Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
The controllable construction of non-noble metal based bifunctional catalysts with high activities towards oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) is of great significance, but remains a challenge. Herein, we reported an effective method to synthesize cobalt-nitrogen doped mesoporous carbon-based bifunctional oxygen electrocatalyst with controllable phosphorus content (Co-N-PX-MC, X = 0.5, 1.0, 1.5, 2.0). The mesoporous carbon substrate endowed the as-prepared samples with more exposed active surface (236.50 m2·g−1) and the most appropriate doping ratio of phosphorus had been investigated to be 1.5 (Co-N-P1.5-MC). For ORR, Co-N-P1.5-MC exhibited excellent catalytic activity with more positive onset potential (1.01 V) and half-wave potential (0.84 V) than the other samples. For OER, Co-N-P1.5-MC also showed a low overpotential of 415 mV. Combining experimental results and density-functional theory (DFT) calculations, the outstanding bifunctional catalytic performance of Co-N-P1.5-MC was due to the synergistic cooperation between the P and N dopants, which could reduce the reaction barriers and was favorable for ORR and OER. Moreover, the Zn-air battery using Co-N-P1.5-MC as the cathode showed remarkable battery performance with high stability (could operate stably for over 160 h at 10 mA·cm−2) and maximum power density (119 mW·cm−2), demonstrating its potential for practical applications. This work could provide significant enlightenment towards the design and construction of bifunctional oxygen electrocatalyst for next-generation electrochemical devices.
Jiang, Y.; Deng, Y. P.; Liang, R. L.; Fu, J.; Gao, R.; Luo, D.; Bai, Z. Y.; Hu, Y. F.; Yu, A. P.; Chen, Z. W. d-Orbital steered active sites through ligand editing on heterometal imidazole frameworks for rechargeable zinc-air battery. Nat. Commun. 2020, 11, 5858.
Wang, Y. C.; Chu, F. L.; Zeng, J.; Wang, Q. J.; Naren, T.; Li, Y. Y.; Cheng, Y.; Lei, Y. P.; Wu, F. X. Single atom catalysts for fuel cells and rechargeable batteries: Principles, advances, and opportunities. ACS Nano 2021, 15, 210–239.
Tian, X. L.; Lu, X. F.; Xia, B. Y.; Lou, X. W. Advanced electrocatalysts for the oxygen reduction reaction in energy conversion technologies. Joule 2020, 4, 45–68.
Wang, X.; Raghupathy, R. K. M.; Querebillo, C. J.; Liao, Z. Q.; Li, D. Q.; Lin, K.; Hantusch, M.; Sofer, Z.; Li, B. H.; Zschech, E. et al. Interfacial covalent bonds regulated electron-deficient 2D black phosphorus for electrocatalytic oxygen reactions. Adv. Mater. 2021, 33, 2008752.
Zhang, N.; Zhou, T. P.; Chen, M. L.; Feng, H.; Yuan, R. L.; Zhong, C. A.; Yan, W. S.; Tian, Y. C.; Wu, X. J.; Chu, W. S. et al. High-purity pyrrole-type FeN4 sites as a superior oxygen reduction electrocatalyst. Energy Environ. Sci. 2020, 13, 111–118.
Zhang, Y. Q.; Jia, G. C.; Wang, H. W.; Ouyang, B.; Rawat, R. S.; Fan, H. J. Ultrathin CNTs@FeOOH nanoflake core/shell networks as efficient electrocatalysts for the oxygen evolution reaction. Mater. Chem. Front. 2017, 1, 709–715.
Lu, X. F.; Zhang, S. L.; Shangguan, E. B.; Zhang, P.; Gao, S. Y.; Lou, X. W. Nitrogen-doped cobalt pyrite yolk–shell hollow spheres for long-life rechargeable Zn-air batteries. Adv. Sci. 2020, 7, 2001178.
Zhang, Y. Q.; Ouyang, B.; Long, G. K.; Tan, H.; Wang, Z.; Zhang, Z.; Gao, W. B.; Rawat, R. S.; Fan, H. J. Enhancing bifunctionality of CoN nanowires by Mn doping for long-lasting Zn-air batteries. Sci. China Chem. 2020, 63, 890–896.
Zhang, Y. Q.; Ouyang, B.; Xu, J.; Jia, G. C.; Chen, S.; Rawat, R. S.; Fan, H. J. Rapid synthesis of cobalt nitride nanowires: Highly efficient and low-cost catalysts for oxygen evolution. Angew. Chem. 2016, 128, 8812–8816.
Zhu, Z. J.; Yin, H. J.; Wang, Y.; Chuang, C. H.; Xing, L.; Dong, M. Y.; Lu, Y. R.; Casillas-Garcia, G.; Zheng, Y. L.; Chen, S. et al. Coexisting single-atomic Fe and Ni sites on hierarchically ordered porous carbon as a highly efficient ORR electrocatalyst. Adv. Mater. 2020, 32, 2004670.
Liu, Y. S.; Chen, Z. C.; Li, Z. X.; Zhao, N.; Xie, Y. L.; Du, Y.; Xuan, J. N.; Xiong, D. B.; Zhou, J. Q.; Cai, L. et al. CoNi nanoalloy-Co-N4 composite active sites embedded in hierarchical porous carbon as bi-functional catalysts for flexible Zn-air battery. Nano Energy 2022, 99, 107325.
Cai, S. C.; Meng, Z. H.; Tang, H. L.; Wang, Y.; Tsiakaras, P. 3D Co-N-doped hollow carbon spheres as excellent bifunctional electrocatalysts for oxygen reduction reaction and oxygen evolution reaction. Appl. Catal. B:Environ. 2017, 217, 477–484.
Wang, H. X.; Cui, Y. Nanodiamonds for energy. Carbon Energy 2019, 1, 13–18.
Ali, A.; Shen, P. K. Nonprecious metal’s graphene-supported electrocatalysts for hydrogen evolution reaction: Fundamentals to applications. Carbon Energy 2020, 2, 99–121.
Sun, J. F.; Xu, Q. Q.; Qi, J. L.; Zhou, D.; Zhu, H. Y.; Yin, J. Z. Isolated single atoms anchored on N-doped carbon materials as a highly efficient catalyst for electrochemical and organic reactions. ACS Sustainable Chem. Eng. 2020, 8, 14630–14656.
Asset, T.; Atanassov, P. Iron-nitrogen-carbon catalysts for proton exchange membrane fuel cells. Joule 2020, 4, 33–44.
Zhou, Y. Z.; Tao, X. F.; Chen, G. B.; Lu, R. H.; Wang, D.; Chen, M. X.; Jin, E. Q.; Yang, J.; Liang, H. W.; Zhao, Y. et al. Multilayer stabilization for fabricating high-loading single-atom catalysts. Nat. Commun. 2020, 11, 5892.
Chen, D. Y.; Zhang, G. P.; Wang, M. M.; Li, N. J.; Xu, Q. F.; Li, H.; He, J. H.; Lu, J. M. Pt/MnO2 nanoflowers anchored to boron nitride aerogels for highly efficient enrichment and catalytic oxidation of formaldehyde at room temperature. Angew. Chem. 2021, 133, 6447–6451.
Yuan, S.; Peng, J. Y.; Cai, B.; Huang, Z. H.; Garcia-Esparza, A. T.; Sokaras, D.; Zhang, Y. R.; Giordano, L.; Akkiraju, K.; Zhu, Y. G. et al. Tunable metal hydroxide-organic frameworks for catalysing oxygen evolution. Nat. Mater. 2022, 21, 673–680.
Slater, A. G.; Cooper, A. I. Function-led design of new porous materials. Science 2015, 348, aaa8075.
Hosseini Monjezi, B.; Kutonova, K.; Tsotsalas, M.; Henke, S.; Knebel, A. Current trends in metal-organic and covalent organic framework membrane materials. Angew. Chem., Int. Ed. 2021, 60, 15153–15164.
Jahan, M.; Liu, Z. L.; Loh, K. P. A Graphene oxide and copper-centered metal organic framework composite as a tri-functional catalyst for HER, OER, and ORR. Adv. Funct. Mater. 2013, 23, 5363–5372.
Li, J. J.; Xia, W.; Tang, J.; Gao, Y.; Jiang, C.; Jia, Y. N.; Chen, T.; Hou, Z. F.; Qi, R. J.; Jiang, D. et al. Metal-organic framework-derived graphene mesh: A robust scaffold for highly exposed Fe-N4 active sites toward an excellent oxygen reduction catalyst in acid media. J. Am. Chem. Soc. 2022, 144, 9280–9291.
Li, Z. X.; Zhang, X.; Kang, Y. K.; Yu, C. C.; Wen, Y. Y.; Hu, M. L.; Meng, D.; Song, W. Y.; Yang, Y. Interface engineering of Co-LDH@MOF heterojunction in highly stable and efficient oxygen evolution reaction. Adv. Sci. 2021, 8, 2002631.
Meng, Z. H.; Cai, S. C.; Wang, R.; Tang, H. L.; Song, S. Q.; Tsiakaras, P. Bimetallic-organic framework-derived hierarchically porous Co-Zn-N-C as efficient catalyst for acidic oxygen reduction reaction. Appl. Catal. B:Environ. 2019, 244, 120–127.
Lu, K. K.; Song, X. F.; Xu, L. H.; Xin, W. L.; Shan, D. Phosphorene defect/edge sites induced ultrafine CoPx doping during one-pot synthesis of ZIF-67: The boosted effect on electrocatalytic oxygen reduction after carbonization. Appl. Surf. Sci. 2019, 475, 67–74.
Cai, S. C.; Meng, Z. H.; Cheng, Y. P.; Zhu, Z. Y.; Chen, Q. Q.; Wang, P.; Kan, E. J.; Ouyang, B.; Zhang, H. N.; Tang, H. L. Three dimension Ni/Co-decorated N-doped hierarchically porous carbon derived from metal-organic frameworks as trifunctional catalysts for Zn-air battery and microbial fuel cells. Electrochim. Acta 2021, 395, 139074.