AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Surface promotion of copper nanoparticles with alumina clusters derived from layered double hydroxide accelerates CO2 reduction to ethylene in membrane electrode assemblies

Jie Zhang1,2,§Xinnan Mao1,2,§Binbin Pan1,2,§Jie Xu1,2Xue Ding1,2Na Han1,2Lu Wang1,2( )Yuhang Wang1,2( )Yanguang Li1,2,3( )
Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China
Jiangsu Key Laboratory for Advanced Negative Carbon Technologies, Soochow University, Suzhou 215123, China
Macao Institute of Materials Science and Engineering (MIMSE), MUST-SUDA Joint Research Center for Advanced Functional Materials, Macau University of Science and Technology, Macao 999078, China

§ Jie Zhang, Xinnan Mao, and Binbin Pan contributed equally to this work.

Show Author Information

Graphical Abstract

AlOx-promoted Cu nanoparticles are derived from Cu-Al layered double hydroxide nanosheets after alkali etching and cathodic conversion. It can catalyze CO2 to ethylene and multicarbon products with great selectivity and stability in both an H-cell and a zero-gap membrane electrode assembly (MEA) electrolyzer. Such a surface promotion effect originates from the stabilization of key reaction intermediates by the alumina cluster.

Abstract

Electrochemical CO2 reduction has the vast potential to neutralize CO2 emission and valorizes this greenhouse gas into chemicals and fuels under mild conditions. Its commercial realization hinges on catalyst innovation as well as device engineering for enabling reactions at industrially relevant conditions. Copper has been widely examined for the selective production of multicarbon chemicals particularly ethylene, while there is still a substantial gap between the expected and the attainable. In this work, we report that the surface promotion of copper with alumina clusters is a viable strategy to enhance its electrocatalytic performance. AlOx-promoted Cu catalyst is derived from Cu-Al layered double hydroxide nanosheets after alkali etching and cathodic conversion. It can catalyze CO2 to ethylene and multicarbon products with great selectivity and stability far superior to pristine copper in both an H-cell and a zero-gap membrane electrode assembly (MEA) electrolyzer. The surface promotion effect is understood via computational simulations showing that alumina clusters can stabilize key reaction intermediates (*COOH and *OCCOH) along the reaction pathway.

Electronic Supplementary Material

Download File(s)
12274_2022_5128_MOESM1_ESM.pdf (880.3 KB)

References

[1]

Bushuyev, O. S.; De Luna, P.; Dinh, C. T.; Tao, L.; Saur, G.; van de Lagemaat, J.; Kelley, S. O.; Sargent, E. H. What should we make with CO2 and how can we make it? Joule 2018, 2, 825–832.

[2]

Birdja, Y. Y.; Pérez-Gallent, E.; Figueiredo, M. C.; Göttle, A. J.; Calle-Vallejo, F.; Koper, M. T. M. Advances and challenges in understanding the electrocatalytic conversion of carbon dioxide to fuels. Nat. Energy 2019, 4, 732–745.

[3]
De Luna, P.; Hahn, C.; Higgins, D.; Jaffer, S. A.; Jaramillo, T. F.; Sargent, E. H. What would it take for renewably powered electrosynthesis to displace petrochemical processes? Science 2019, 364, eaav3506.
[4]

Fan, L.; Xia, C.; Yang, F. Q.; Wang, J.; Wang, H. T.; Lu, Y. Y. Strategies in catalysts and electrolyzer design for electrochemical CO2 reduction toward C2+ products. Sci. Adv. 2020, 6, eaay3111.

[5]

Nitopi, S.; Bertheussen, E.; Scott, S. B.; Liu, X. Y.; Engstfeld, A. K.; Horch, S.; Seger, B.; Stephens, I. E. L.; Chan, K.; Hahn, C. et al. Progress and perspectives of electrochemical CO2 reduction on copper in aqueous electrolyte. Chem. Rev. 2019, 119, 7610–7672.

[6]

Gao, D. F.; Arán-Ais, R. M.; Jeon, H. S.; Cuenya, B. R. Rational catalyst and electrolyte design for CO2 electroreduction towards multicarbon products. Nat. Catal. 2019, 2, 198–210.

[7]

Wang, Y. H.; Liu, J. L.; Zheng, G. F. Designing copper-based catalysts for efficient carbon dioxide electroreduction. Adv. Mater. 2021, 33, 2005798.

[8]

Kuhl, K. P.; Cave, E. R.; Abram, D. N.; Jaramillo, T. F. New insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces. Energy Environ. Sci. 2012, 5, 7050–7059.

[9]

Zheng, Y.; Vasileff, A.; Zhou, X. L.; Jiao, Y.; Jaroniec, M.; Qiao, S. Z. Understanding the roadmap for electrochemical reduction of CO2 to multi-carbon oxygenates and hydrocarbons on copper-based catalysts. J. Am. Chem. Soc. 2019, 141, 7646–7659.

[10]

Cheng, T.; Xiao, H.; Goddard, W. A. Nature of the active sites for CO reduction on copper nanoparticles; suggestions for optimizing performance. J. Am. Chem. Soc. 2017, 139, 11642–11645.

[11]

Pérez-Gallent, E.; Figueiredo, M. C.; Calle-Vallejo, F.; Koper, M. T. M. Spectroscopic observation of a hydrogenated CO dimer intermediate during CO reduction on Cu(100) electrodes. Angew. Chem., Int. Ed. 2017, 56, 3621–3624.

[12]

Li, J.; Ozden, A.; Wan, M. Y.; Hu, Y. F.; Li, F. W.; Wang, Y. H.; Zamani, R. R.; Ren, D.; Wang, Z. Y.; Xu, Y. et al. Silica-copper catalyst interfaces enable carbon-carbon coupling towards ethylene electrosynthesis. Nat. Commun. 2021, 12, 2808.

[13]

Garza, A. J.; Bell, A. T.; Head-Gordon, M. Mechanism of CO2 reduction at copper surfaces: Pathways to C2 products. ACS Catal. 2018, 8, 1490–1499.

[14]

Xiao, C. L.; Zhang, J. Architectural design for enhanced C2 product selectivity in electrochemical CO2 reduction using Cu-based catalysts: A review. ACS Nano 2021, 15, 7975–8000.

[15]

Wang, Y. F.; Han, P.; Lv, X. M.; Zhang, L. J.; Zheng, G. F. Defect and interface engineering for aqueous electrocatalytic CO2 reduction. Joule 2018, 2, 2551–2582.

[16]

Zhi, X.; Jiao, Y.; Zheng, Y.; Vasileff, A.; Qiao, S. Z. Selectivity roadmap for electrochemical CO2 reduction on copper-based alloy catalysts. Nano Energy 2020, 71, 104601.

[17]

Ma, Y. B.; Wang, J.; Yu, J. L.; Zhou, J. W.; Zhou, X. C.; Li, H. X.; He, Z.; Long, H. W.; Wang, Y. H.; Lu, P. Y. et al. Surface modification of metal materials for high-performance electrocatalytic carbon dioxide reduction. Matter 2021, 4, 888–926.

[18]

Wang, Y. H.; Wang, Z. Y.; Dinh, C. T.; Li, J.; Ozden, A.; Kibria, M. G.; Seifitokaldani, A.; Tan, C. S.; Gabardo, C. M.; Luo, M. C. et al. Catalyst synthesis under CO2 electroreduction favours faceting and promotes renewable fuels electrosynthesis. Nat. Catal. 2020, 3, 98–106.

[19]

Hu, Q.; Gao, K. R.; Wang, X. D.; Zheng, H. J.; Cao, J. Y.; Mi, L. R.; Huo, Q. H.; Yang, H. P.; Liu, J. H.; He, C. X. Subnanometric Ru clusters with upshifted D band center improve performance for alkaline hydrogen evolution reaction. Nat. Commun. 2022, 13, 3958.

[20]

Hu, Q.; Wang, Z. Y.; Huang, X. W.; Qin, Y. J.; Yang, H. P.; Ren, X. Z.; Zhang, Q. L.; Liu, J. H.; He, C. X. A unique space confined strategy to construct defective metal oxides within porous nanofibers for electrocatalysis. Energy Environ. Sci. 2020, 13, 5097–5103.

[21]

Zhang, J.; Pan, B. B.; Li, Y. G. Modulating electrochemical CO2 reduction at interfaces. Sci. Bull. 2022, 67, 1844–1848.

[22]

Pan, B. B.; Wang, Y. H.; Li, Y. G. Understanding and leveraging the effect of cations in the electrical double layer for electrochemical CO2 reduction. Chem Catal. 2022, 2, 1267–1276.

[23]

Hu, Q.; Han, Z.; Wang, X. D.; Li, G. M.; Wang, Z. Y.; Huang, X. W.; Yang, H. P.; Ren, X. Z.; Zhang, Q. L.; Liu, J. H. et al. Facile synthesis of sub-nanometric copper clusters by double confinement enables selective reduction of carbon dioxide to methane. Angew. Chem., Int. Ed. 2020, 59, 19054–19059.

[24]

Kim, J. Y.; Hong, D.; Lee, J. C.; Kim, H. G.; Lee, S.; Shin, S.; Kim, B.; Lee, H.; Kim, M.; Oh, J. et al. Quasi-graphitic carbon shell-induced Cu confinement promotes electrocatalytic CO2 reduction toward C2+ products. Nat. Commun. 2021, 12, 3765.

[25]

Luo, H. Q.; Li, B.; Ma, J. G.; Cheng, P. Surface modification of nano-Cu2O for controlling CO2 electrochemical reduction to ethylene and syngas. Angew. Chem., Int. Ed. 2022, 61, e202116736.

[26]

Li, F. W.; Thevenon, A.; Rosas-Hernández, A.; Wang, Z. Y.; Li, Y. L.; Gabardo, C. M.; Ozden, A.; Dinh, C. T.; Li, J.; Wang, Y. H. et al. Molecular tuning of CO2-to-ethylene conversion. Nature 2020, 577, 509–513.

[27]

Kibria, M. G.; Edwards, J. P.; Gabardo, C. M.; Dinh, C. T.; Seifitokaldani, A.; Sinton, D.; Sargent, E. H. Electrochemical CO2 reduction into chemical feedstocks: From mechanistic electrocatalysis models to system design. Adv. Mater. 2019, 31, 1807166.

[28]

Han, N.; Ding, P.; He, L.; Li, Y. Y.; Li, Y. G. Promises of main group metal-based nanostructured materials for electrochemical CO2 reduction to formate. Adv. Energy Mater. 2020, 10, 1902338.

[29]

Tan, X. Y.; Yu, C.; Ren, Y. W.; Cui, S.; Li, W. B.; Qiu, J. S. Recent advances in innovative strategies for the CO2 electroreduction reaction. Energy Environ. Sci. 2021, 14, 765–780.

[30]

Weekes, D. M.; Salvatore, D. A.; Reyes, A.; Huang, A. X.; Berlinguette, C. P. Electrolytic CO2 reduction in a flow cell. Acc. Chem. Res. 2018, 51, 910–918.

[31]
Burdyny, T.; Smith, W. A. CO2 reduction on gas-diffusion electrodes and why catalytic performance must be assessed at commercially-relevant conditions. Energy Environ. Sci. 2019, 12, 1442–1453.
[32]

Luo, Y. Q.; Zhang, K. F.; Li, Y. G.; Wang, Y. H. Valorizing carbon dioxide via electrochemical reduction on gas-diffusion electrodes. InfoMat 2021, 3, 1313–1332.

[33]

Zhong, M.; Tran, K.; Min, Y. M.; Wang, C. H.; Wang, Z. Y.; Dinh, C. T.; De Luna, P.; Yu, Z. Q.; Rasouli, A. S.; Brodersen, P. et al. Accelerated discovery of CO2 electrocatalysts using active machine learning. Nature 2020, 581, 178–183.

[34]

Chen, X. Y.; Chen, J. F.; Alghoraibi, N. M.; Henckel, D. A.; Zhang, R. X.; Nwabara, U. O.; Madsen, K. E.; Kenis, P. J. A.; Zimmerman, S. C.; Gewirth, A. A. Electrochemical CO2-to-ethylene conversion on polyamine-incorporated Cu electrodes. Nat. Catal. 2021, 4, 20–27.

[35]

Ma, W. C.; He, X. Y.; Wang, W.; Xie, S. J.; Zhang, Q. H.; Wang, Y. Electrocatalytic reduction of CO2 and CO to multi-carbon compounds over Cu-based catalysts. Chem. Soc. Rev. 2021, 50, 12897–12914.

[36]

Ge, L.; Rabiee, H.; Li, M. R.; Subramanian, S.; Zheng, Y.; Lee, J. H.; Burdyny, T.; Wang, H. Electrochemical CO2 reduction in membrane-electrode assemblies. Chem 2022, 8, 663–692.

[37]

Zhang, G.; Zhao, Z. J.; Cheng, D. F.; Li, H. M.; Yu, J.; Wang, Q. Z.; Gao, H.; Guo, J. Y.; Wang, H. Y.; Ozin, G. A. et al. Efficient CO2 electroreduction on facet-selective copper films with high conversion rate. Nat. Commun. 2021, 12, 5745.

[38]

Sang, J. Q.; Wei, P. F.; Liu, T. F.; Lv, H. F.; Ni, X. M.; Gao, D. F.; Zhang, J. W.; Li, H. F.; Zang, Y. P.; Yang, F. et al. A reconstructed Cu2P2O7 catalyst for selective CO2 electroreduction to multicarbon products. Angew. Chem., Int. Ed. 2022, 61, e202114238.

[39]

Wang, Q.; O'Hare, D. Recent advances in the synthesis and application of layered double hydroxide (LDH) nanosheets. Chem. Rev. 2012, 112, 4124–4155.

[40]

Xu, M.; Wei, M. Layered double hydroxide-based catalysts: Recent advances in preparation, structure, and applications. Adv. Funct. Mater. 2018, 28, 1802943.

[41]

Fan, G. L.; Li, F.; Evans, D. G.; Duan, X. Catalytic applications of layered double hydroxides: Recent advances and perspectives. Chem. Soc. Rev. 2014, 43, 7040–7066.

[42]

Zhao, Y. F.; Jia, X. D.; Waterhouse, G. I. N.; Wu, L. Z.; Tung, C. H.; O'Hare, D.; Zhang, T. R. Layered double hydroxide nanostructured photocatalysts for renewable energy production. Adv. Energy Mater. 2016, 6, 1501974.

[43]

Zhao, Y. X.; Zheng, L. R.; Shi, R.; Zhang, S.; Bian, X. A.; Wu, F.; Cao, X. Z.; Waterhouse, G. I. N.; Zhang, T. R. Alkali etching of layered double hydroxide nanosheets for enhanced photocatalytic N2 reduction to NH3. Adv. Energy Mater. 2020, 10, 2002199.

[44]

De Luna, P.; Quintero-Bermudez, R.; Dinh, C. T.; Ross, M. B.; Bushuyev, O. S.; Todorović, P.; Regier, T.; Kelley, S. O.; Yang, P. D.; Sargent, E. H. Catalyst electro-redeposition controls morphology and oxidation state for selective carbon dioxide reduction. Nat. Catal. 2018, 1, 103–110.

[45]

Lei, Q.; Zhu, H.; Song, K. P.; Wei, N. N.; Liu, L. M.; Zhang, D. L.; Yin, J.; Dong, X. L.; Yao, K. X.; Wang, N. et al. Investigating the origin of enhanced C2+ selectivity in oxide-/hydroxide-derived copper electrodes during CO2 electroreduction. J. Am. Chem. Soc. 2020, 142, 4213–4222.

[46]

Lee, S. Y.; Jung, H.; Kim, N. K.; Oh, H. S.; Min, B. K.; Hwang, Y. J. Mixed copper states in anodized Cu electrocatalyst for stable and selective ethylene production from CO2 reduction. J. Am. Chem. Soc. 2018, 140, 8681–8689.

[47]

Dutta, A.; Montiel, I. Z.; Erni, R.; Kiran, K.; Rahaman, M.; Drnec, J.; Broekmann, P. Activation of bimetallic AgCu foam electrocatalysts for ethanol formation from CO2 by selective Cu oxidation/reduction. Nano Energy 2020, 68, 104331.

[48]

Li, C. W.; Kanan, M. W. CO2 reduction at low overpotential on Cu electrodes resulting from the reduction of thick Cu2O films. J. Am. Chem. Soc. 2012, 134, 7231–7234.

[49]

Ren, D.; Deng, Y. L.; Handoko, A. D.; Chen, C. S.; Malkhandi, S.; Yeo, B. S. Selective electrochemical reduction of carbon dioxide to ethylene and ethanol on copper(I) oxide catalysts. ACS Catal. 2015, 5, 2814–2821.

[50]

Popović, S.; Smiljanić, M.; Jovanovič, P.; Vavra, J.; Buonsanti, R.; Hodnik, N. Stability and degradation mechanisms of copper-based catalysts for electrochemical CO2 reduction. Angew. Chem., Int. Ed. 2020, 59, 14736–14746.

[51]

Vavra, J.; Shen, T. H.; Stoian, D.; Tileli, V.; Buonsanti, R. Real-time monitoring reveals dissolution/redeposition mechanism in copper nanocatalysts during the initial stages of the CO2 reduction reaction. Angew. Chem., Int. Ed. 2021, 60, 1347–1354.

[52]

Gu, Z. X.; Shen, H.; Chen, Z.; Yang, Y. Y.; Yang, C.; Ji, Y. L.; Wang, Y. H.; Zhu, C.; Liu, J. L.; Li, J. et al. Efficient electrocatalytic CO2 reduction to C2+ alcohols at defect-site-rich Cu surface. Joule 2021, 5, 429–440.

Nano Research
Pages 4685-4690
Cite this article:
Zhang J, Mao X, Pan B, et al. Surface promotion of copper nanoparticles with alumina clusters derived from layered double hydroxide accelerates CO2 reduction to ethylene in membrane electrode assemblies. Nano Research, 2023, 16(4): 4685-4690. https://doi.org/10.1007/s12274-022-5128-2
Topics:

5913

Views

21

Crossref

19

Web of Science

21

Scopus

1

CSCD

Altmetrics

Received: 23 August 2022
Revised: 26 September 2022
Accepted: 30 September 2022
Published: 04 November 2022
© Tsinghua University Press 2022
Return