 1502–1517.
Gao, Y. W.; Zhu, Y.; Chen, Z. H.; Zeng, Q. Y.; Hu, C. Insights into the difference in metal-free activation of peroxymonosulfate and peroxydisulfate. Chem. Eng. J. 2020, 394, 123936.
Zhang, H. X.; Li, C. W.; Lyu, L.; Hu, C. Surface oxygen vacancy inducing peroxymonosulfate activation through electron donation of pollutants over cobalt-zinc ferrite for water purification. Appl. Catal. B Environ. 2020, 270, 118874.
Li, D. G.; Duan, X. G.; Sun, H. Q.; Kang, J.; Zhang, H. Y.; Tade, M. O.; Wang, S. B. Facile synthesis of nitrogen-doped graphene via low-temperature pyrolysis: The effects of precursors and annealing ambience on metal-free catalytic oxidation. Carbon 2017, 115, 649–658.
Chen, F.; Liu, L. L.; Chen, J. J.; Li, W. W.; Chen, Y. P.; Zhang, Y. J.; Wu, J. H.; Mei, S. C.; Yang, Q.; Yu, H. Q. Efficient decontamination of organic pollutants under high salinity conditions by a nonradical peroxymonosulfate activation system. Water Res. 2021, 191, 116799.
Duan, X. G.; Sun, H. Q.; Wang, S. B. Metal-free carbocatalysis in advanced oxidation reactions. Acc. Chem. Res. 2018, 51, 678–687.
Hou, J. F.; He, X. D.; Zhang, S. Q.; Yu, J. L.; Feng, M. B.; Li, X. D. Recent advances in cobalt-activated sulfate radical-based advanced oxidation processes for water remediation: A review. Sci. Total Environ. 2021, 770, 145311.
Liu, L. D.; Liu, Q.; Wang, Y.; Huang, J.; Wang, W. J.; Duan, L.; Yang, X.; Yu, X. Y.; Han, X.; Liu, N. Nonradical activation of peroxydisulfate promoted by oxygen vacancy-laden NiO for catalytic phenol oxidative polymerization. Appl. Catal. B Environ. 2019, 254, 166–173.
Guo, Z.; Xie, Y. B.; Xiao, J. D.; Zhao, Z. J.; Wang, Y. X.; Xu, Z. M.; Zhang, Y.; Yin, L. C.; Cao, H. B.; Gong, J. L. Single-atom Mn-N4 site-catalyzed peroxone reaction for the efficient production of hydroxyl radicals in an acidic solution. J. Am. Chem. Soc. 2019, 141, 12005–12010.
Yin, Y.; Shi, L.; Li, W. L.; Li, X. M.; Wu, H.; Ao, Z. M.; Tian, W. J.; Liu, S. M.; Wang, S. B.; Sun, H. Q. Boosting fenton-like reactions via single atom Fe catalysis. Environ. Sci. Technol. 2019, 53, 11391–11400.
Li, X. N.; Huang, X.; Xi, S. B.; Miao, S.; Ding, J.; Cai, W. Z.; Liu, S.; Yang, X. L.; Yang, H. B.; Gao, J. J. et al. Single cobalt atoms anchored on porous N-doped graphene with dual reaction sites for efficient Fenton-like catalysis. J. Am. Chem. Soc. 2018, 140, 12469–12475.
Miao, J.; Zhu, Y.; Lang, J. Y.; Zhang, J. Z.; Cheng, S. X.; Zhou, B. X.; Zhang, L. Z.; Alvarez, P. J. J.; Long, M. C. Spin-state-dependent peroxymonosulfate activation of single-atom M-N moieties via a radical-free pathway. ACS Catal. 2021, 11, 9569–9577.
Qi, Y. F.; Li, J.; Zhang, Y. Q.; Cao, Q.; Si, Y. M.; Wu, Z. R.; Akram, M.; Xu, X. Novel lignin-based single atom catalysts as peroxymonosulfate activator for pollutants degradation: Role of single cobalt and electron transfer pathway. Appl. Catal. B Environ. 2021, 286, 119910.
Qian, K.; Chen, H.; Li, W. L.; Ao, Z. M.; Wu, Y. N.; Guan, X. H. Single-atom Fe catalyst outperforms its homogeneous counterpart for activating peroxymonosulfate to achieve effective degradation of organic contaminants. Environ. Sci. Technol. 2021, 55, 7034–7043.
Jiang, N.; Xu, H. D.; Wang, L. H.; Jiang, J.; Zhang, T. Nonradical oxidation of pollutants with single-atom-Fe(III)-activated persulfate: Fe(V) being the possible intermediate oxidant. Environ. Sci. Technol. 2020, 54, 14057–14065.
Yang, L. X.; Yang, H. Q.; Yin, S. Y.; Wang, X. Y.; Xu, M. W.; Lu, G. L.; Liu, Z. N.; Sun, H. Fe single-atom catalyst for efficient and rapid fenton-like degradation of organics and disinfection against bacteria. Small 2022, 18, 2104941.
Dong, H. Y.; Li, Y.; Wang, S. C.; Liu, W. F.; Zhou, G. M.; Xie, Y. F.; Guan, X. H. Both Fe(IV) and radicals are active oxidants in the Fe(II)/peroxydisulfate process. Environ. Sci. Technol. Lett. 2020, 7, 219–224.
Zhu, J. B.; Xiao, M. L.; Ren, D. Z.; Gao, R.; Liu, X. Z.; Zhang, Z.; Luo, D.; Xing, W.; Su, D.; Yu, A. P. et al. Quasi-covalently coupled Ni–Cu atomic pair for synergistic electroreduction of CO2. J. Am. Chem. Soc. 2022, 144, 9661–9671.
Duan, X. G.; Sun, H. Q.; Wang, Y. X.; Kang, J.; Wang, S. B. N-doping-induced nonradical reaction on single-walled carbon nanotubes for catalytic phenol oxidation. ACS Catal. 2015, 5, 553–559.
Ye, W.; Chen, S. M.; Lin, Y.; Yang, L.; Chen, S. J.; Zheng, X. S.; Qi, Z. M.; Wang, C. M.; Long, R.; Chen, M. et al. Precisely tuning the number of Fe atoms in clusters on N-doped carbon toward acidic oxygen reduction reaction. Chem 2019, 5, 2865–2878.
Jiao, L.; Ye, W.; Kang, Y. K.; Zhang, Y.; Xu, W. Q.; Wu, Y.; Gu, W. L.; Song, W. Y.; Xiong, Y. J.; Zhu, C. Z. Atomically dispersed N-coordinated Fe-Fe dual-sites with enhanced enzyme-like activities. Nano Res. 2022, 15, 959–964.
Yao, Y. J.; Chen, H.; Lian, C.; Wei, F. Y.; Zhang, D. W.; Wu, G. D.; Chen, B. J.; Wang, S. B. Fe, Co, Ni nanocrystals encapsulated in nitrogen-doped carbon nanotubes as Fenton-like catalysts for organic pollutant removal. J. Hazard. Mater. 2016, 314, 129–139.
Li, H. C.; Shan, C.; Pan, B. C. Fe(III)-doped g-C3N4 mediated peroxymonosulfate activation for selective degradation of phenolic compounds via high-valent iron-oxo species. Environ. Sci. Technol. 2018, 52, 2197–2205.
Li, Y.; Yang, T.; Qiu, S. H.; Lin, W. Q.; Yan, J. T.; Fan, S. S.; Zhou, Q. Uniform N-coordinated single-atomic iron sites dispersed in porous carbon framework to activate PMS for efficient BPA degradation via high-valent iron-oxo species. Chem. Eng. J. 2020, 389, 124382.
Peng, X. M.; Wu, J. Q.; Zhao, Z. L.; Wang, X.; Dai, H. L.; Xu, L.; Xu, G. P.; Jian, Y.; Hu, F. P. Activation of peroxymonosulfate by single-atom Fe-g-C3N4 catalysts for high efficiency degradation of tetracycline via nonradical pathways: Role of high-valent iron-oxo species and Fe-Nx sites. Chem. Eng. J. 2022, 427, 130803.
Wang, L. K.; Gennari, M.; Reinhard, F. G. C.; Padamati, S. K.; Philouze, C.; Flot, D.; Demeshko, S.; Browne, W. R.; Meyer, F.; De Visser, S. P. et al. O2 activation by non-heme thiolate-based dinuclear Fe complexes. Inorg. Chem. 2020, 59, 3249–3259.