Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
With the continuous appearance and expansion of high-strength hydrogels in emerging fields such as industry, medicine, and green development, the synthesis and application of high-strength hydrogels have developed dramatically and achieved remarkable results from the aspects of raw materials, preparation methods, and reinforcement mechanisms. However, there is still a lack of systematic reviews on high-strength hydrogels. Herein, we first discuss the advantages of natural and synthetic materials, and the characteristics of high-strength hydrogels prepared from different raw materials; we then expound on the influence mechanism of physical interactions or chemical bonds on the strength of the hydrogel from three aspects: physical cross-linking, chemical cross-linking, and dynamic chemical cross-linking; at last, we systematically expound the strengthening strategies, including double network/multi-network, nanocomposite, topology, supramolecular polymerization, and characteristics and strengthening mechanisms of such high-strength hydrogels. In addition, based on the development status of high-strength hydrogels, we combined the application requirements and the existing drawbacks of high-strength hydrogels to propose their possible development directions in the future.
Schroeder, T. B. H.; Guha, A.; Lamoureux, A.; VanRenterghem, G.; Sept, D.; Shtein, M.; Yang, J.; Mayer, M. An electric-eel-inspired soft power source from stacked hydrogels. Nature 2017, 552, 214–218.
Hua, M. T.; Wu, S. W.; Ma, Y. F.; Zhao, Y. S.; Chen, Z. L.; Frenkel, I.; Strzalka, J.; Zhou, H.; Zhu, X. Y.; He, X. M. Strong tough hydrogels via the synergy of freeze-casting and salting out. Nature 2021, 590, 594–599.
Kamata, H.; Akagi, Y.; Kayasuga-Kariya, Y.; Chung, U. I.; Sakai, T. “Nonswellable” hydrogel without mechanical hysteresis. Science 2014, 343, 873–875.
Lou, J. Z.; Mooney, D. J. Chemical strategies to engineer hydrogels for cell culture. Nat. Rev. Chem. 2022, 6, 726–744.
Chen, H.; Yang, F. Y.; Chen, Q.; Zheng, J. A novel design of multi-mechanoresponsive and mechanically strong hydrogels. Adv. Mater. 2017, 29, 1606900.
Guo, J. J.; Liu, X. Y.; Jiang, N.; Yetisen, A. K.; Yuk, H.; Yang, C. X.; Khademhosseini, A.; Zhao, X. H.; Yun, S. H. Highly stretchable, strain sensing hydrogel optical fibers. Adv. Mater. 2016, 28, 10244–10249.
Li, D. Z.; Chen, K. W.; Tang, H.; Hu, S. S.; Xin, L. J.; Jing, X.; He, Q. Q.; Wang, S.; Song, J. L.; Mei, L. et al. A logic-based diagnostic and therapeutic hydrogel with multistimuli responsiveness to orchestrate diabetic bone regeneration. Adv. Mater. 2022, 34, 2108430.
Ma, Z. C.; Holle, A. W.; Melde, K.; Qiu, T.; Poeppel, K.; Kadiri, V. M.; Fischer, P. Acoustic holographic cell patterning in a biocompatible hydrogel. Adv. Mater. 2020, 32, 1904181.
Sun, Y. R.; Yu, F.; Li, C.; Dai, X. H.; Ma, J. Nano-/micro-confined water in graphene hydrogel as superadsorbents for water purification. Nano-Micro Lett. 2020, 12, 2.
Green, R. Elastic and conductive hydrogel electrodes. Nat. Biomed. Eng. 2019, 3, 9–10.
Hu, Y. J.; Chen, Z. H.; Zhuo, H.; Zhong, L. X.; Peng, X. W.; Sun, R. C. Advanced compressible and elastic 3D monoliths beyond hydrogels. Adv. Funct. Mater. 2019, 29, 1904472.
Bhusari, S.; Sankaran, S.; Del Campo, A. Regulating bacterial behavior within hydrogels of tunable viscoelasticity. Adv. Sci. (Weinh) 2022, 9, 2106026.
Ding, Q. L.; Wu, Z. X.; Tao, K.; Wei, Y. M.; Wang, W. Y.; Yang, B. R.; Xie, X.; Wu, J. Environment tolerant, adaptable and stretchable organohydrogels: Preparation, optimization, and applications. Mater. Horiz. 2022, 9, 1356–1386.
Charlet, A.; Bono, F.; Amstad, E. Mechanical reinforcement of granular hydrogels. Chem. Sci. 2022, 13, 3082–3093.
Beckett, L. E.; Lewis, J. T.; Tonge, T. K.; Korley, L. T. J. Enhancement of the mechanical properties of hydrogels with continuous fibrous reinforcement. ACS Biomater. Sci. Eng. 2020, 6, 5453–5473.
Xu, X. W.; Jerca, V. V.; Hoogenboom, R. Bioinspired double network hydrogels: From covalent double network hydrogels via hybrid double network hydrogels to physical double network hydrogels. Mater. Horiz 2021, 8, 1173–1188.
Zhang, X.; Liu, W. F.; Cai, J. Q.; Huang, J. H.; Qiu, X. Q. Equip the hydrogel with armor: Strong and super tough biomass reinforced hydrogels with excellent conductivity and anti-bacterial performance. J. Mater. Chem. A 2019, 7, 26917–26926.
Wang, Z. K.; Li, T. T.; Peng, H. K.; Ren, H. T.; Lou, C. W.; Lin, J. H. Low-cost hydrogel adsorbent enhanced by trihydroxy melamine and β-cyclodextrin for the removal of Pb(II) and Ni(II) in water. J. Hazard. Mater. 2021, 411, 125029.
Bai, Z. X.; Jia, K.; Liu, C. C.; Wang, L. L.; Lin, G.; Huang, Y. M.; Liu, S. N.; Liu, X. B. A solvent regulated hydrogen bond crosslinking strategy to prepare robust hydrogel paint for oil/water separation. Adv. Funct. Mater 2021, 31, 2104701.
Hennink, W. E.; Van Nostrum, C. F. Novel crosslinking methods to design hydrogels. Adv. Drug Deliv. Rev. 2012, 64, 223–236.
Chimene, D.; Kaunas, R.; Gaharwar, A. K. Hydrogel bioink reinforcement for additive manufacturing: A focused review of emerging strategies. Adv. Mater. 2020, 32, 1902026.
Khalesi, H.; Lu, W.; Nishinari, K.; Fang, Y. P. New insights into food hydrogels with reinforced mechanical properties: A review on innovative strategies. Adv. Colloid Interface Sci. 2020, 285, 102278.
Chen, C. J.; Song, J. W.; Cheng, J.; Pang, Z. Q.; Gan, W. T.; Chen, G. G.; Kuang, Y.; Huang, H.; Ray, U.; Li, T. et al. Highly elastic hydrated cellulosic materials with durable compressibility and tunable conductivity. ACS Nano 2020, 14, 16723–16734.
Kamoun, E. A.; Kenawy, E. R. S.; Chen, X. A review on polymeric hydrogel membranes for wound dressing applications: PVA-based hydrogel dressings. J. Adv. Res 2017, 8, 217–233.
Wichterle, O.; Lím, D. Hydrophilic gels for biological use. Nature 1960, 185, 117–118.
Ullah, I.; Hussain, Z.; Zhang, Y. J.; Liu, X. Z.; Ullah, S.; Zhang, Y.; Zheng, P. H.; Gao, T.; Liu, Y. S.; Zhang, Z. Z. et al. Inorganic nanomaterial-reinforced hydrogel membrane as an artificial periosteum. Appl. Mater. Today 2022, 28, 101532.
Lee, K. Y.; Mooney, D. J. Alginate: Properties and biomedical applications. Progr. Polym. Sci. 2012, 37, 106–126.
Burdick, J. A.; Prestwich, G. D. Hyaluronic acid hydrogels for biomedical applications. Adv. Mater. 2011, 23, H41–H56.
Yang, E.; Miao, S. D.; Zhong, J.; Zhang, Z. Y.; Mills, D. K.; Zhang, L. G. Bio-based polymers for 3D printing of bioscaffolds. Polym. Rev. 2018, 58, 668–687.
Han, L.; Huang, H. L.; Fu, X. B.; Li, J. F.; Yang, Z. L.; Liu, X. J.; Pan, L. K.; Xu, M. A flexible, high-voltage and safe zwitterionic natural polymer hydrogel electrolyte for high-energy-density zinc-ion hybrid supercapacitor. Chem. Eng. J. 2020, 392, 123733.
Ajdary, R.; Tardy, B. L.; Mattos, B. D.; Bai, L.; Rojas, O. J. Plant nanomaterials and inspiration from nature: Water interactions and hierarchically structured hydrogels. Adv. Mater 2021, 33, 2170218.
Catoira, M. C.; Fusaro, L.; Di Francesco, D.; Ramella, M.; Boccafoschi, F. Overview of natural hydrogels for regenerative medicine applications. J. Mater. Sci. Mater. Med. 2019, 30, 115.
Lu, Q. L.; Zhang, S. H.; Xiong, M. C.; Lin, F. C.; Tang, L. R.; Huang, B.; Chen, Y. D. One-pot construction of cellulose-gelatin supramolecular hydrogels with high strength and pH-responsive properties. Carbohydr. Polym. 2018, 196, 225–232.
Chaudhuri, O.; Gu, L.; Klumpers, D.; Darnell, M.; Bencherif, S. A.; Weaver, J. C.; Huebsch, N.; Lee, H. P.; Lippens, E.; Duda, G. N. et al. Hydrogels with tunable stress relaxation regulate stem cell fate and activity. Nat. Mater. 2016, 15, 326–334.
Zhao, X.; Wu, H.; Guo, B. L.; Dong, R. N.; Qiu, Y. S.; Ma, P. X. Antibacterial anti-oxidant electroactive injectable hydrogel as self-healing wound dressing with hemostasis and adhesiveness for cutaneous wound healing. Biomaterials 2017, 122, 34–47.
Onoe, H.; Okitsu, T.; Itou, A.; Kato-Negishi, M.; Gojo, R.; Kiriya, D.; Sato, K.; Miura, S.; Iwanaga, S.; Kuribayashi-Shigetomi, K. et al. Metre-long cell-laden microfibres exhibit tissue morphologies and functions. Nat. Mater. 2013, 12, 584–590.
Nechyporchuk, O.; Belgacem, M. N.; Bras, J. Production of cellulose nanofibrils: A review of recent advances. Ind. Crops Prod. 2016, 93, 2–25.
Du, H. S.; Liu, W.; Zhang, M. M.; Si, C. L.; Zhang, X. Y.; Li, B. Cellulose nanocrystals and cellulose nanofibrils based hydrogels for biomedical applications. Carbohydr. Polym. 2019, 209, 130–144.
Guan, Q. F.; Han, Z. M.; Zhu, Y. B.; Xu, W. L.; Yang, H. B.; Ling, Z. C.; Yan, B. B.; Yang, K. P.; Yin, C. H.; Wu, H. G. et al. Bio-inspired lotus-fiber-like spiral hydrogel bacterial cellulose fibers. Nano Lett. 2021, 21, 952–958.
Ali, A.; Ahmed, S. A review on chitosan and its nanocomposites in drug delivery. International J. Biol. Macromol. 2018, 109, 273–286.
Samal, S. K.; Dash, M.; Van Vlierberghe, S.; Kaplan, D. L.; Chiellini, E.; Van Blitterswijk, C.; Moroni, L.; Dubruel, P. Cationic polymers and their therapeutic potential. Chem. Soc. Rev. 2012, 41, 7147–7194.
Tseng, T. C.; Tao, L.; Hsieh, F. Y.; Wei, Y.; Chiu, I. M.; Hsu, S. H. An injectable, self-healing hydrogel to repair the central nervous system. Adv. Mater. 2015, 27, 3518–3524.
Ferreira, A. M.; Gentile, P.; Chiono, V.; Ciardelli, G. Collagen for bone tissue regeneration. Acta Biomater. 2012, 8, 3191–3200.
Hennet, T. Collagen glycosylation. Curr. Opin. Struct. Biol. 2019, 56, 131–138.
Vermonden, T.; Censi, R.; Hennink, W. E. Hydrogels for protein delivery. Chem. Rev. 2012, 112, 2853–2888.
Hu, Y. W.; Cecconello, A.; Idili, A.; Ricci, F.; Willner, I. Triplex DNA nanostructures: From basic properties to applications. Angew. Chem., Int. Ed. 2017, 56, 15210–15233.
Kahn, J. S.; Hu, Y. W.; Willner, I. Stimuli-responsive DNA-based hydrogels: From basic principles to applications. Acc. Chem. Res. 2017, 50, 680–690.
Shin, M.; Ryu, J. H.; Park, J. P.; Kim, K.; Yang, J. W.; Lee, H. DNA/tannic acid hybrid gel exhibiting biodegradability, extensibility, tissue adhesiveness, and hemostatic ability. Adv. Funct. Mater. 2015, 25, 1270–1278.
Li, Y. L.; Rodrigues, J.; Tomás, H. Injectable and biodegradable hydrogels: Gelation, biodegradation and biomedical applications. Chem. Soc. Rev. 2012, 41, 2193–2221.
Guo, Y. H.; Bae, J.; Fang, Z. W.; Li, P. P.; Zhao, F.; Yu, G. H. Hydrogels and hydrogel-derived materials for energy and water sustainability. Chem. Rev. 2020, 120, 7642–7707.
Chang, R. A. S. H.; Shanley, J. F.; Kersh, M. E.; Harley, B. A. C. Tough and tunable scaffold-hydrogel composite biomaterial for soft-to-hard musculoskeletal tissue interfaces. Sci. Adv. 2020, 6, eabb6763.
Ruiz-Esparza, G. U.; Wang, X. C.; Zhang, X. C.; Jimenez-Vazquez, S.; Diaz-Gomez, L.; Lavoie, A. M.; Afewerki, S.; Fuentes-Baldemar, A. A.; Parra-Saldivar, R.; Jiang, N. et al. Nanoengineered shear-thinning hydrogel barrier for preventing postoperative abdominal adhesions. Nano-Micro Lett. 2021, 13, 212.
Ko, Y.; Kim, D.; Kwon, G.; You, J. High-performance resistive pressure sensor based on elastic composite hydrogel of silver nanowires and poly(ethylene glycol). Micromachines (Basel) 2018, 9, 438.
Yan, C. Y.; Wang, Y. Y.; Deng, X. Y.; Xu, Y. H. Cooperative chloride hydrogel electrolytes enabling ultralow-temperature aqueous zinc ion batteries by the hofmeister effect. Nano-Micro Lett. 2022, 14, 98.
Cai, J. B.; He, Y. Q.; Zhou, Y. Q.; Yu, H. B.; Luo, B. H.; Liu, M. X. Polyethylene glycol grafted chitin nanocrystals enhanced, stretchable, freezing-tolerant ionic conductive organohydrogel for strain sensors. Compos. Part A Appl. Sci. Manuf. 2022, 155, 106813.
Liang, Y. N.; Wu, Z. X.; Wei, Y. M.; Ding, Q. L.; Zilberman, M.; Tao, K.; Xie, X.; Wu, J. Self-healing, self-adhesive and stable organohydrogel-based stretchable oxygen sensor with high performance at room temperature. Nano-Micro Lett. 2022, 14, 52.
Wang, Z. W.; Cui, H. J.; Liu, M. D.; Grage, S. L.; Hoffmann, M.; Sedghamiz, E.; Wenzel, W.; Levkin, P. A. Tough, transparent, 3D-printable, and self-healing poly(ethylene glycol)-gel (PEGgel). Adv. Mater. 2022, 34, 2107791.
Hong, X. Y.; Wu, Z. Z.; Chen, L. Z.; Wu, F.; Wei, L. M.; Yuan, W. E. Hydrogel microneedle arrays for transdermal drug delivery. Nano-Micro Lett. 2014, 6, 191–199.
Rutz, A. L.; Hyland, K. E.; Jakus, A. E.; Burghardt, W. R.; Shah, R. N. A Multimaterial bioink method for 3D printing tunable, cell-compatible hydrogels. Adv. Mater. 2015, 27, 1607–1614.
Zhu, J. M. Bioactive modification of poly(ethylene glycol) hydrogels for tissue engineering. Biomaterials 2010, 31, 4639–4656.
Boehnke, N.; Cam, C.; Bat, E.; Segura, T.; Maynard, H. D. Imine hydrogels with tunable degradability for tissue engineering. Biomacromolecules 2015, 16, 2101–2108.
Otsuka, H.; Nagasaki, Y.; Kataoka, K. PEGylated nanoparticles for biological and pharmaceutical applications. Adv. Drug Deliver. Rev. 2003, 55, 403–419.
Loessner, D.; Stok, K. S.; Lutolf, M. P.; Hutmacher, D. W.; Clements, J. A.; Rizzi, S. C. Bioengineered 3D platform to explore cell–ECM interactions and drug resistance of epithelial ovarian cancer cells. Biomaterials 2010, 31, 8494–8506.
Chaudhari, A. A.; Vig, K.; Baganizi, D. R.; Sahu, R.; Dixit, S.; Dennis, V.; Singh, S. R.; Pillai, S. R. Future prospects for scaffolding methods and biomaterials in skin tissue engineering: A review. Int. J. Mol. Sci. 2016, 17, 1974.
Ulbricht, J.; Jordan, R.; Luxenhofer, R. On the biodegradability of polyethylene glycol, polypeptoids and poly(2-oxazoline)s. Biomaterials 2014, 35, 4848–4861.
Vigen, M.; Ceccarelli, J.; Putnam, A. J. Protease-sensitive PEG hydrogels regulate vascularization in vitro and in vivo. Macromol. Biosci. 2014, 14, 1368–1379.
Hong, S.; Sycks, D.; Chan, H. F.; Lin, S. T.; Lopez, G. P.; Guilak, F.; Leong, K. W.; Zhao, X. H. 3D printing of highly stretchable and tough hydrogels into complex, cellularized structures. Adv. Mater. 2015, 27, 4035–4040.
Rosales, A. M.; Anseth, K. S. The design of reversible hydrogels to capture extracellular matrix dynamics. Nat. Rev. Mater. 2016, 1, 15012.
Zhou, Y.; Wan, C. J.; Yang, Y. S.; Yang, H.; Wang, S. C.; Dai, Z. D.; Ji, K. J.; Jiang, H.; Chen, X. D.; Long, Y. Highly stretchable, elastic, and ionic conductive hydrogel for artificial soft electronics. Adv. Funct. Mater. 2019, 29, 1806220.
Li, H. L.; Lv, T.; Li, N.; Yao, Y.; Liu, K.; Chen, T. Ultraflexible and tailorable all-solid-state supercapacitors using polyacrylamide-based hydrogel electrolyte with high ionic conductivity. Nanoscale 2017, 9, 18474–18481.
Ata, S.; Banerjee, S. L.; Singha, N. K. Polymer nano-hybrid material based on graphene oxide/POSS via surface initiated atom transfer radical polymerization (SI-ATRP): Its application in specialty hydrogel system. Polymer 2016, 103, 46–56.
Li, Z. B.; Yang, J.; Loh, X. J. Polyhydroxyalkanoates: Opening doors for a sustainable future. NPG Asia Mater. 2016, 8, e265.
Knop, K.; Hoogenboom, R.; Fischer, D.; Schubert, U. S. Poly(ethylene glycol) in drug delivery: Pros and cons as well as potential alternatives. Angew. Chem., Int. Ed. 2010, 49, 6288–6308.
Mogoşanu, G. D.; Grumezescu, A. M. Natural and synthetic polymers for wounds and burns dressing. Int. J. Pharm. 2014, 463, 127–136.
Darabi, M. A.; Khosrozadeh, A.; Mbeleck, R.; Liu, Y. Q.; Chang, Q.; Jiang, J. Z.; Cai, J.; Wang, Q.; Luo, G. X.; Xing, M. Skin-inspired multifunctional autonomic-intrinsic conductive self-healing hydrogels with pressure sensitivity, stretchability, and 3D printability. Adv. Mater. 2017, 29, 1700533.
Xing, R. R.; Liu, K.; Jiao, T. F.; Zhang, N.; Ma, K.; Zhang, R. Y.; Zou, Q. L.; Ma, G. H.; Yan, X. H. An injectable self-assembling collagen-gold hybrid hydrogel for combinatorial antitumor photothermal/photodynamic therapy. Adv. Mater. 2016, 28, 3669–3676.
Zhou, X. Y.; Zhao, F.; Guo, Y. H.; Zhang, Y.; Yu, G. H. A hydrogel-based antifouling solar evaporator for highly efficient water desalination. Energy Environ. Sci. 2018, 11, 1985–1992.
Vashist, A.; Kaushik, A.; Vashist, A.; Sagar, V.; Ghosal, A.; Gupta, Y. K.; Ahmad, S.; Nair, M. Advances in carbon nanotubes-hydrogel hybrids in nanomedicine for therapeutics. Adv. Healthcare Mater. 2018, 7, 1701213.
Fan, Z. J.; Liu, B.; Wang, J. Q.; Zhang, S. Y.; Lin, Q. Q.; Gong, P. W.; Ma, L. M.; Yang, S. R. A novel wound dressing based on Ag/graphene polymer hydrogel: Effectively kill bacteria and accelerate wound healing. Adv. Funct. Mater. 2014, 24, 3933–3943.
Zhang, Y. S.; Khademhosseini, A. Advances in engineering hydrogels. Science 2017, 356, eaaf3627.
Yu, Y. D.; Kong, K. R.; Mu, Z.; Zhao, Y. Q.; Liu, Z. M.; Tang, R. K. Muscle-like ultratough hybrid hydrogel constructed by heterogeneous inorganic polymerization on an organic network. ACS Appl. Mater. Interfaces 2020, 12, 54212–54221.
Lu, L.; Huang, Z. X.; Li, X. N.; Li, X. T.; Cui, B.; Yuan, C.; Guo, L.; Liu, P. F.; Dai, Q. L. A high-conductive, anti-freezing, antibacterial and anti-swelling starch-based physical hydrogel for multifunctional flexible wearable sensors. Int. J. Biol. Macromol. 2022, 213, 791–803.
Li, L. Y.; Lu, F. X.; Wang, C.; Zhang, F. L.; Liang, W. H.; Kuga, S.; Dong, Z. C.; Zhao, Y.; Huang, Y.; Wu, M. Flexible double-cross-linked cellulose-based hydrogel and aerogel membrane for supercapacitor separator. J. Mater. Chem. A 2018, 6, 24468–24478.
Tang, S. X.; Yang, J. Y.; Lin, L. Z.; Peng, K. L.; Chen, Y.; Jin, S. H.; Yao, W. S. Construction of physically crosslinked chitosan/sodium alginate/calcium ion double-network hydrogel and its application to heavy metal ions removal. Chem. Eng. J. 2020, 393, 124728.
Gan, D. L.; Xing, W. S.; Jiang, L. L.; Fang, J.; Zhao, C. C.; Ren, F. Z.; Fang, L. M.; Wang, K. F.; Lu, X. Plant-inspired adhesive and tough hydrogel based on Ag-lignin nanoparticles-triggered dynamic redox catechol chemistry. Nat. Commun. 2019, 10, 1487.
Ge, G.; Lu, Y.; Qu, X. Y.; Zhao, W.; Ren, Y. F.; Wang, W. J.; Wang, Q.; Huang, W.; Dong, X. C. Muscle-inspired self-healing hydrogels for strain and temperature sensor. ACS Nano 2020, 14, 218–228.
Aderibigbe, B. A.; Buyana, B. Alginate in wound dressings. Pharmaceutics 2018, 10, 42.
Ahmad Raus, R.; Wan Nawawi, W. M. F.; Nasaruddin, R. R. Alginate and alginate composites for biomedical applications. Asian J. Pharm. Sci. 2021, 16, 280–306.
Akhtar, M. F.; Hanif, M.; Ranjha, N. M. Methods of synthesis of hydrogels … A review. Saudi Pharm. J. 2016, 24, 554–559.
Baker, M. I.; Walsh, S. P.; Schwartz, Z.; Boyan, B. D. A review of polyvinyl alcohol and its uses in cartilage and orthopedic applications. J. Biomed. Mater. Res. Part B Appl. Biomater. 2012, 100B, 1451–1457.
Zheng, C. X.; Lu, K. Y.; Lu, Y.; Zhu, S. L.; Yue, Y. Y.; Xu, X. W.; Mei, C. T.; Xiao, H. N.; Wu, Q. L.; Han, J. Q. A stretchable, self-healing conductive hydrogels based on nanocellulose supported graphene towards wearable monitoring of human motion. Carbohydr. Polym. 2020, 250, 116905.
Wang, S.; Xiang, J.; Sun, Y. G.; Wang, H. L.; Du, X. S.; Cheng, X.; Du, Z. L.; Wang, H. B. Skin-inspired nanofibrillated cellulose-reinforced hydrogels with high mechanical strength, long-term antibacterial, and self-recovery ability for wearable strain/pressure sensors. Carbohydr. Polym. 2021, 261, 117894.
Tie, J.; Chai, H. B.; Mao, Z. P.; Zhang, L. P.; Zhong, Y.; Sui, X.; Xu, H. Nanocellulose-mediated transparent high strength conductive hydrogel based on in-situ formed polypyrrole nanofibrils as a multimodal sensor. Carbohydr. Polym. 2021, 273, 118600.
Zheng, C. X.; Yue, Y. Y.; Gan, L.; Xu, X. W.; Mei, C. T.; Han, J. Q. Highly stretchable and self-healing strain sensors based on nanocellulose-supported graphene dispersed in electro-conductive hydrogels. Nanomaterials (Basel) 2019, 9, 937.
Chen, D. J.; Zhao, X. L.; Wei, X. R.; Zhang, J. L.; Wang, D.; Lu, H.; Jia, P. X. Ultrastretchable, tough, antifreezing, and conductive cellulose hydrogel for wearable strain sensor. ACS Appl. Mater. Interfaces 2020, 12, 53247–53256.
Lu, J. S.; Han, X.; Dai, L.; Li, C. Y.; Wang, J. F.; Zhong, Y. D.; Yu, F. X.; Si, C. L. Conductive cellulose nanofibrils-reinforced hydrogels with synergetic strength, toughness, self-adhesion, flexibility and adjustable strain responsiveness. Carbohydr. Polym. 2020, 250, 117010.
Wang, Y.; Zhang, J. Y.; Qiu, C. B.; Li, J. B.; Cao, Z. X.; Ma, C. S.; Zheng, J.; Huang, G. S. Self-recovery magnetic hydrogel with high strength and toughness using nanofibrillated cellulose as a dispersing agent and filler. Carbohydr. Polym. 2018, 196, 82–91.
Liu, X. X.; Yang, K. X.; Chang, M. M.; Wang, X. H.; Ren, J. L. Fabrication of cellulose nanocrystal reinforced nanocomposite hydrogel with self-healing properties. Carbohydr. Polym. 2020, 240, 116289.
Tang, S.; Chi, K.; Xu, H.; Yong, Q.; Yang, J.; Catchmark, J. M. A covalently cross-linked hyaluronic acid/bacterial cellulose composite hydrogel for potential biological applications. Carbohydr. Polym. 2021, 252, 117123.
Liu, S.; Jin, M.; Chen, Y. H.; Gao, H. C.; Shi, X. T.; Cheng, W. H.; Ren, L.; Wang, Y. J. High internal phase emulsions stabilised by supramolecular cellulose nanocrystals and their application as cell-adhesive macroporous hydrogel monoliths. J. Mater. Chem. B 2017, 5, 2671–2678.
Xie, X. L.; Liu, L. J.; Zhang, L. N.; Lu, A. Strong cellulose hydrogel as underwater superoleophobic coating for efficient oil/water separation. Carbohydr. Polym. 2020, 229, 115467.
Choe, D.; Kim, Y. M.; Nam, J. E.; Nam, K.; Shin, C. S.; Roh, Y. H. Synthesis of high-strength microcrystalline cellulose hydrogel by viscosity adjustment. Carbohydr. Polym. 2018, 180, 231–237.
Barcan, G. A.; Zhang, X. Y.; Waymouth, R. M. Structurally dynamic hydrogels derived from 1,2-dithiolanes. J. Am. Chem. Soc. 2015, 137, 5650–5653.
Bodugoz-Senturk, H.; Choi, J.; Oral, E.; Kung, J. H.; Macias, C. E.; Braithwaite, G.; Muratoglu, O. K. The effect of polyethylene glycol on the stability of pores in polyvinyl alcohol hydrogels during annealing. Biomaterials 2008, 29, 141–149.
Black, S. P.; Sanders, J. K. M.; Stefankiewicz, A. R. Disulfide exchange: Exposing supramolecular reactivity through dynamic covalent chemistry. Chem. Soc. Rev. 2014, 43, 1861–1872.
Tang, B.; Shan, J.; Yuan, T.; Xiao, Y. M.; Liang, J.; Fan, Y. J.; Zhang, X. D. Hydroxypropylcellulose enhanced high viscosity endoscopic mucosal dissection intraoperative chitosan thermosensitive hydrogel. Carbohydr. Polym. 2019, 209, 198–206.
Huang, L.; Zhu, Z. Y.; Wu, D. W.; Gan, W. D.; Zhu, S. S.; Li, W. Q.; Tian, J. H.; Li, L. H.; Zhou, C. R.; Lu, L. Antibacterial poly (ethylene glycol) diacrylate/chitosan hydrogels enhance mechanical adhesiveness and promote skin regeneration. Carbohydr. Polym. 2019, 225, 115110.
Ding, H. Y.; Liang, X. X.; Wang, Q.; Wang, M. M.; Li, Z. J.; Sun, G. X. A semi-interpenetrating network ionic composite hydrogel with low modulus, fast self-recoverability and high conductivity as flexible sensor. Carbohydr. Polym. 2020, 248, 116797.
Ding, H. Y.; Liang, X. X.; Xu, J. Y.; Tang, Z. Q.; Li, Z. J.; Liang, R.; Sun, G. X. Hydrolyzed hydrogels with super stretchability, high strength, and fast self-recovery for flexible sensors. ACS Appl. Mater. Interfaces 2021, 13, 22774–22784.
Zhang, M.; Yang, M.; Woo, M. W.; Li, Y. C.; Han, W. J.; Dang, X. G. High-mechanical strength carboxymethyl chitosan-based hydrogel film for antibacterial wound dressing. Carbohydr. Polym. 2021, 256, 117590.
Xie, Y. J.; Liao, X. Z.; Zhang, J. X.; Yang, F. W.; Fan, Z. J. Novel chitosan hydrogels reinforced by silver nanoparticles with ultrahigh mechanical and high antibacterial properties for accelerating wound healing. Int. J. Biol. Macromol. 2018, 119, 402–412.
Bi, S. C.; Pang, J. H.; Huang, L.; Sun, M. J.; Cheng, X. J.; Chen, X. G. The toughness chitosan-PVA double network hydrogel based on alkali solution system and hydrogen bonding for tissue engineering applications. Int. J. Biol. Macromol. 2020, 146, 99–109.
Wu, X. F.; Liu, S. Y.; Chen, K.; Wang, F. Y.; Feng, C. N.; Xu, L. M.; Zhang, D. K. 3D printed chitosan-gelatine hydrogel coating on titanium alloy surface as biological fixation interface of artificial joint prosthesis. Int. J. Biol. Macromol. 2021, 182, 669–679.
Jiang, Y. C.; Meng, X. Y.; Wu, Z. H.; Qi, X. L. Modified chitosan thermosensitive hydrogel enables sustained and efficient anti-tumor therapy via intratumoral injection. Carbohydr. Polym. 2016, 144, 245–253.
Yu, P.; Bao, R. Y.; Shi, X. J.; Yang, W.; Yang, M. B. Self-assembled high-strength hydroxyapatite/graphene oxide/chitosan composite hydrogel for bone tissue engineering. Carbohydr. Polym. 2017, 155, 507–515.
Zhang, J.; Chen, L. D.; Shen, B.; Chen, L. Q.; Feng, J. Ultra-high strength poly(N-(2-hydroxyethyl)acrylamide)/chitosan hydrogel with “repelling and killing” bacteria property. Carbohydr. Polym. 2019, 225, 115160.
Bi, S. C.; Wang, P. J.; Hu, S. H.; Li, S. K.; Pang, J. H.; Zhou, Z. Z.; Sun, G. H.; Huang, L.; Cheng, X. J.; Xing, S. C. et al. Construction of physical-crosslink chitosan/PVA double-network hydrogel with surface mineralization for bone repair. Carbohydr. Polym. 2019, 224, 115176.
Yan, K.; Xu, F. Y.; Li, S. H.; Li, Y. Y.; Chen, Y. L.; Wang, D. Ice-templating of chitosan/agarose porous composite hydrogel with adjustable water-sensitive shape memory property and multi-staged degradation performance. Colloids Surf. B Biointerfaces 2020, 190, 110907.
Liu, X.; Yang, W. X.; Xiao, C. M. Self-healable and pH-sensitive high-strength water-soluble chitosan/chemically cross-linked polyvinyl alcohol semi-IPN hydrogel. Int. J. Biol. Macromol. 2019, 138, 667–672.
Deng, A. P.; Kang, X.; Zhang, J.; Yang, Y.; Yang, S. L. Enhanced gelation of chitosan/β-sodium glycerophosphate thermosensitive hydrogel with sodium bicarbonate and biocompatibility evaluated. Mater. Sci. Eng. C 2017, 78, 1147–1154.
Jiang, X. C.; Xiang, N. P.; Wang, J. Q.; Zhao, Y. L.; Hou, L. X. Preparation and characterization of hybrid double network chitosan/poly(acrylic amide-acrylic acid) high toughness hydrogel through Al3+ crosslinking. Carbohydr. Polym. 2017, 173, 701–706.
Brooks, W. L. A.; Sumerlin, B. S. Synthesis and applications of boronic acid-containing polymers: From materials to medicine. Chem. Rev. 2016, 116, 1375–1397.
Chen, K.; Chen, G. Y.; Wei, S.; Yang, X. H.; Zhang, D. K.; Xu, L. M. Preparation and property of high strength and low friction PVA-HA/PAA composite hydrogel using annealing treatment. Mater. Sci. Eng. C 2018, 91, 579–588.
Hernández-González, A. C.; Téllez-Jurado, L.; Rodríguez-Lorenzo, L. M. Alginate hydrogels for bone tissue engineering, from injectables to bioprinting: A review. Carbohydr. Polym. 2020, 229, 115514.
Jiang, X. C.; Xiang, N. P.; Zhang, H. X.; Sun, Y. J.; Lin, Z.; Hou, L. X. Preparation and characterization of poly(vinyl alcohol)/sodium alginate hydrogel with high toughness and electric conductivity. Carbohydr. Polym. 2018, 186, 377–383.
Zheng, Y. J.; Huang, K. Q.; You, X. R.; Huang, B. X.; Wu, J.; Gu, Z. P. Hybrid hydrogels with high strength and biocompatibility for bone regeneration. Int. J. Biol. Macromol. 2017, 104, 1143–1149.
Eivazzadeh-Keihan, R.; Khalili, F.; Aliabadi, H. A. M.; Maleki, A.; Madanchi, H.; Ziabari, E. Z.; Bani, M. S. Alginate hydrogel-polyvinyl alcohol/silk fibroin/magnesium hydroxide nanorods: A novel scaffold with biological and antibacterial activity and improved mechanical properties. Int. J. Biol. Macromol. 2020, 162, 1959–1971.
Yue, Y. Y.; Wang, X. H.; Han, J. Q.; Yu, L.; Chen, J. Q.; Wu, Q. L.; Jiang, J. C. Effects of nanocellulose on sodium alginate/polyacrylamide hydrogel: Mechanical properties and adsorption−desorption capacities. Carbohydr. Polym. 2019, 206, 289–301.
Chen, T.; Chen, Y. J.; Rehman, H. U.; Chen, Z.; Yang, Z.; Wang, M.; Li, H.; Liu, H. Z. Ultratough, self-healing, and tissue-adhesive hydrogel for wound dressing. ACS Appl. Mater. Interfaces 2018, 10, 33523–33531.
Yue, Y. Y.; Wang, X. H.; Wu, Q. L.; Han, J. Q.; Jiang, J. C. Assembly of polyacrylamide-sodium alginate-based organic−inorganic hydrogel with mechanical and adsorption properties. Polymers (Basel) 2019, 11, 1239.
Chen, X.; Chen, J. H.; You, T. T.; Wang, K.; Xu, F. Effects of polymorphs on dissolution of cellulose in NaOH/urea aqueous solution. Carbohydr. Polym. 2015, 125, 85–91.
Trombino, S.; Servidio, C.; Curcio, F.; Cassano, R. Strategies for hyaluronic acid-based hydrogel design in drug delivery. Pharmaceutics 2019, 11, 407.
Dosio, F.; Arpicco, S.; Stella, B.; Fattal, E. Hyaluronic acid for anticancer drug and nucleic acid delivery. Adv. Drug Deliver. Rev. 2016, 97, 204–236.
Highley, C. B.; Prestwich, G. D.; Burdick, J. A. Recent advances in hyaluronic acid hydrogels for biomedical applications. Curr. Opin. Biotechnol. 2016, 40, 35–40.
Jung, Y. S.; Park, W.; Park, H.; Lee, D. K.; Na, K. Thermo-sensitive injectable hydrogel based on the physical mixing of hyaluronic acid and Pluronic F-127 for sustained NSAID delivery. Carbohydr. Polym. 2017, 156, 403–408.
Zhou, D.; Li, S. Z.; Pei, M. J.; Yang, H. J.; Gu, S. J.; Tao, Y. Z.; Ye, D. Z.; Zhou, Y. S.; Xu, W. L.; Xiao, P. Dopamine-modified hyaluronic acid hydrogel adhesives with fast-forming and high tissue adhesion. ACS Appl. Mater. Interfaces 2020, 12, 18225–18234.
Gong, J. P.; Katsuyama, Y.; Kurokawa, T.; Osada, Y. Double-network hydrogels with extremely high mechanical strength. Adv. Mater. 2003, 15, 1155–1158.
Farokhi, M.; Mottaghitalab, F.; Reis, R. L.; Ramakrishna, S.; Kundu, S. C. Functionalized silk fibroin nanofibers as drug carriers: Advantages and challenges. J. Control. Release 2020, 321, 324–347.
Gonzalez, J. S.; Alvarez, V. A. The effect of the annealing on the poly(vinyl alcohol) obtained by freezing-thawing. Thermochim. Acta 2011, 521, 184–190.
Dong, C. J.; Lv, Y. G. Application of collagen scaffold in tissue engineering: Recent advances and new perspectives. Polymers (Basel) 2016, 8, 42.
Liu, C. L.; Wang, X. C.; Zhang, H. J.; You, X. Y.; Yue, O. Y. Self-healable, high-strength hydrogel electrode for flexible sensors and supercapacitors. ACS Appl. Mater. Interfaces 2021, 13, 36240–36252.
Dong, L. L.; Bu, Z. H.; Xiong, Y. Z.; Zhang, H.; Fang, J. H.; Hu, H. X.; Liu, Z. T.; Li, X. Facile extrusion 3D printing of gelatine methacrylate/laponite nanocomposite hydrogel with high concentration nanoclay for bone tissue regeneration. Int. J. Biol. Macromol. 2021, 188, 72–81.
Dai, M. L.; Sui, B.; Hua, Y. J.; Zhang, Y. Q.; Bao, B. K.; Lin, Q. N.; Liu, X.; Zhu, L. Y.; Sun, J. A well defect-suitable and high-strength biomimetic squid type II gelatin hydrogel promoted in situ costal cartilage regeneration via dynamic immunomodulation and direct induction manners. Biomaterials 2020, 240, 119841.
Zhang, L. R.; Liu, J.; Zheng, X. J.; Zhang, A. L.; Zhang, X. L.; Tang, K. Y. Pullulan dialdehyde crosslinked gelatin hydrogels with high strength for biomedical applications. Carbohydr. Polym. 2019, 216, 45–53.
Lee, D.; Choi, E. J.; Lee, S. E.; Kang, K. L.; Moon, H. J.; Kim, H. J.; Youn, Y. H.; Heo, D. N.; Lee, S. J.; Nah, H. et al. Injectable biodegradable gelatin-methacrylate/β-tricalcium phosphate composite for the repair of bone defects. Chem. Eng. J. 2019, 365, 30–39.
Thi, P. L.; Lee, Y.; Tran, D. L.; Thi, T. T. H.; Kang, J. I.; Park, K. M.; Park, K. D. In situ forming and reactive oxygen species-scavenging gelatin hydrogels for enhancing wound healing efficacy. Acta Biomater 2020, 103, 142–152.
Mamidi, N.; Delgadillo, R. M. V.; Barrera, E. V. Covalently functionalized carbon nano-onions integrated gelatin methacryloyl nanocomposite hydrogel containing γ-cyclodextrin as drug carrier for high-performance pH-triggered drug release. Pharmaceuticals (Basel) 2021, 14, 291.
Liu, Q. X.; Liu, J.; Qin, S. F.; Pei, Y.; Zheng, X. J.; Tang, K. Y. High mechanical strength gelatin composite hydrogels reinforced by cellulose nanofibrils with unique beads-on-a-string morphology. Int. J. Biol. Macromol. 2020, 164, 1776–1784.
Yoon, H. J.; Shin, S. R.; Cha, J. M.; Lee, S. H.; Kim, J. H.; Do, J. T.; Song, H.; Bae, H. Cold water fish gelatin methacryloyl hydrogel for tissue engineering application. PLoS One 2016, 11, e0163902.
Haraguchi, K. Nanocomposite hydrogels. Curr. Opin. Solid State. Mater. Sci. 2007, 11, 47–54.
Zheng, H. Y.; Zuo, B. Q. Functional silk fibroin hydrogels: Preparation, properties and applications. J. Mater. Chem. B 2021, 9, 1238–1258.
He, F. L.; You, X. Y.; Gong, H.; Yang, Y.; Bai, T.; Wang, W. G.; Guo, W. X.; Liu, X. Y.; Ye, M. D. Stretchable, biocompatible, and multifunctional silk fibroin-based hydrogels toward wearable strain/pressure sensors and triboelectric nanogenerators. ACS Appl. Mater. Interfaces 2020, 12, 6442–6450.
Oral, C. B.; Yetiskin, B.; Okay, O. Stretchable silk fibroin hydrogels. Int. J. Biol. Macromol. 2020, 161, 1371–1380.
Wang, Z. J.; Hu, W. K.; Du, Y. Y.; Xiao, Y.; Wang, X. H.; Zhang, S. M.; Wang, J. L.; Mao, C. B. Green gas-mediated cross-linking generates biomolecular hydrogels with enhanced strength and excellent hemostasis for wound healing. ACS Appl. Mater. Interfaces 2020, 12, 13622–13633.
Fang, J.; Li, P. F.; Lu, X.; Fang, L. M.; Lv, X. Y.; Ren, F. Z. A strong, tough, and osteoconductive hydroxyapatite mineralized polyacrylamide/dextran hydrogel for bone tissue regeneration. Acta Biomater. 2019, 88, 503–513.
Su, H. Y.; Zheng, R.; Jiang, L. R.; Zeng, N.; Yu, K.; Zhi, Y. F.; Shan, S. Y. Dextran hydrogels via disulfide-containing Schiff base formation: Synthesis, stimuli-sensitive degradation and release behaviors. Carbohydr. Polym. 2021, 265, 118085.
Alcázar-Alay, S. C.; Meireles, M. A. A. Physicochemical properties, modifications and applications of starches from different botanical sources. Food Sci. Technol. 2015, 35, 215–236.
Huang, G. L.; Huang, H. L. Hyaluronic acid-based biopharmaceutical delivery and tumor-targeted drug delivery system. J. Control. Release 2018, 278, 122–126.
Biduski, B.; Silva, W. M. F. D.; Colussi, R.; Halal, S. L. D. M. E.; Lim, L. T.; Dias, Á. R. G.; Zavareze, E. D. R. Starch hydrogels: The influence of the amylose content and gelatinization method. Int. J. Biol. Macromol. 2018, 113, 443–449.
Rinaldi, R.; Jastrzebski, R.; Clough, M. T.; Ralph, J.; Kennema, M.; Bruijnincx, P. C. A.; Weckhuysen, B. M. Paving the way for lignin valorisation: Recent advances in bioengineering, biorefining and catalysis. Angew. Chem., Int. Ed. 2016, 55, 8164–8215.
Huang, T.; Tu, Z. C.; Shangguan, X. C.; Sha, X. M.; Wang, H.; Zhang, L.; Bansal, N. Fish gelatin modifications: A comprehensive review. Trends Food Sci. Technol. 2019, 86, 260–269.
Dai, L.; Ma, M. S.; Xu, J. K.; Si, C. L.; Wang, X. H.; Liu, Z.; Ni, Y. H. All-lignin-based hydrogel with fast pH-stimuli responsiveness for mechanical switching and actuation. Chem. Mater. 2020, 32, 4324–4330.
Sen, S.; Patil, S.; Argyropoulos, D. S. Thermal properties of lignin in copolymers, blends, and composites: A review. Green Chem. 2015, 17, 4862–4887.
Chio, C.; Sain, M.; Qin, W. S. Lignin utilization: A review of lignin depolymerization from various aspects. Renew. Sustainable Energy Rev. 2019, 107, 232–249.
Meng, Y.; Lu, J.; Cheng, Y.; Li, Q.; Wang, H. S. Lignin-based hydrogels: A review of preparation, properties, and application. Int. J. Biol. Macromol. 2019, 135, 1006–1019.
Park, S.; Kim, S. H.; Kim, J. H.; Yu, H.; Kim, H. J.; Yang, Y. H.; Kim, H.; Kim, Y. H.; Ha, S. H.; Lee, S. H. Application of cellulose/lignin hydrogel beads as novel supports for immobilizing lipase. J. Mol. Catal. B Enzym. 2015, 119, 33–39.
Huang, T.; Xu, H. G.; Jiao, K. X.; Zhu, L. P.; Brown, H. R.; Wang, H. L. A novel hydrogel with high mechanical strength: A macromolecular microsphere composite hydrogel. Adv. Mater. 2007, 19, 1622–1626.
Chen, Y.; Zheng, K.; Niu, L.; Zhang, Y. T.; Liu, Y. P.; Wang, C. P.; Chu, F. X. Highly mechanical properties nanocomposite hydrogels with biorenewable lignin nanoparticles. Int. J. Biol. Macromol. 2019, 128, 414–420.
You, X. Y.; Wang, X. L.; Zhang, H. J.; Cui, K. P.; Zhang, A. K.; Wang, L. P.; Yadav, C.; Li, X. P. Supertough lignin hydrogels with multienergy dissipative structures and ultrahigh antioxidative activities. ACS Appl. Mater. Interfaces 2020, 12, 39892–39901.
Dabbaghi, A.; Ramazani, A.; Farshchi, N.; Rezaei, A.; Bodaghi, A.; Rezayati, S. Synthesis, physical and mechanical properties of amphiphilic hydrogels based on polycaprolactone and polyethylene glycol for bioapplications: A review. J. Ind. Eng. Chem. 2021, 101, 307–323.
Gullapalli, R. P.; Mazzitelli, C. L. Polyethylene glycols in oral and parenteral formulations—A critical review. Int. J. Pharmaceut. 2015, 496, 219–239.
D’souza, A. A.; Shegokar, R. Polyethylene glycol (PEG): A versatile polymer for pharmaceutical applications. Exp. Opin. Drug Deliv. 2016, 13, 1257–1275.
Bakaic, E.; Smeets, N. M. B.; Hoare, T. Injectable hydrogels based on poly(ethylene glycol) and derivatives as functional biomaterials. RSC Adv. 2015, 5, 35469–35486.
Kim, S.; Regitsky, A. U.; Song, J.; Ilavsky, J.; McKinley, G. H.; Holten-Andersen, N. In situ mechanical reinforcement of polymer hydrogels via metal-coordinated crosslink mineralization. Nat. Commun 2021, 12, 667.
Kausar, A. Poly(acrylic acid) nanocomposites: Design of advanced materials. J. Plast. Film Sheet. 2021, 37, 409–428.
Anjum, S.; Gurave, P.; Badiger, M. V.; Torris, A.; Tiwari, N.; Gupta, B. Design and development of trivalent aluminum ions induced self healing polyacrylic acid novel hydrogels. Polymer 2017, 126, 196–205.
Cheng, Y. Z.; Hu, Y. C.; Xu, M. J.; Qin, M.; Lan, W. W.; Huang, D.; Wei, Y.; Chen, W. Y. High strength polyvinyl alcohol/polyacrylic acid (PVA/PAA) hydrogel fabricated by cold–drawn method for cartilage tissue substitutes. J. Biomater. Sci. Polym. Ed. 2020, 31, 1836–1851.
Jing, X.; Mi, H. Y.; Peng, X. F.; Turng, L. S. Biocompatible, self-healing, highly stretchable polyacrylic acid/reduced graphene oxide nanocomposite hydrogel sensors via mussel-inspired chemistry. Carbon 2018, 136, 63–72.
Zhang, C.; Wu, B. H.; Zhou, Y. S.; Zhou, F.; Liu, W. M.; Wang, Z. K. Mussel-inspired hydrogels: From design principles to promising applications. Chem. Soc. Rev. 2020, 49, 3605–3637.
Teodorescu, M.; Bercea, M.; Morariu, S. Biomaterials of PVA and PVP in medical and pharmaceutical applications: Perspectives and challenges. Biotechnol. Adv. 2019, 37, 109–131.
Klemm, D.; Kramer, F.; Moritz, S.; Lindström, T.; Ankerfors, M.; Gray, D.; Dorris, A. Nanocelluloses: A new family of nature-based materials. Angew. Chem., Int. Ed. 2011, 50, 5438–5466.
Gong, Z. Y.; Zhang, G. P.; Zeng, X. L.; Li, J. H.; Li, G.; Huang, W. P.; Sun, R.; Wong, C. High-strength, tough, fatigue resistant, and self-healing hydrogel based on dual physically cross-linked network. ACS Appl. Mater. Interfaces 2016, 8, 24030–24037.
Xu, R. N.; Ma, S. H.; Lin, P.; Yu, B.; Zhou, F.; Liu, W. M. High strength astringent hydrogels using protein as the building block for physically cross-linked multi-network. ACS Appl. Mater. Interfaces 2018, 10, 7593–7601.
Chen, W.; Li, N.; Ma, Y.; Minus, M. L.; Benson, K.; Lu, X. L.; Wang, X. Z.; Ling, X.; Zhu, H. L. Superstrong and tough hydrogel through physical cross-linking and molecular alignment. Biomacromolecules 2019, 20, 4476–4484.
Shao, L.; Li, Y.; Ma, Z. L.; Bai, Y.; Wang, J.; Zeng, P. Y.; Gong, P.; Shi, F. X.; Ji, Z. Y.; Qiao, Y. et al. Highly sensitive strain sensor based on a stretchable and conductive poly(vinyl alcohol)/phytic acid/NH2-POSS hydrogel with a 3D microporous structure. ACS Appl. Mater. Interfaces 2020, 12, 26496–26508.
Zhao, N. N.; Wu, F.; Xing, Y.; Qu, W. J.; Chen, N.; Shang, Y. X.; Yan, M. X.; Li, Y. J.; Li, L.; Chen, R. J. Flexible hydrogel electrolyte with superior mechanical properties based on poly(vinyl alcohol) and bacterial cellulose for the solid-state zinc-air batteries. ACS Appl. Mater. Interfaces 2019, 11, 15537–15542.
Joo, H.; Han, H.; Cho, S. Fabrication of poly (vinyl alcohol)-polyaniline nanofiber/graphene hydrogel for high-performance coin cell supercapacitor. Polymers (Basel) 2020, 12, 928.
Liu, J.; Huang, J. W.; Cai, Q. P.; Yang, Y. X.; Luo, W. A.; Zeng, B. R.; Xu, Y. T.; Yuan, C. H.; Dai, L. Z. Design of slidable polymer networks: A rational strategy to stretchable, rapid self-healing hydrogel electrolytes for flexible supercapacitors. ACS Appl. Mater. Interfaces 2020, 12, 20479–20489.
Li, W. W.; Lu, H.; Zhang, N.; Ma, M. M. Enhancing the properties of conductive polymer hydrogels by freeze-thaw cycles for high-performance flexible supercapacitors. ACS Appl. Mater. Interfaces 2017, 9, 20142–20149.
Yang, J.; Yu, X. Q.; Sun, X. B.; Kang, Q.; Zhu, L.; Qin, G.; Zhou, A. G.; Sun, G. Z.; Chen, Q. Polyaniline-decorated supramolecular hydrogel with tough, fatigue-resistant, and self-healable performances for all-in-one flexible supercapacitors. ACS Appl. Mater. Interfaces 2020, 12, 9736–9745.
Deka, R.; Sarma, S.; Patar, P.; Gogoi, P.; Sarmah, J. K. Highly stable silver nanoparticles containing guar gum modified dual network hydrogel for catalytic and biomedical applications. Carbohydr. Polym. 2020, 248, 116786.
Ren, X. T.; Yang, Q. L.; Yang, D. G.; Liang, Y.; Dong, J. J.; Ren, Y. M.; Lu, X. L.; Xue, L. L.; Li, L.; Xu, L. K. High-strength double network hydrogels as potential materials for artificial 3D scaffold of cell migration in vitro. Colloids Surf. A Physicochem. Eng. Aspects 2018, 549, 50–57.
Zhou, X. H.; Wei, D. X.; Ye, H. M.; Zhang, X. C.; Meng, X. Y.; Zhou, Q. Development of poly(vinyl alcohol) porous scaffold with high strength and well ciprofloxacin release efficiency. Mater. Sci. Eng. C 2016, 67, 326–335.
Cho, H. K.; Cheong, I. W.; Lee, J. M.; Kim, J. H. Polymeric nanoparticles, micelles and polymersomes from amphiphilic block copolymer. Korean J. Chem. Eng. 2010, 27, 731–740.
Ha, J. C.; Kim, S. Y.; Lee, Y. M. Poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (pluronic)/poly(ε-caprolactone) (PCL) amphiphilic block copolymeric nanospheres: I. Preparation and characterization. J. Control. Release 1999, 62, 381–392.
Rösler, A.; Vandermeulen, G. W. M.; Klok, H. A. Advanced drug delivery devices via self-assembly of amphiphilic block copolymers. Adv. Drug Deliver. Rev. 2012, 64, 270–279.
Song, Z. Y.; Tan, Z. Z.; Cheng, J. J. Recent advances and future perspectives of synthetic polypeptides from N-carboxyanhydrides. Macromolecules 2019, 52, 8521–8539.
Bonduelle, C. Secondary structures of synthetic polypeptide polymers. Polym. Chem. 2018, 9, 1517–1529.
Macdougall, L. J.; Anseth, K. Bioerodible hydrogels based on photopolymerized poly(ethylene glycol)-co-poly(α-hydroxy acid) diacrylate macromers. Macromolecules 2020, 53, 2295–2298.
Patel, A.; Gaharwar, A. K.; Iviglia, G.; Zhang, H. B.; Mukundan, S.; Mihaila, S. M.; Demarchi, D.; Khademhosseini, A. Highly elastomeric poly(glycerol sebacate)-co-poly(ethylene glycol) amphiphilic block copolymers. Biomaterials 2013, 34, 3970–3983.
Song, P. G.; Wang, H. High-performance polymeric materials through hydrogen-bond cross-linking. Adv. Mater. 2020, 32, 1901244.
Nakamura, T.; Kaneko, Y.; Nishibori, E.; Nabeshima, T. Molecular recognition by multiple metal coordination inside wavy-stacked macrocycles. Nat. Commun. 2017, 8, 129.
Yu, H.; Xiao, Q. H.; Qi, G. L.; Chen, F. X.; Tu, B. Y.; Zhang, S.; Li, Y.; Chen, Y.; Yu, H.; Duan, P. A hydrogen bonds-crosslinked hydrogels with self-healing and adhesive properties for hemostatic. Front. Bioeng. Biotechnol. 2022, 10, 855013.
Gao, H.; Wang, N.; Hu, X. F.; Nan, W. J.; Han, Y. J.; Liu, W. G. Double hydrogen-bonding pH-sensitive hydrogels retaining high-strengths over a wide pH range. Macromol. Rapid Commun. 2013, 34, 63–68.
Liu, T.; Wang, F. F.; Wu, Q.; Chen, T. L.; Sun, P. C. Fluorescent, electrically responsive and ultratough self-healing hydrogels via bioinspired all-in-one hierarchical micelles. Mater. Horiz. 2021, 8, 3096–3104.
Dai, X. Y.; Zhang, Y. Y.; Gao, L. N.; Bai, T.; Wang, W.; Cui, Y. L.; Liu, W. G. A mechanically strong, highly stable, thermoplastic, and self-healable supramolecular polymer hydrogel. Adv. Mater. 2015, 27, 3566–3571.
Wang, Y. J.; Zhang, X. N.; Song, Y. H.; Zhao, Y. P.; Chen, L.; Su, F. M.; Li, L. B.; Wu, Z. L.; Zheng, Q. Ultrastiff and tough supramolecular hydrogels with a dense and robust hydrogen bond network. Chem. Mater. 2019, 31, 1430–1440.
You, Y. J.; Yang, J.; Zheng, Q.; Wu, N. K.; Lv, Z. D.; Jiang, Z. Q. Ultra-stretchable hydrogels with hierarchical hydrogen bonds. Sci. Rep. 2020, 10, 11727.
Chen, H.; Liu, Y. L.; Ren, B. P.; Zhang, Y. X.; Ma, J.; Xu, L. J.; Chen, Q.; Zheng, J. Super bulk and interfacial toughness of physically crosslinked double-network hydrogels. Adv. Funct. Mater. 2017, 27, 1703086.
Munim, S. A.; Raza, Z. A. Poly(lactic acid) based hydrogels: formation, characteristics and biomedical applications. J. Porous Mater. 2019, 26, 881–901.
Tang, Z. Q.; He, H. C.; Zhu, L.; Liu, Z. Z.; Yang, J.; Qin, G.; Wu, J.; Tang, Y. J.; Zhang, D.; Chen, Q. et al. A general protein unfolding−chemical coupling strategy for pure protein hydrogels with mechanically strong and multifunctional properties. Adv. Sci. (Weinh. ) 2022, 9, 2102557.
De Las Rivas, J.; Fontanillo, C. Protein−protein interaction networks: Unraveling the wiring of molecular machines within the cell. Brief. Funct. Genomics 2012, 11, 489–496.
Davari, N.; Bakhtiary, N.; Khajehmohammadi, M.; Sarkari, S.; Tolabi, H.; Ghorbani, F.; Ghalandari, B. Protein-based hydrogels: Promising materials for tissue engineering. Polymers (Basel) 2022, 14, 986.
Brito, A. F.; Pinney, J. W. Protein−protein interactions in virus−host systems. Front. Microbiol. 2017, 8, 1557.
Luo, J. R.; Sun, F. Calcium-responsive hydrogels enabled by inducible protein−protein interactions. Polym. Chem. 2020, 11, 4973–4977.
Peng, X. Q.; Wang, J. X.; Peng, W.; Wu, F. X.; Pan, Y. Protein−protein interactions: Detection, reliability assessment and applications. Brief. Bioinform. 2017, 18, 798–819.
Xie, W. J.; Cha, S.; Ohto, T.; Mizukami, W.; Mao, Y. Z.; Wagner, M.; Bonn, M.; Hunger, J.; Nagata, Y. Large hydrogen-bond mismatch between TMAO and urea promotes their hydrophobic association. Chem 2018, 4, 2615–2627.
Wei, D. D.; Yang, J.; Zhu, L.; Chen, F.; Tang, Z. Q.; Qin, G.; Chen, Q. Semicrystalline hydrophobically associated hydrogels with integrated high performances. ACS Appl. Mater. Interfaces 2018, 10, 2946–2956.
Na, R.; Liu, Y. D.; Lu, N.; Zhang, S. L.; Liu, F. Q.; Wang, G. B. Mechanically robust hydrophobic association hydrogel electrolyte with efficient ionic transport for flexible supercapacitors. Chem. Eng. J. 2019, 374, 738–747.
Jahandideh, A.; Moini, N.; Kabiri, K.; Zohuriaan-Mehr, M. J. A green strategy to endow superabsorbents with stretchability and self-healability. Chem. Eng. J. 2019, 370, 274–286.
Qin, Z. H.; Sun, X.; Yu, Q. Y.; Zhang, H. T.; Wu, X. J.; Yao, M. M.; Liu, W. W.; Yao, F. L.; Li, J. J. Carbon nanotubes/hydrophobically associated hydrogels as ultrastretchable, highly sensitive, stable strain, and pressure sensors. ACS Appl. Mater. Interfaces 2020, 12, 4944–4953.
Huang, H. Y.; Zhang, X. J.; Dong, Z. C.; Zhao, X.; Guo, B. L. Nanocomposite conductive tough hydrogel based on metal coordination reinforced covalent Pluronic F-127 micelle network for human motion sensing. J. Colloid Interface Sci. 2022, 625, 817–830.
Geng, H. M.; Zhang, P. Y.; Peng, Q. Y.; Cui, J. W.; Hao, J. C.; Zeng, H. B. Principles of cation-π interactions for engineering mussel-inspired functional materials. Acc. Chem. Res. 2022, 55, 1171–1182.
Dougherty, D. A. Cation-π interactions in chemistry and biology: A new view of benzene, Phe, Tyr, and Trp. Science 1996, 271, 163–168.
Qi, B.; Guo, X. Y.; Gao, Y. Y.; Li, D.; Luo, J. C.; Li, H.; Eghtesadi, S. A.; He, C.; Duan, C. Y.; Liu, T. B. Strong Co-ion effect via cation-π interaction on the self-assembly of metal–organic cationic macrocycles. J. Am. Chem. Soc. 2017, 139, 12020–12026.
Xie, L.; Gong, L.; Zhang, J. W.; Han, L. B.; Xiang, L.; Chen, J. S.; Liu, J. F.; Yan, B.; Zeng, H. B. A wet adhesion strategy via synergistic cation-π and hydrogen bonding interactions of antifouling zwitterions and mussel-inspired binding moieties. J. Mater. Chem. A 2019, 7, 21944–21952.
Fan, H. L.; Wang, J. H.; Gong, J. P. Barnacle cement proteins-inspired tough hydrogels with robust, long-lasting, and repeatable underwater adhesion. Adv. Funct. Mater. 2021, 31, 2009334.
Lu, S. C.; Zhang, X. H.; Tang, Z. W.; Xiao, H.; Zhang, M.; Liu, K.; Chen, L. H.; Huang, L. L.; Ni, Y. H.; Wu, H. Mussel-inspired blue-light-activated cellulose-based adhesive hydrogel with fast gelation, rapid haemostasis and antibacterial property for wound healing. Chem. Eng. J. 2021, 417, 129329.
Dong, H. F.; Wang, L. Y.; Du, L.; Wang, X.; Li, Q.; Wang, X. Y.; Zhang, J.; Nie, J.; Ma, G. P. Smart polycationic hydrogel dressing for dynamic wound healing. Small 2022, 18, 2201620.
Mihajlovic, M.; Fermin, L.; Ito, K.; Van Nostrum, C. F.; Vermonden, T. Hyaluronic acid-based supramolecular hydrogels for biomedical applications. Multifunct. Mater. 2021, 4, 032001.
Charlet, A.; Lutz-Bueno, V.; Mezzenga, R.; Amstad, E. Shape retaining self-healing metal-coordinated hydrogels. Nanoscale 2021, 13, 4073–4084.
Sato, T.; Ebara, M.; Tanaka, S.; Asoh, T. A.; Kikuchi, A.; Aoyagi, T. Rapid self-healable poly(ethylene glycol) hydrogels formed by selective metal–phosphate interactions. Phys. Chem. Chem. Phys. 2013, 15, 10628–10635.
Zhang, K. Y.; Yuan, W. H.; Wei, K. C.; Yang, B. G.; Chen, X. Y.; Li, Z.; Zhang, Z. Y.; Bian, L. M. Highly dynamic nanocomposite hydrogels self-assembled by metal ion-ligand coordination. Small 2019, 15, 1900242.
Yang, J.; Xu, F.; Han, C. R. Metal ion mediated cellulose nanofibrils transient network in covalently cross-linked hydrogels: Mechanistic insight into morphology and dynamics. Biomacromolecules 2017, 18, 1019–1028.
Yang, J.; Li, M.; Wang, Y. F.; Wu, H.; Ji, N.; Dai, L.; Li, Y.; Xiong, L.; Shi, R.; Sun, Q. J. High-strength physically multi-cross-linked chitosan hydrogels and aerogels for removing heavy-metal ions. J. Agric. Food Chem. 2019, 67, 13648–13657.
Sun, W. X.; Xue, B.; Fan, Q. Y.; Tao, R. H.; Wang, C.; Wang, X.; Li, Y. R.; Qin, M.; Wang, W.; Chen, B. et al. Molecular engineering of metal coordination interactions for strong, tough, and fast-recovery hydrogels. Sci. Adv. 2020, 6, eaaz9531.
Ahmadi, F.; Oveisi, Z.; Samani, S. M.; Amoozgar, Z. Chitosan based hydrogels: Characteristics and pharmaceutical applications. Res. Pharm. Sci. 2015, 10, 1–16.
Kaneko, T.; Yamaoka, K.; Gong, J. P.; Osada, Y. Liquid-crystalline hydrogels. 1. Enhanced effects of incorporation of acrylic acid units on the liquid-crystalline ordering. Macromolecules 2000, 33, 412–418.
Zhang, Y. L.; Song, M. W.; Diao, Y. F.; Li, B. W.; Shi, L. Y.; Ran, R. Preparation and properties of polyacrylamide/polyvinyl alcohol physical double network hydrogel. RSC Adv. 2016, 6, 112468–112476.
Hennink, W. E.; Van Nostrum, C. F. Novel crosslinking methods to design hydrogels. Adv. Drug Deliv. Rev. 2002, 54, 13–36.
Sharma, S.; Tiwari, S. A review on biomacromolecular hydrogel classification and its applications. Int. J. Biol. Macromol. 2020, 162, 737–747.
Lin, S. T.; Liu, X. Y.; Liu, J.; Yuk, H.; Loh, H. C.; Parada, G. A.; Settens, C.; Song, J.; Masic, A.; McKinley, G. H. et al. Anti-fatigue-fracture hydrogels. Sci. Adv. 2019, 5, eaau8528.
Hu, W. K.; Wang, Z. J.; Xiao, Y.; Zhang, S. M.; Wang, J. L. Advances in crosslinking strategies of biomedical hydrogels. Biomater. Sci. 2019, 7, 843–855.
Zheng, Y.; Pan, P. J. Crystallization of biodegradable and biobased polyesters: Polymorphism, cocrystallization, and structure−property relationship. Progr. Polym. Sci. 2020, 109, 101291.
Jing, Y. H.; Quan, C. Y.; Liu, B.; Jiang, Q.; Zhang, C. A mini review on the functional biomaterials based on poly(lactic acid) stereocomplex. Polym. Rev. 2016, 56, 262–286.
Zhao, Y.; Song, S. L.; Ren, X. Z.; Zhang, J. Z.; Lin, Q.; Zhao, Y. L. Supramolecular adhesive hydrogels for tissue engineering applications. Chem. Rev. 2022, 122, 5604–5640.
Nakahata, M.; Takashima, Y.; Yamaguchi, H.; Harada, A. Redox-responsive self-healing materials formed from host–guest polymers. Nat. ure Commun. ications 2011, 2, 511.
Ueda, C.; Park, J.; Hirose, K.; Konishi, S.; Ikemoto, Y.; Osaki, M.; Yamaguchi, H.; Harada, A.; Tanaka, M.; Watanabe, G. et al. Behavior of supramolecular cross-links formed by host–guest interactions in hydrogels responding to water contents. Supramol. Mater. 2022, 1, 100001.
Xiao, T. X.; Xu, L. X.; Zhou, L.; Sun, X. Q.; Lin, C.; Wang, L. Y. Dynamic hydrogels mediated by macrocyclic host–guest interactions. J. Mater. Chem. B 2019, 7, 1526–1540.
Yang, L. L.; Tan, X. X.; Wang, Z. Q.; Zhang, X. Supramolecular polymers: Historical development, preparation, characterization, and functions. Chem. Rev. 2015, 115, 7196–7239.
Yu, G. C.; Jie, K. C.; Huang, F. H. Supramolecular amphiphiles based on host–guest molecular recognition motifs. Chem. Rev. 2015, 115, 7240–7303.
Appel, E. A.; del Barrio, J.; Loh, X. J.; Scherman, O. A. Supramolecular polymeric hydrogels. Chem. Soc. Rev. 2012, 41, 6195–6214.
Zhang, J. X.; Ma, P. X. Cyclodextrin-based supramolecular systems for drug delivery: Recent progress and future perspective. Adv. Drug Del. Rev. 2013, 65, 1215–1233.
Chen, G. S.; Jiang, M. Cyclodextrin-based inclusion complexation bridging supramolecular chemistry and macromolecular self-assembly. Chem. Soc. Rev. 2011, 40, 2254–2266.
Dai, W. L.; Zhang, L. W.; Yu, Y. J.; Yan, W. Q.; Zhao, F. Y.; Fan, Y. F.; Cao, C. X.; Cai, Q.; Hu, X. Q.; Ao, Y. F. 3D bioprinting of heterogeneous constructs providing tissue-specifict–guest modulated dynamic hydrogel bioink for osteochondral regeneration. Adv. Funct. Mater. 2022, 32, 2200710.
Harada, A.; Takashima, Y.; Nakahata, M. Supramolecular polymeric materials via cyclodextrin–guest interactions. Acc. Chem. Res. 2014, 47, 2128–2140.
Miyamae, K.; Nakahata, M.; Takashima, Y.; Harada, A. Self-healing, expansion–contraction, and shape–memory properties of a preorganized supramolecular hydrogel through host–guest interactions. Angew. Chem., Int. Ed. 2015, 54, 8984–8987.
Kakuta, T.; Takashima, Y.; Nakahata, M.; Otsubo, M.; Yamaguchi, H.; Harada, A. Preorganized hydrogel: Self-healing properties of supramolecular hydrogels formed by polymerization of host–guest-monomers that contain cyclodextrins and hydrophobic guest groups. Adv. Mater. 2013, 25, 2849–2853.
Wang, Z. F.; An, G.; Zhu, Y.; Liu, X. M.; Chen, Y. H.; Wu, H. K.; Wang, Y. J.; Shi, X. T.; Mao, C. B. 3D-printable self-healing and mechanically reinforced hydrogels with host–guest non-covalent interactions integrated into covalently linked networks. Mater Horiz 2019, 6, 733–742.
Hou, N.; Wang, R.; Geng, R.; Wang, F.; Jiao, T. F.; Zhang, L. X.; Zhou, J. X.; Bai, Z. H.; Peng, Q. M. Facile preparation of self-assembled hydrogels constructed from poly-cyclodextrin and poly-adamantane as highly selective adsorbents for wastewater treatment. Soft Matter 2019, 15, 6097–6106.
Bai, X.; Lü, S. Y.; Cao, Z.; Gao, C. M.; Duan, H. G.; Xu, X. B.; Sun, L.; Gao, N. N.; Feng, C.; Liu, M. Z. Self-reinforcing injectable hydrogel with both high water content and mechanical strength for bone repair. Chem. Eng. J. 2016, 288, 546–556.
Aliaga, M. E.; García-Río, L.; Pessêgo, M.; Montecinos, R.; Fuentealba, D.; Uribe, I.; Martín-Pastor, M.; García-Beltrán, O. Host–guest interaction of coumarin-derivative dyes and cucurbit[7]uril: Leading to the formation of supramolecular ternary complexes with mercuric ions. New J. Chem. 2015, 39, 3084–3092.
Lee, J. W.; Samal, S.; Selvapalam, N.; Kim, H. J.; Kim, K. Cucurbituril homologues and derivatives: New opportunities in supramolecular chemistry. Acc. Chem. Res. 2003, 36, 621–630.
Ma, X.; Zhao, Y. L. Biomedical applications of supramolecular systems based on host–guest interactions. Chem. Rev. 2015, 115, 7794–7839.
Appel, E. A.; Biedermann, F.; Rauwald, U.; Jones, S. T.; Zayed, J. M.; Scherman, O. A. Supramolecular cross-linked networks via host−guest complexation with cucurbit[8]uril. J. Am. Chem. Soc. 2010, 132, 14251–14260.
Zhang, X.; Wang, C. Supramolecular amphiphiles. Chem. Soc. Rev. 2011, 40, 94–101.
Rauwald, U.; Biedermann, F.; Deroo, S.; Robinson, C. V.; Scherman, O. A. Correlating solution binding and ESI-MS stabilities by incorporating solvation effects in a confined cucurbit[8]uril system. J. Phys. Chem. B 2010, 114, 8606–8615.
Gangemi, C. M. A.; Puglisi, R.; Pappalardo, A.; Trusso Sfrazzetto, G. Supramolecular complexes for nanomedicine. Bioorg. Med. Chem. Lett. 2018, 28, 3290–3301.
Kim, J. S.; Quang, D. T. Calixarene-derived fluorescent probes. Chem. Rev. 2007, 107, 3780–3799.
Wang, K. P.; Chen, Y.; Liu, Y. A polycation-induced secondary assembly of amphiphilic calixarene and its multi-stimuli responsive gelation behavior. Chem. Commun. 2015, 51, 1647–1649.
Yao, X. Y.; Wang, X.; Jiang, T.; Ma, X.; Tian, H. Bis-p-sulfonatocalix[4]arene-based supramolecular amphiphiles with an emergent lower critical solution temperature behavior in aqueous solution and hydrogel. Langmuir 2015, 31, 13647–13654.
Guo, D. S.; Liu, Y. Calixarene-based supramolecular polymerization in solution. Chem. Soc. Rev. 2012, 41, 5907–5921.
Mao, H. L.; Wang, C.; Chang, X. H.; Cao, H. Q.; Shan, G. R.; Bao, Y. Z.; Pan, P. J. Poly(lactic acid)/poly(ethylene glycol) stereocomplexed physical hydrogels showing thermally-induced gel−sol−gel multiple phase transitions. Mater. Chem. Front. 2018, 2, 313–322.
Hiemstra, C.; Zhou, W.; Zhong, Z. Y.; Wouters, M.; Feijen, J. Rapidly in situ forming biodegradable robust hydrogels by combining stereocomplexation and photopolymerization. J. Am. Chem. Soc. 2007, 129, 9918–9926.
Li, Y.; Fukushima, K.; Coady, D. J.; Engler, A. C.; Liu, S. Q.; Huang, Y.; Cho, J. S.; Guo, Y.; Miller, L. S.; Tan, J. P. K. et al. Broad-spectrum antimicrobial and biofilm-disrupting hydrogels: Stereocomplex-driven supramolecular assemblies. Angew. Chem., Int. Ed. 2013, 52, 674–678.
Chung, H. J.; Lee, Y.; Park, T. G. Thermo-sensitive and biodegradable hydrogels based on stereocomplexed Pluronic multi-block copolymers for controlled protein delivery. J. Control. Release 2008, 127, 22–30.
Li, J. Y.; Suo, Z. G.; Vlassak, J. J. Stiff, strong, and tough hydrogels with good chemical stability. J. Mater. Chem. B 2014, 2, 6708–6713.
Gao, Y. S.; Peng, K.; Mitragotri, S. Covalently crosslinked hydrogels via step-growth reactions: Crosslinking chemistries, polymers, and clinical impact. Adv. Mater. 2021, 33, 2006362.
Buwalda, S. J.; Boere, K. W. M.; Dijkstra, P. J.; Feijen, J.; Vermonden, T.; Hennink, W. E. Hydrogels in a historical perspective: From simple networks to smart materials. J. Control. Release 2014, 190, 254–273.
Zhao, D.; Huang, J. C.; Zhong, Y.; Li, K.; Zhang, L. N.; Cai, J. High-strength and high-toughness double-cross-linked cellulose hydrogels: A new strategy using sequential chemical and physical cross-linking. Adv. Funct. Mater. 2016, 26, 6279–6287.
Huang, Y. Y.; Ren, J. S.; Qu, X. G. Nanozymes: Classification, catalytic mechanisms, activity regulation, and applications. Chem. Rev. 2019, 119, 4357–4412.
Sperinde, J. J.; Griffith, L. G. Synthesis and characterization of enzymatically-cross-linked poly(ethylene glycol) hydrogels. Macromolecules 1997, 30, 5255–5264.
Das, S.; Pati, F.; Choi, Y. J.; Rijal, G.; Shim, J. H.; Kim, S. W.; Ray, A. R.; Cho, D. W.; Ghosh, S. Bioprintable, cell-laden silk fibroin-gelatin hydrogel supporting multilineage differentiation of stem cells for fabrication of three-dimensional tissue constructs. Acta Biomater. 2015, 11, 233–246.
Xiang, B. B.; He, K. Y.; Zhu, R.; Liu, Z. L.; Zeng, S.; Huang, Y.; Nie, Z.; Yao, S. Z. Self-assembled DNA hydrogel based on enzymatically polymerized DNA for protein encapsulation and enzyme/DNAzyme hybrid cascade reaction. ACS Appl. Mater. Interfaces 2016, 8, 22801–22807.
Bai, J. K.; Chen, C. X.; Wang, J. X.; Zhang, Y.; Cox, H.; Zhang, J.; Wang, Y. M.; Penny, J.; Waigh, T.; Lu, J. R. et al. Enzymatic regulation of self-assembling peptide A9K2 nanostructures and hydrogelation with highly selective antibacterial activities. ACS Appl. Mater. Interfaces 2016, 8, 15093–15102.
Liang, Y. P.; Zhao, X.; Hu, T. L.; Han, Y.; Guo, B. L. Mussel-inspired, antibacterial, conductive, antioxidant, injectable composite hydrogel wound dressing to promote the regeneration of infected skin. J. Colloid Interface Sci. 2019, 556, 514–528.
Teixeira, L. S. M.; Feijen, J.; Van Blitterswijk, C. A.; Dijkstra, P. J.; Karperien, M. Enzyme-catalyzed crosslinkable hydrogels: Emerging strategies for tissue engineering. Biomaterials 2012, 33, 1281–1290.
Sun, C. K.; Ke, C. J.; Lin, Y. W.; Lin, F. H.; Tsai, T. H.; Sun, J. S. Transglutaminase cross-linked gelatin-alginate-antibacterial hydrogel as the drug delivery-coatings for implant-related infections. Polymers (Basel) 2021, 13, 414.
Yang, Z. M.; Liang, G. L.; Wang, L.; Xu, B. Using a kinase/phosphatase switch to regulate a supramolecular hydrogel and forming the supramolecular hydrogel in vivo. J. Am. Chem. Soc. 2006, 128, 3038–3043.
Yilmaz-Turan, S.; Lopez-Sanchez, P.; Jiménez-Quero, A.; Plivelic, T. S.; Vilaplana, F. Revealing the mechanisms of hydrogel formation by laccase crosslinking and regeneration of feruloylated arabinoxylan from wheat bran. Food Hydrocoll. 2022, 128, 107575.
Li, P. P.; Zhong, Y. B.; Wang, X.; Hao, J. C. Enzyme-regulated healable polymeric hydrogels. ACS Cent. Sci. 2020, 6, 1507–1522.
McHale, M. K.; Setton, L. A.; Chilkoti, A. Synthesis and in vitro evaluation of enzymatically cross-linked elastin-like polypeptide gels for cartilaginous tissue repair. Tissue Eng. 2005, 11, 1768–1779.
Lee, F.; Bae, K. H.; Kurisawa, M. Injectable hydrogel systems crosslinked by horseradish peroxidase. Biomed. Mater. 2015, 11, 014101.
Cui, L. L.; Li, J. K.; Guan, S. M.; Zhang, K. X.; Zhang, K.; Li, J. G. Injectable multifunctional CMC/HA-DA hydrogel for repairing skin injury. Mater. Today Bio. 2022, 14, 100257.
Rauner, N.; Meuris, M.; Zoric, M.; Tiller, J. C. Enzymatic mineralization generates ultrastiff and tough hydrogels with tunable mechanics. Nature 2017, 543, 407–410.
Mantha, S.; Pillai, S.; Khayambashi, P.; Upadhyay, A.; Zhang, Y. L.; Tao, O. W.; Pham, H. M.; Tran, S. D. Smart hydrogels in tissue engineering and regenerative medicine. Materials (Basel) 2019, 12, 3323.
Gan, D. L.; Shuai, T.; Wang, X.; Huang, Z. Q.; Ren, F. Z.; Fang, L. M.; Wang, K. F.; Xie, C. M.; Lu, X. Mussel-inspired redox-active and hydrophilic conductive polymer nanoparticles for adhesive hydrogel bioelectronics. Nano-Micro Lett. 2020, 12, 169.
Dong, Z.; Wang, Y.; Wen, D.; Peng, J.; Zhao, L.; Zhai, M. L. Recent progress in environmental applications of functional adsorbent prepared by radiation techniques: A review. J. Hazard. Mater. 2022, 424, 126887.
Naikwadi, A. T.; Sharma, B. K.; Bhatt, K. D.; Mahanwar, P. A. Gamma radiation processed polymeric materials for high performance applications: A review. Front. Chem. 2022, 10, 837111.
Fekete, T.; Borsa, J.; Takács, E.; Wojnárovits, L. Synthesis and characterization of superabsorbent hydrogels based on hydroxyethylcellulose and acrylic acid. Carbohydr. Polym. 2017, 166, 300–308.
Lin, T. R.; Bai, Q. W.; Peng, J.; Xu, L.; Li, J. Q.; Zhai, M. L. One-step radiation synthesis of agarose/polyacrylamide double-network hydrogel with extremely excellent mechanical properties. Carbohydr. Polym. 2018, 200, 72–81.
Singh, B.; Kumar, A. Hydrogel formation by radiation induced crosslinked copolymerization of acrylamide onto moringa gum for use in drug delivery applications. Carbohydr. Polym. 2018, 200, 262–270.
Brown, T. E.; Anseth, K. S. Spatiotemporal hydrogel biomaterials for regenerative medicine. Chem. Soc. Rev. 2017, 46, 6532–6552.
Hu, J. S.; Zhang, P. F.; An, W. J.; Liu, L.; Liang, Y. H.; Cui, W. Q. In-situ Fe-doped g-C3N4 heterogeneous catalyst via photocatalysis-Fenton reaction with enriched photocatalytic performance for removal of complex wastewater. Appl. Catal. B Environ. 2019, 245, 130–142.
Fouassier, J. P.; Allonas, X.; Burget, D. Photopolymerization reactions under visible lights: Principle, mechanisms and examples of applications. Progr. Organ. Coat. 2003, 47, 16–36.
Qi, C.; Liu, J.; Jin, Y.; Xu, L. M.; Wang, G. B.; Wang, Z.; Wang, L. Photo-crosslinkable, injectable sericin hydrogel as 3D biomimetic extracellular matrix for minimally invasive repairing cartilage. Biomaterials 2018, 163, 89–104.
Nicol, E. Photopolymerized porous hydrogels. Biomacromolecules 2021, 22, 1325–1345.
Hu, X. Y.; Wang, Y. M.; Zhang, L. L.; Xu, M.; Zhang, J. F.; Dong, W. Photopatterned salecan composite hydrogel reinforced with α-Mo2C nanoparticles for cell adhesion. Carbohydr. Polym. 2018, 199, 119–128.
Zhao, L.; Zhao, J. Z.; Zhang, F.; Xu, Z. J.; Chen, F.; Shi, Y. T.; Hou, C.; Huang, Y. C.; Lin, C. J.; Yu, R. et al. Highly stretchable, adhesive, and self-healing silk fibroin-dopted hydrogels for wearable sensors. Adv. Healthcare Mater. 2021, 10, 2002083.
Lee, S. H.; Lee, Y.; Lee, S. W.; Ji, H. Y.; Lee, J. H.; Lee, D. S.; Park, T. G. Enzyme-mediated cross-linking of Pluronic copolymer micelles for injectable and in situ forming hydrogels. Acta Biomater. 2011, 7, 1468–1476.
Raia, N. R.; Partlow, B. P.; McGill, M.; Kimmerling, E. P.; Ghezzi, C. E.; Kaplan, D. L. Enzymatically crosslinked silk-hyaluronic acid hydrogels. Biomaterials 2017, 131, 58–67.
Sakai, S.; Komatani, K.; Taya, M. Glucose-triggered co-enzymatic hydrogelation of aqueous polymer solutions. RSC Adv. 2012, 2, 1502–1507.
Jeong, J. O.; Baik, J.; An, S. J.; Jeong, S. I.; Lee, J. Y.; Lim, Y. M.; Park, J. S. Development and characterization of cross-linked poly(acrylic acid) hydrogel containing drug by radiation-based techniques. Preprints 2018, 2018010028.
Kundu, J.; Poole-Warren, L. A.; Martens, P.; Kundu, S. C. Silk fibroin/poly(vinyl alcohol) photocrosslinked hydrogels for delivery of macromolecular drugs. Acta Biomater. 2012, 8, 1720–1729.
Tang, S. C.; Richardson, B. M.; Anseth, K. S. Dynamic covalent hydrogels as biomaterials to mimic the viscoelasticity of soft tissues. Progr. Mater. Sci. 2021, 120, 100738.
Kumar, G. S.; Lin, Q. Light-triggered click chemistry. Chem. Rev. 2021, 121, 6991–7031.
Levandowski, B. J.; Raines, R. T. Click chemistry with cyclopentadiene. Chem. Rev. 2021, 121, 6777–6801.
Hao, Y.; Fowler, E. W.; Jia, X. Q. Chemical synthesis of biomimetic hydrogels for tissue engineering. Polym. Int. 2017, 66, 1787–1799.
Collins, J.; Xiao, Z. Y.; Müllner, M.; Connal, L. A. The emergence of oxime click chemistry and its utility in polymer science. Polym. Chem. 2016, 7, 3812–3826.
Kirchhof, S.; Strasser, A.; Wittmann, H. J.; Messmann, V.; Hammer, N.; Goepferich, A. M.; Brandl, F. P. New insights into the cross-linking and degradation mechanism of Diels–Alder hydrogels. J. Mater. Chem. B 2015, 3, 449–457.
Muir, V. G.; Burdick, J. A. Chemically modified biopolymers for the formation of biomedical hydrogels. Chem. Rev. 2021, 121, 10908–10949.
Nimmo, C. M.; Owen, S. C.; Shoichet, M. S. Diels–alder click cross-linked hyaluronic acid hydrogels for tissue engineering. Biomacromolecules 2011, 12, 824–830.
Belowich, M. E.; Stoddart, J. F. Dynamic imine chemistry. Chem. Soc. Rev. 2012, 41, 2003–2024.
Talebian, S.; Mehrali, M.; Taebnia, N.; Pennisi, C. P.; Kadumudi, F. B.; Foroughi, J.; Hasany, M.; Nikkhah, M.; Akbari, M.; Orive, G. et al. Self-healing hydrogels: The next paradigm shift in tissue engineering? Adv. Sci. 2019, 6, 1801664.
Guo, B. L.; Qu, J.; Zhao, X.; Zhang, M. Y. Degradable conductive self-healing hydrogels based on dextran-graft-tetraaniline and N-carboxyethyl chitosan as injectable carriers for myoblast cell therapy and muscle regeneration. Acta Biomater. 2019, 84, 180–193.
Truong, V. X.; Barner-Kowollik, C. Red-light driven photocatalytic oxime ligation for bioorthogonal hydrogel design. ACS Macro Lett. 2021, 10, 78–83.
Grover, G. N.; Lam, J.; Nguyen, T. H.; Segura, T.; Maynard, H. D. Biocompatible hydrogels by oxime click chemistry. Biomacromolecules 2012, 13, 3013–3017.
Kalia, J.; Raines, R. T. Hydrolytic stability of hydrazones and oximes. Angew. Chem., Int. Ed. 2008, 47, 7523–7526.
Xu, B. W.; Han, F. L.; Pei, X. Q.; Zhang, S. J.; Zhao, J. B. Concise and efficient self-healing cross-linked polyurethanes via the blocking/deblocking reaction of oxime urethanes. Ind. Eng. Chem. Res. 2021, 60, 11095–11105.
Mukherjee, S.; Hill, M. R.; Sumerlin, B. S. Self-healing hydrogels containing reversible oxime crosslinks. Soft Matter 2015, 11, 6152–6161.
Liu, R. R.; Wen, S. X.; Sun, Y.; Yan, B. J.; Wang, J. W.; Chen, L.; Peng, S. Y.; Ma, C.; Cao, X. Y.; Ma, C. X. et al. A nanoclay enhanced amidoxime-functionalized double-network hydrogel for fast and massive uranium recovery from seawater. Chem. Eng. J. 2021, 422, 130060.
Ulrich, S.; Boturyn, D.; Marra, A.; Renaudet, O.; Dumy, P. Oxime ligation: A chemoselective click-type reaction for accessing multifunctional biomolecular constructs. Chem.—Eur. J. 2014, 20, 34–41.
Wang, S. J.; Gurav, D.; Oommen, O. P.; Varghese, O. P. Insights into the mechanism and catalysis of oxime coupling chemistry at physiological pH. Chem.—Eur. J. 2015, 21, 5980–5985.
Lin, F.; Yu, J. Y.; Tang, W.; Zheng, J. K.; Defante, A.; Guo, K.; Wesdemiotis, C.; Becker, M. L. Peptide-functionalized oxime hydrogels with tunable mechanical properties and gelation behavior. Biomacromolecules 2013, 14, 3749–3758.
Yang, X. F.; Liu, G. Q.; Peng, L.; Guo, J. H.; Tao, L.; Yuan, J. Y.; Chang, C. Y.; Wei, Y.; Zhang, L. N. Highly efficient self-healable and dual responsive cellulose-based hydrogels for controlled release and 3D cell culture. Adv. Funct. Mater. 2017, 27, 1703174.
Lehn, J. M. Dynamers: Dynamic molecular and supramolecular polymers. Progr. Polym. Sci. 2005, 30, 814–831.
Sharma, P. K.; Taneja, S.; Singh, Y. Hydrazone-linkage-based self-healing and injectable xanthan-poly(ethylene glycol) hydrogels for controlled drug release and 3D cell culture. ACS Appl. Mater. Interfaces 2018, 10, 30936–30945.
Jiang, X. Y.; Yang, X. F.; Yang, B. G.; Zhang, L. N.; Lu, A. Highly self-healable and injectable cellulose hydrogels via rapid hydrazone linkage for drug delivery and 3D cell culture. Carbohydr. Polym. 2021, 273, 118547.
Summonte, S.; Racaniello, G. F.; Lopedota, A.; Denora, N.; Bernkop-Schnürch, A. Thiolated polymeric hydrogels for biomedical application: Cross-linking mechanisms. J. Control. Release 2021, 330, 470–482.
Jin, R.; Teixeira, L. S. M.; Krouwels, A.; Dijkstra, P. J.; Van Blitterswijk, C. A.; Karperien, M.; Feijen, J. Synthesis and characterization of hyaluronic acid-poly(ethylene glycol) hydrogels via Michael addition: An injectable biomaterial for cartilage repair. Acta Biomater. 2010, 6, 1968–1977.
Ye, B. H.; Meng, L.; Li, Z. W.; Li, R. W.; Li, L. H.; Lu, L.; Ding, S.; Tian, J. H.; Zhou, C. R. A facile method to prepare polysaccharide-based in-situ formable hydrogels with antibacterial ability. Mater. Lett. 2016, 183, 81–84.
Quadrado, R. F. N.; Macagnan, K. L.; Moreira, A. S.; Fajardo, A. R. Chitosan-based hydrogel crosslinked through an aza-Michael addition catalyzed by boric acid. Int. J. Biol. Macromol. 2021, 193, 1032–1042.
Jin, Y. H.; Yu, C.; Denman, R. J.; Zhang, W. Recent advances in dynamic covalent chemistry. Chem. Soc. Rev. 2013, 42, 6634–6654.
Peppas, N. A. Turbidimetric studies of aqueous poly(vinyl alcohol) solutions. Die Makromol. Chem. 2003, 176, 3433–3440.
Huang, Z. J.; Delparastan, P.; Burch, P.; Cheng, J.; Cao, Y.; Messersmith, P. B. Injectable dynamic covalent hydrogels of boronic acid polymers cross-linked by bioactive plant-derived polyphenols. Biomater. Sci. 2018, 6, 2487–2495.
Guo, R. W.; Su, Q.; Zhang, J. W.; Dong, A. J.; Lin, C. G.; Zhang, J. H. Facile access to multisensitive and self-healing hydrogels with reversible and dynamic boronic ester and disulfide linkages. Biomacromolecules 2017, 18, 1356–1364.
Góngora-Benítez, M.; Tulla-Puche, J.; Albericio, F. Multifaceted roles of disulfide bonds. Peptides as therapeutics. Chem. Rev. 2014, 114, 901–926.
Tran, V. T.; Mredha, M. T. I.; Na, J. Y.; Seon, J. K.; Cui, J.; Jeon, I. Multifunctional poly(disulfide) hydrogels with extremely fast self-healing ability and degradability. Chem. Eng. J. 2020, 394, 124941.
Otsuka, H.; Nagano, S.; Kobashi, Y.; Maeda, T.; Takahara, A. A dynamic covalent polymer driven by disulfide metathesis under photoirradiation. Chem. Commun. 2010, 46, 1150–1152.
Janarthanan, G.; Shin, H. S.; Kim, I. G.; Ji, P.; Chung, E. J.; Lee, C.; Noh, I. Self-crosslinking hyaluronic acid-carboxymethylcellulose hydrogel enhances multilayered 3D-printed construct shape integrity and mechanical stability for soft tissue engineering. Biofabrication 2020, 12, 045026.
Jiang, Z.; Diggle, B.; Shackleford, I. C. G.; Connal, L. A. Tough, self-healing hydrogels capable of ultrafast shape changing. Adv. Mater. 2019, 31, 1904956.
Wang, Y.; Chen, Q. B.; Chen, M.; Guan, Y.; Zhang, Y. J. PHEMA hydrogel films crosslinked with dynamic disulfide bonds: Synthesis, swelling-induced mechanical instability and self-healing. Polym. Chem. 2019, 10, 4844–4851.
Cai, L. L.; Liu, S.; Guo, J. W.; Jia, Y. G. Polypeptide-based self-healing hydrogels: Design and biomedical applications. Acta Biomater. 2020, 113, 84–100.
Sharma, P. C.; Sharma, D.; Sharma, A.; Saini, N.; Goyal, R.; Ola, M.; Chawla, R.; Thakur, V. K. Hydrazone comprising compounds as promising anti-infective agents: Chemistry and structure−property relationship. Mater. Today Chem. 2020, 18, 100349.
Sun, H.; He, Y.; Wang, Z. H.; Liang, Q. L. An Insight into skeletal networks analysis for smart hydrogels. Adv. Funct. Mater. 2022, 32, 2108489.
Zhao, X. H. Multi-scale multi-mechanism design of tough hydrogels: Building dissipation into stretchy networks. Soft Matter 2014, 10, 672–687.
Gu, Z. D.; Chen, L.; Xu, Y. C.; Liu, Y. S.; Zhao, Z. G.; Zhao, C. Q.; Lei, W. W.; Rong, Q. F.; Fang, R. C.; Zhao, T. Y. et al. General strategy to fabricate highly filled microcomposite hydrogels with high mechanical strength and stiffness. ACS Appl. Mater. Interfaces 2018, 10, 4161–4167.
Lin, P.; Zhang, T. T.; Wang, X. L.; Yu, B.; Zhou, F. Freezing molecular orientation under stretch for high mechanical strength but anisotropic hydrogels. Small 2016, 12, 4386–4392.
Liu, D. P.; Yin, G. Q.; Le, X. X.; Chen, T. Supramolecular topological hydrogels: From material design to applications. Polym. Chem. 2022, 13, 1940–1952.
Qu, Z. Y.; Cheng, S. Z. D.; Zhang, W. B. Macromolecular topology engineering. Trends Chem. 2021, 3, 402–415.
Peak, C. W.; Wilker, J. J.; Schmidt, G. A review on tough and sticky hydrogels. Colloid Polym. Sci. 2013, 291, 2031–2047.
Cintron-Cruz, J. A.; Freedman, B. R.; Lee, M.; Johnson, C.; Ijaz, H.; Mooney, D. J. Rapid ultratough topological tissue adhesives. Adv. Mater. 2022, 34, 2205567.
Wang, C. Y.; Zhang, J.; Chen, H.; Wang, Z. F.; Huang, C. H.; Tan, Y. B. Supramolecular topology controlled self-healing conformal hydrogels for stable human–machine interfaces. J. Mater. Chem. C 2022, 10, 8077–8088.
Liu, C.; Morimoto, N.; Jiang, L.; Kawahara, S.; Noritomi, T.; Yokoyama, H.; Mayumi, K.; Ito, K. Tough hydrogels with rapid self-reinforcement. Science 2021, 372, 1078–1081.
Jiang, L.; Liu, C.; Mayumi, K.; Kato, K.; Yokoyama, H.; Ito, K. Highly stretchable and instantly recoverable slide-ring gels consisting of enzymatically synthesized polyrotaxane with low host coverage. Chem. Mater. 2018, 30, 5013–5019.
Sajjadi, M.; Ahmadpoor, F.; Nasrollahzadeh, M.; Ghafuri, H. Lignin-derived (nano)materials for environmental pollution remediation: Current challenges and future perspectives. Int. J. Biol. Macromol. 2021, 178, 394–423.
Hua, J. C.; Ng, P. F.; Fei, B. High-strength hydrogels: Microstructure design, characterization and applications. J. Polym. Sci. Part B Polym. Phys. 2018, 56, 1325–1335.
Santoro, M.; Tatara, A. M.; Mikos, A. G. Gelatin carriers for drug and cell delivery in tissue engineering. J. Control. Release 2014, 190, 210–218.
Gu, Z. P.; Huang, K. Q.; Luo, Y.; Zhang, L. B.; Kuang, T. R.; Chen, Z.; Liao, G. C. Double network hydrogel for tissue engineering. WIREs Nanomed. Nanobiotechnol. 2018, 10, e1520.
Liu, S. J.; Li, L. Recoverable and self-healing double network hydrogel based on κ-carrageenan. ACS Appl. Mater. Interfaces 2016, 8, 29749–29758.
Zhao, X.; Liang, Y. P.; Huang, Y.; He, J. H.; Han, Y.; Guo, B. L. Physical double-network hydrogel adhesives with rapid shape adaptability, fast self-healing, antioxidant and NIR/pH stimulus-responsiveness for multidrug-resistant bacterial infection and removable wound dressing. Adv. Funct. Mater. 2020, 30, 1910748.
Gong, J. P. Why are double network hydrogels so tough? Soft Matter 2010, 6, 2583–2590.
Nakajima, T.; Hoshino, K. I.; Guo, H. L.; Kurokawa, T.; Gong, J. P. Experimental verification of the balance between elastic pressure and ionic osmotic pressure of highly swollen charged gels. Gels 2021, 7, 39.
Sun, J. Y.; Zhao, X. H.; Illeperuma, W. R. K.; Chaudhuri, O.; Oh, K. H.; Mooney, D. J.; Vlassak, J. J.; Suo, Z. G. Highly stretchable and tough hydrogels. Nature 2012, 489, 133–136.
Chen, H.; Yang, F. Y.; Hu, R. D.; Zhang, M. Z.; Ren, B. P.; Gong, X.; Ma, J.; Jiang, B. B.; Chen, Q.; Zheng, J. A comparative study of the mechanical properties of hybrid double-network hydrogels in swollen and as-prepared states. J. Mater. Chem. B 2016, 4, 5814–5824.
Zhou, L. J.; Wang, Z. W.; Wu, C. S.; Cong, Y.; Zhang, R.; Fu, J. Highly sensitive pressure and strain sensors based on stretchable and recoverable ion-conductive physically cross-linked double-network hydrogels. ACS Appl. Mater. Interfaces 2020, 12, 51969–51977.
Yang, J.; Kang, Q.; Zhang, B.; Fang, X. H.; Liu, S. Z.; Qin, G.; Chen, Q. Strong, tough, anti-freezing, non-drying and sensitive ionic sensor based on fully physical cross-linked double network hydrogel. Mater. Sci. Eng. C 2021, 130, 112452.
Bai, R. B.; Yang, Q. S.; Tang, J. D.; Morelle, X. P.; Vlassak, J.; Suo, Z. G. Fatigue fracture of tough hydrogels. Extreme Mech. Lett. 2017, 15, 91–96.
Argun, A.; Can, V.; Altun, U.; Okay, O. Nonionic double and triple network hydrogels of high mechanical strength. Macromolecules 2014, 47, 6430–6440.
Song, X. C.; Guo, J.; Liu, Y. F.; Li, F.; Yang, Q.; Guan, F. C.; Di, C. Q. Preparation and characterization of multi-network hydrogels based on sodium alginate/krill protein/polyacrylamide—Strength, shape memory, conductivity and biocompatibility. Int. J. Biol. Macromol. 2022, 207, 140–151.
Naficy, S.; Razal, J. M.; Spinks, G. M.; Wallace, G. G.; Whitten, P. G. Electrically conductive, tough hydrogels with pH sensitivity. Chem. Mater. 2012, 24, 3425–3433.
Li, X. H.; Tang, C. J.; Liu, D.; Yuan, Z. F.; Hung, H. C.; Luozhong, S.; Gu, W. C.; Wu, K.; Jiang, S. Y. High-strength and nonfouling zwitterionic triple-network hydrogel in saline environments. Adv. Mater. 2021, 33, 2102479.
Liu, F. F.; Liu, X.; Gu, H. B. Multi-network poly(β-cyclodextrin)/PVA/gelatin/carbon nanotubes composite hydrogels constructed by multiple dynamic crosslinking as flexible electronic devices. Macromol. Mater. Eng. 2022, 307, 2100724.
Pan, J. Z.; Jin, Y.; Lai, S. Q.; Shi, L. J.; Fan, W. H.; Shen, Y. C. An antibacterial hydrogel with desirable mechanical, self-healing and recyclable properties based on triple-physical crosslinking. Chem. Eng. J. 2019, 370, 1228–1238.
Millar, J. R. 263. Interpenetrating polymer networks. Styrene-divinylbenzene copolymers with two and three interpenetrating networks, and their sulphonates. J. Chem. Soc. (Resumed) 1960, 1311–1317.
Wang, J. J.; Wei, J. Interpenetrating network hydrogels with high strength and transparency for potential use as external dressings. Mater. Sci. Eng. C 2017, 80, 460–467.
Dragan, E. S. Design and applications of interpenetrating polymer network hydrogels. A review. Chem. Eng. J. 2014, 243, 572–590.
Matricardi, P.; Di Meo, C.; Coviello, T.; Hennink, W. E.; Alhaique, F. Interpenetrating polymer networks polysaccharide hydrogels for drug delivery and tissue engineering. Adv. Drug Deliv. Rev. 2013, 65, 1172–1187.
Tong, X. M.; Yang, F. Engineering interpenetrating network hydrogels as biomimetic cell niche with independently tunable biochemical and mechanical properties. Biomaterials 2014, 35, 1807–1815.
Maleki, L.; Edlund, U.; Albertsson, A. C. Synthesis of full interpenetrating hemicellulose hydrogel networks. Carbohydr. Polym. 2017, 170, 254–263.
Zhao, D. W.; Feng, M.; Zhang, L.; He, B.; Chen, X. Y.; Sun, J. Facile synthesis of self-healing and layered sodium alginate/polyacrylamide hydrogel promoted by dynamic hydrogen bond. Carbohydr. Polym. 2021, 256, 117580.
Bootsma, K.; Fitzgerald, M. M.; Free, B.; Dimbath, E.; Conjerti, J.; Reese, G.; Konkolewicz, D.; Berberich, J. A.; Sparks, J. L. 3D printing of an interpenetrating network hydrogel material with tunable viscoelastic properties. J. Mech. Behav. Biomed. Mater. 2017, 70, 84–94.
Qian, Y. N.; Zheng, Y. J.; Jin, J.; Wu, X.; Xu, K. J.; Dai, M. L.; Niu, Q.; Zheng, H.; He, X. J.; Shen, J. L. Immunoregulation in diabetic wound repair with a photoenhanced glycyrrhizic acid hydrogel scaffold. Adv. Mater. 2022, 34, 2200521.
Park, S.; Edwards, S.; Hou, S. J.; Boudreau, R.; Yee, R.; Jeong, K. J. A multi-interpenetrating network (IPN) hydrogel with gelatin and silk fibroin. Biomater. Sci. 2019, 7, 1276–1280.
Haraguchi, K.; Takehisa, T. Nanocomposite hydrogels: A unique organic−inorganic network structure with extraordinary mechanical, optical, and swelling/de-swelling properties. Adv. Mater. 2002, 14, 1120–1124.
Motealleh, A.; Kehr, N. S. Nanocomposite hydrogels and their applications in tissue engineering. Adv. Healthcare Mater. 2017, 6, 1600938.
Yao, C.; Liu, Z.; Yang, C.; Wang, W.; Ju, X. J.; Xie, R.; Chu, L. Y. Poly(N-isopropylacrylamide)-clay nanocomposite hydrogels with responsive bending property as temperature-controlled manipulators. Adv. Funct. Mater. 2015, 25, 2980–2991.
Deng, Z. X.; Hu, T. L.; Lei, Q.; He, J. K.; Ma, P. X.; Guo, B. L. Stimuli-responsive conductive nanocomposite hydrogels with high stretchability, self-healing, adhesiveness, and 3D printability for human motion sensing. ACS Appl. Mater. Interfaces 2019, 11, 6796–6808.
Ha, J. H.; Lim, J. H.; Kim, J. W.; Cho, H. Y.; Jo, S. G.; Lee, S. H.; Eom, J. Y.; Lee, J. M.; Chung, B. G. Conductive gelma-collagen-agnw blended hydrogel for smart actuator. Polymers (Basel) 2021, 13, 1217.
Hu, X.; Lu, L. L.; Xu, C.; Li, X. S. Mechanically tough biomacromolecular IPN hydrogel fibers by enzymatic and ionic crosslinking. Int. J. Biol. Macromol. 2015, 72, 403–409.
Xavier, J. R.; Thakur, T.; Desai, P.; Jaiswal, M. K.; Sears, N.; Cosgriff-Hernandez, E.; Kaunas, R.; Gaharwar, A. K. Bioactive nanoengineered hydrogels for bone tissue engineering: A growth-factor-free approach. ACS Nano 2015, 9, 3109–3118.
Yu, Y. H.; Yi, P.; Xu, W. B.; Sun, X.; Deng, G.; Liu, X. F.; Shui, J. L.; Yu, R. H. Environmentally tough and stretchable MXene organohydrogel with exceptionally enhanced electromagnetic interference shielding performances. Nano-Micro Lett. 2022, 14, 77.
Mehrali, M.; Thakur, A.; Pennisi, C. P.; Talebian, S.; Arpanaei, A.; Nikkhah, M.; Dolatshahi-Pirouz, A. Nanoreinforced hydrogels for tissue engineering: Biomaterials that are compatible with load-bearing and electroactive tissues. Adv. Mater. 2017, 29, 1603612.
Li, X.; Ji, G. H.; Zhang, H. Phase transitions of macromolecular microsphere composite hydrogels based on the stochastic Cahn–Hilliard equation. J. Comput. Phys. 2015, 283, 81–97.
Zhai, P. S.; Peng, X. X.; Li, B. Q.; Liu, Y. P.; Sun, H. C.; Li, X. W. The application of hyaluronic acid in bone regeneration. Int. J. Biol. Macromol. 2020, 151, 1224–1239.
Li, J. L.; Jia, X.; Yin, L. J. Hydrogel: Diversity of structures and applications in food science. Food Rev. Int. 2021, 37, 313–372.
Zhao, W.; Duan, L. J.; Zhang, B. Y.; Ren, X. Y.; Gao, G. H. Tough and ultrastretchable hydrogels reinforced by poly(butyl acrylate-co-acrylonitrile) latex microspheres as crosslinking centers for hydrophobic association. Polymer 2017, 112, 333–341.
Voorhaar, L.; Hoogenboom, R. Supramolecular polymer networks: Hydrogels and bulk materials. Chem. Soc. Rev. 2016, 45, 4013–4031.
Hu, Y.; Wu, X. Y.; Xu, J. R. Self-assembled supramolecular hydrogels formed by biodegradable PLA/CS diblock copolymers and β-cyclodextrin for controlled dual drug delivery. Int. J. Biol. Macromol. 2018, 108, 18–23.
Webber, M. J.; Appel, E. A.; Meijer, E. W.; Langer, R. Supramolecular biomaterials. Nat. Mater. 2016, 15, 13–26.
Takashima, Y.; Hatanaka, S.; Otsubo, M.; Nakahata, M.; Kakuta, T.; Hashidzume, A.; Yamaguchi, H.; Harada, A. Expansion-contraction of photoresponsive artificial muscle regulated by host–guest interactions. Nat. Commun. 2012, 3, 1270.
Zhang, Q.; Xu, Z. Y.; Zhang, X. P.; Liu, C. J.; Yang, R.; Sun, Y. G.; Zhang, Y. H.; Liu, W. G. 3D printed high-strength supramolecular polymer hydrogel-cushioned radially and circumferentially oriented meniscus substitute. Adv. Funct. Mater. 2022, 32, 2200360.
Omar, J.; Ponsford, D.; Dreiss, C. A.; Lee, T. C.; Loh, X. J. Supramolecular hydrogels: Design strategies and contemporary biomedical applications. Chem.—Asian J. 2022, 17, e202200081.
Wang, K. F.; Wang, H.; Li, J. J.; Liang, Y. J.; Xie, X. Q.; Liu, J. P.; Gu, C. N.; Zhang, Y. F.; Zhang, G.; Liu, C. S. Super-stretchable and extreme temperature-tolerant supramolecular-polymer double-network eutectogels with ultrafast in situ adhesion and flexible electrochromic behaviour. Mater. Horiz. 2021, 8, 2520–2532.
Wu, X. J.; Sun, H.; Qin, Z. H.; Che, P. C.; Yi, X.; Yu, Q. Y.; Zhang, H. T.; Sun, X.; Yao, F. L.; Li, J. J. Fully physically crosslinked pectin-based hydrogel with high stretchability and toughness for biomedical application. Int. J. Biol. Macromol. 2020, 149, 707–716.
Liu, S. J.; Li, L. Ultrastretchable and self-healing double-network hydrogel for 3D printing and strain sensor. ACS Appl. Mater. Interfaces 2017, 9, 26429–26437.
Yang, B. W.; Yuan, W. Z. Highly stretchable and transparent double-network hydrogel ionic conductors as flexible thermal-mechanical dual sensors and electroluminescent devices. ACS Appl. Mater. Interfaces 2019, 11, 16765–16775.
Lin, T. R.; Shi, M. N.; Huang, F. R.; Peng, J.; Bai, Q. W.; Li, J. Q.; Zhai, M. L. One-pot synthesis of a double-network hydrogel electrolyte with extraordinarily excellent mechanical properties for a highly compressible and bendable flexible supercapacitor. ACS Appl. Mater. Interfaces 2018, 10, 29684–29693.
Zhang, G. Y.; Chen, S.; Peng, Z. F.; Shi, W.; Liu, Z. L.; Shi, H.; Luo, K. Y.; Wei, G. H.; Mo, H. Q.; Li, B. et al. Topologically enhanced dual-network hydrogels with rapid recovery for low-hysteresis, self-adhesive epidemic electronics. ACS Appl. Mater. Interfaces 2021, 13, 12531–12540.
Guo, H.; Mussault, C.; Brûlet, A.; Marcellan, A.; Hourdet, D.; Sanson, N. Thermoresponsive toughening in LCST-type hydrogels with opposite topology: From structure to fracture properties. Macromolecules 2016, 49, 4295–4306.
Huang, J. H.; Zhao, L.; Wang, T.; Sun, W. X.; Tong, Z. NIR-triggered rapid shape memory PAM-GO-gelatin hydrogels with high mechanical strength. ACS Appl. Mater. Interfaces 2016, 8, 12384–12392.
Feig, V. R.; Tran, H.; Lee, M.; Bao, Z. N. Mechanically tunable conductive interpenetrating network hydrogels that mimic the elastic moduli of biological tissue. Nat. Commun. 2018, 9, 2740.
Zhu, P.; Deng, Y. H.; Wang, C. Y. Graphene/cyclodextrin-based nanocomposite hydrogel with enhanced strength and thermo-responsive ability. Carbohydr. Polym. 2017, 174, 804–811.
Jiang, F. Z.; Huang, T.; He, C. C.; Brown, H. R.; Wang, H. L. Interactions affecting the mechanical properties of macromolecular microsphere composite hydrogels. J. Phys. Chem. B 2013, 117, 13679–13687.
Zhao, J.; Jiao, K. X.; Yang, J.; He, C. C.; Wang, H. L. Mechanically strong and thermosensitive macromolecular microsphere composite poly(N-isopropylacrylamide) hydrogels. Polymer 2013, 54, 1596–1602.
Ge, S. J.; Li, J. J.; Geng, J.; Liu, S. N.; Xu, H.; Gu, Z. Z. Adjustable dual temperature-sensitive hydrogel based on a self-assembly cross-linking strategy with highly stretchable and healable properties. Mater. Horiz. 2021, 8, 1189–1198.
Wang, H. B.; Wu, Y. H.; Cui, C. Y.; Yang, J. H.; Liu, W. G. Antifouling super water absorbent supramolecular polymer hydrogel as an artificial vitreous body. Adv. Sci. 2018, 5, 1800711.
Gao, F.; Xu, Z. Y.; Liang, Q. F.; Li, H. F.; Peng, L. Q.; Wu, M. M.; Zhao, X. L.; Cui, X.; Ruan, C. S.; Liu, W. G. Osteochondral regeneration with 3D-printed biodegradable high-strength supramolecular polymer reinforced-gelatin hydrogel scaffolds. Adv. Sci. 2019, 6, 1900867.
Kapoor, S.; Kundu, S. C. Silk protein-based hydrogels: Promising advanced materials for biomedical applications. Acta Biomater. 2016, 31, 17–32.
Rahmani, P.; Shojaei, A. A review on the features, performance and potential applications of hydrogel-based wearable strain/pressure sensors. Adv. Colloid Interface Sci. 2021, 298, 102553.
Maleki, A.; He, J. H.; Bochani, S.; Nosrati, V.; Shahbazi, M. A.; Guo, B. L. Multifunctional photoactive hydrogels for wound healing acceleration. ACS Nano 2021, 15, 18895–18930.
Pina, S.; Oliveira, J. M.; Reis, R. L. Natural-based nanocomposites for bone tissue engineering and regenerative medicine: A review. Adv. Mater. 2015, 27, 1143–1169.
Nan, J. Y.; Chen, Y.; Li, R. T.; Wang, J. F.; Liu, M. H.; Wang, C. P.; Chu, F. X. Polymeric hydrogel nanocapsules: A thermo and pH dual-responsive carrier for sustained drug release. Nano-Micro Lett. 2014, 6, 200–208.
Guo, B. S.; Hoshino, Y.; Gao, F.; Hayashi, K.; Miura, Y.; Kimizuka, N.; Yamada, T. Thermocells driven by phase transition of hydrogel nanoparticles. J. Am. Chem. Soc. 2020, 142, 17318–17322.
Zou, Y. L.; Chen, C.; Sun, Y. J.; Gan, S. C.; Dong, L. B.; Zhao, J. H.; Rong, J. H. Flexible, all-hydrogel supercapacitor with self-healing ability. Chem. Eng. J. 2021, 418, 128616.
Wu, Z. X.; Yang, X.; Wu, J. Conductive hydrogel- and organohydrogel-based stretchable sensors. ACS Appl. Mater. Interfaces 2021, 13, 2128–2144.
Zhao, S. Y.; Xia, D. W.; Li, M. H.; Cheng, D. Y.; Wang, K. L.; Meng, Y. S.; Chen, Z.; Bae, J. Self-healing and anti-CO2 hydrogels for flexible solid-state zinc-air batteries. ACS Appl. Mater. Interfaces 2021, 13, 12033–12041.
Huang, S. W.; Hou, L.; Li, T. Y.; Jiao, Y. C.; Wu, P. Y. Antifreezing hydrogel electrolyte with ternary hydrogen bonding for high-performance zinc-ion batteries. Adv. Mater. 2022, 34, 2110140.
Ye, T. T.; Wang, J. C.; Jiao, Y. D.; Li, L. H.; He, E.; Wang, L.; Li, Y. R.; Yun, Y. J.; Li, D.; Lu, J. et al. A tissue-like soft all-hydrogel battery. Adv. Mater. 2022, 34, 2105120.
Peng, P.; Zhou, J. Q.; Liang, L. R.; Huang, X.; Lv, H. C.; Liu, Z. X.; Chen, G. M. Regulating thermogalvanic effect and mechanical robustness via redox ions for flexible quasi-solid-state thermocells. Nano-Micro Lett. 2022, 14, 81.
He, Q.; Fang, G. Z.; Chang, Z.; Zhang, Y. F.; Zhou, S.; Zhou, M.; Chai, S. M.; Zhong, Y.; Cao, G. Z.; Liang, S. Q. et al. Building ultra-stable and low-polarization composite Zn anode interface via hydrated polyzwitterionic electrolyte construction. Nano-Micro Lett. 2022, 14, 93.
Yu, C. C.; Wang, C. Y.; Liu, X.; Jia, X. T.; Naficy, S.; Shu, K. W.; Forsyth, M.; Wallace, G. G. A cytocompatible robust hybrid conducting polymer hydrogel for use in a magnesium battery. Adv. Mater. 2016, 28, 9349–9355.
Zhao, F.; Bae, J.; Zhou, X. Y.; Guo, Y. H.; Yu, G. H. Nanostructured functional hydrogels as an emerging platform for advanced energy technologies. Adv. Mater. 2018, 30, 1801796.
Wang, Z. F.; Mo, F. N.; Ma, L. T.; Yang, Q.; Liang, G. J.; Liu, Z. X.; Li, H. F.; Li, N.; Zhang, H. Y.; Zhi, C. Y. Highly compressible cross-linked polyacrylamide hydrogel-enabled compressible Zn-MnO2 battery and a flexible battery-sensor system. ACS Appl. Mater. Interfaces 2018, 10, 44527–44534.
Lu, B.; Liu, F.; Sun, G. Q.; Gao, J.; Xu, T.; Xiao, Y. K.; Shao, C. X.; Jin, X. T.; Yang, H. S.; Zhao, Y. et al. Compact assembly and programmable integration of supercapacitors. Adv. Mater. 2020, 32, 1907005.
Wei, J. J.; Zhou, J.; Su, S. S.; Jiang, J. H.; Feng, J.; Wang, Q. G. Water-deactivated polyelectrolyte hydrogel electrolytes for flexible high-voltage supercapacitors. ChemSusChem 2018, 11, 3410–3415.
Chen, C. R.; Qin, H. L.; Cong, H. P.; Yu, S. H. A highly stretchable and real-time healable supercapacitor. Adv. Mater. 2019, 31, 1900573.
Campea, M. A.; Majcher, M. J.; Lofts, A.; Hoare, T. A review of design and fabrication methods for nanoparticle network hydrogels for biomedical, environmental, and industrial applications. Adv. Funct. Mater. 2021, 31, 2102355.
Tao, F.; Qin, L. M.; Wang, Z. K.; Pan, Q. M. Self-healable and cold-resistant supercapacitor based on a multifunctional hydrogel electrolyte. ACS Appl. Mater. Interfaces 2017, 9, 15541–15548.
Hu, S. M.; Han, J.; Shi, Z. J.; Chen, K.; Xu, N.; Wang, Y. F.; Zheng, R. Z.; Tao, Y. Z.; Sun, Q. J.; Wang, Z. L. et al. Biodegradable, super-strong, and conductive cellulose macrofibers for fabric-based triboelectric nanogenerator. Nano-Micro Lett. 2022, 14, 115.
Zhang, D.; Ren, B. P.; Zhang, Y. X.; Xu, L. J.; Huang, Q. Y.; He, Y.; Li, X. F.; Wu, J.; Yang, J. T.; Chen, Q. et al. From design to applications of stimuli-responsive hydrogel strain sensors. J. Mater. Chem. B 2020, 8, 3171–3191.
Lee, H. R.; Kim, C. C.; Sun, J. Y. Stretchable ionics—A promising candidate for upcoming wearable devices. Adv. Mater. 2018, 30, 1704403.
Lei, Z. Y.; Wang, Q. K.; Sun, S. T.; Zhu, W. C.; Wu, P. Y. A bioinspired mineral hydrogel as a self-healable, mechanically adaptable ionic skin for highly sensitive pressure sensing. Adv. Mater. 2017, 29, 1700321.
Le, X. X.; Lu, W.; Zhang, J. W.; Chen, T. Recent progress in biomimetic anisotropic hydrogel actuators. Adv. Sci. 2019, 6, 1801584.
Duan, X. Y.; Yu, J. Y.; Zhu, Y. X.; Zheng, Z. Q.; Liao, Q. H.; Xiao, Y. K.; Li, Y. Y.; He, Z. P.; Zhao, Y.; Wang, H. P. et al. Large-scale spinning approach to engineering knittable hydrogel fiber for soft robots. ACS Nano 2020, 14, 14929–14938.
Zhao, Y. S.; Lo, C. Y.; Ruan, L. C.; Pi, C. H.; Kim, C.; Alsaid, Y.; Frenkel, I.; Rico, R.; Tsao, T. C.; He, X. M. Somatosensory actuator based on stretchable conductive photothermally responsive hydrogel. Sci. Robot. 2021, 6, eabd5483.
Paikar, A.; Novichkov, A. I.; Hanopolskyi, A. I.; Smaliak, V. A.; Sui, X.; Kampf, N.; Skorb, E. V.; Semenov, S. N. Spatiotemporal regulation of hydrogel actuators by autocatalytic reaction networks. Adv. Mater 2022, 34, 2106816.
Ko, J.; Kim, D.; Song, Y.; Lee, S.; Kwon, M.; Han, S.; Kang, D.; Kim, Y.; Huh, J.; Koh, J. S. et al. Electroosmosis-driven hydrogel actuators using hydrophobic/hydrophilic layer-by-layer assembly-induced crack electrodes. ACS Nano 2020, 14, 11906–11918.
Jiang, Z.; Song, P. G. Strong and fast hydrogel actuators. Science 2022, 376, 245–245.
Han, L.; Lu, X.; Liu, K. Z.; Wang, K. F.; Fang, L. M.; Weng, L. T.; Zhang, H. P.; Tang, Y. H.; Ren, F. Z.; Zhao, C. C. et al. Mussel-inspired adhesive and tough hydrogel based on nanoclay confined dopamine polymerization. ACS Nano 2017, 11, 2561–2574.
He, J. H.; Zhang, Z. X.; Yang, Y. T.; Ren, F. G.; Li, J. P.; Zhu, S. J.; Ma, F.; Wu, R. Q.; Lv, Y.; He, G. et al. Injectable self-healing adhesive pH-responsive hydrogels accelerate gastric hemostasis and wound healing. Nano-Micro Lett. 2021, 13, 80.
Ming, Z.; Han, L.; Bao, M. Y.; Zhu, H. H.; Qiang, S. J.; Xue, S. B.; Liu, W. W. Living bacterial hydrogels for accelerated infected wound healing. Adv. Sci. (Weinh. ) 2021, 8, 2102545.
Yang, Z. F.; Huang, R. K.; Zheng, B. N.; Guo, W. T.; Li, C. K.; He, W. Y.; Wei, Y. Q.; Du, Y.; Wang, H. M.; Wu, D. C. et al. Highly stretchable, adhesive, biocompatible, and antibacterial hydrogel dressings for wound healing. Adv. Sci. 2021, 8, 2003627.
Liang, Y. P.; He, J. H.; Guo, B. L. Functional hydrogels as wound dressing to enhance wound healing. ACS Nano 2021, 15, 12687–12722.
Fang, H.; Wang, J. H.; Li, L.; Xu, L. Q.; Wu, Y. X.; Wang, Y.; Fei, X.; Tian, J.; Li, Y. A novel high-strength poly(ionic liquid)/PVA hydrogel dressing for antibacterial applications. Chem. Eng. J. 2019, 365, 153–164.
Guo, B. L.; Dong, R. N.; Liang, Y. P.; Li, M. Haemostatic materials for wound healing applications. Nat. Rev. Chem. 2021, 5, 773–791.
Seliktar, D. Designing cell-compatible hydrogels for biomedical applications. Science 2012, 336, 1124–1128.
Tan, G. Z.; Zhou, Y. G. Tunable 3D nanofiber architecture of polycaprolactone by divergence electrospinning for potential tissue engineering applications. Nano-Micro Lett. 2018, 10, 73.
Balakrishnan, B.; Banerjee, R. Biopolymer-based hydrogels for cartilage tissue engineering. Chem. Rev. 2011, 111, 4453–4474.
Zhao, X. H.; Chen, X. Y.; Yuk, H.; Lin, S. T.; Liu, X. Y.; Parada, G. Soft materials by design: Unconventional polymer networks give extreme properties. Chem. Rev. 2021, 121, 4309–4372.
Yang, Y. L.; Zhang, J. Y.; Liu, Z. Z.; Lin, Q. N.; Liu, X. L.; Bao, C. Y.; Wang, Y.; Zhu, L. Y. Tissue-integratable and biocompatible photogelation by the imine crosslinking reaction. Adv. Mater. 2016, 28, 2724–2730.
Zhong, L. Q.; Lu, Y.; Li, H. X.; Tao, Z. L.; Chen, J. High-performance aqueous sodium-ion batteries with hydrogel electrolyte and alloxazine/CMK-3 anode. ACS Sustain. Chem. Eng. 2018, 6, 7761–7768.
Yang, H. Z.; Ji, X. W.; Tan, Y. T.; Liu, Y.; Ran, F. Modified supramolecular carboxylated chitosan as hydrogel electrolyte for quasi-solid-state supercapacitors. J. Power Sources 2019, 441, 227174.
Chun, K. Y.; Seo, S.; Han, C. S. A wearable all-gel multimodal cutaneous sensor enabling simultaneous single-site monitoring of cardiac-related biophysical signals. Adv. Mater. 2022, 34, 2110082.
Li, X.; Cai, X. B.; Gao, Y. F.; Serpe, M. J. Reversible bidirectional bending of hydrogel-based bilayer actuators. J. Mater. Chem. B 2017, 5, 2804–2812.
Xue, X.; Hu, Y.; Deng, Y. H.; Su, J. C. Recent advances in design of functional biocompatible hydrogels for bone tissue engineering. Adv. Funct. Mater. 2021, 31, 2009432.
Wang, Z.; Zhang, Y. N.; Yin, Y. J.; Liu, J.; Li, P. R.; Zhao, Y. X.; Bai, D.; Zhao, H.; Han, X. L.; Chen, Q. M. High-strength and injectable supramolecular hydrogel self-assembled by monomeric nucleoside for tooth-extraction wound healing. Adv. Mater. 2022, 34, 2108300.
Xu, B.; Zheng, P. B.; Gao, F.; Wang, W.; Zhang, H. T.; Zhang, X. R.; Feng, X. Q.; Liu, W. G. A mineralized high strength and tough hydrogel for skull bone regeneration. Adv. Funct. Mater. 2017, 27, 1604327.
Liu, J. Y.; Pang, Y.; Zhang, S. Y.; Cleveland, C.; Yin, X. L.; Booth, L.; Lin, J. Q.; Lee, Y. A. L.; Mazdiyasni, H.; Saxton, S. et al. Triggerable tough hydrogels for gastric resident dosage forms. Nat. Commun. 2017, 8, 124.
Jung, H.; Kim, M. K.; Lee, J. Y.; Choi, S. W.; Kim, J. Adhesive hydrogel patch with enhanced strength and adhesiveness to skin for transdermal drug delivery. Adv. Funct. Mater. 2020, 30, 2004407.
Zhang, Y. Z.; Lee, K. H.; Anjum, D. H.; Sougrat, R.; Jiang, Q.; Kim, H.; Alshareef, H. N. MXenes stretch hydrogel sensor performance to new limits. Sci. Adv. 2018, 4, eaat0098.
Na, H.; Kang, Y. W.; Park, C. S.; Jung, S.; Kim, H. Y.; Sun, J. Y. Hydrogel-based strong and fast actuators by electroosmotic turgor pressure. Science 2022, 376, 301–307.
Yuk, H.; Lin, S. T.; Ma, C.; Takaffoli, M.; Fang, N. X.; Zhao, X. H. Hydraulic hydrogel actuators and robots optically and sonically camouflaged in water. Nat. Commun. 2017, 8, 14230.
Ma, L. T.; Chen, S. M.; Wang, D. H.; Yang, Q.; Mo, F. N.; Liang, G. J.; Li, N.; Zhang, H. Y.; Zapien, J. A.; Zhi, C. Y. Super-stretchable zinc-air batteries based on an alkaline-tolerant dual-network hydrogel electrolyte. Adv. Energy Mater. 2019, 9, 1803046.
Zhu, R. J.; Yang, H. J.; Cui, W.; Fadillah, L.; Huang, T. H.; Xiong, Z. T.; Tang, C. M.; Kowalski, D.; Kitano, S.; Zhu, C. Y. et al. High strength hydrogels enable dendrite-free Zn metal anodes and high-capacity Zn-MnO2 batteries via a modified mechanical suppression effect. J. Mater. Chem. A 2022, 10, 3122–3133.
Wang, K.; Zhang, X.; Li, C.; Sun, X. Z.; Meng, Q. H.; Ma, Y. W.; Wei, Z. X. Chemically crosslinked hydrogel film leads to integrated flexible supercapacitors with superior performance.
Zhu, X. Q.; Ji, C. C.; Meng, Q. Q.; Mi, H. Y.; Yang, Q.; Li, Z. X.; Yang, N. J.; Qiu, J. S. Freeze-tolerant hydrogel electrolyte with high strength for stable operation of flexible zinc-ion hybrid supercapacitors. Small 2022, 18, 2200055.
Liu, X. Y.; Inda, M. E.; Lai, Y.; Lu, T. K.; Zhao, X. H. Engineered living hydrogels.
Liu, X. J.; Gao, M.; Chen, J. Y.; Guo, S.; Zhu, W.; Bai, L. C.; Zhai, W. Z.; Du, H. J.; Wu, H.; Yan, C. Z. et al. Recent advances in stimuli-responsive shape-morphing hydrogels.
Yu, R.; Zhang, H. L.; Guo, B. L. Conductive biomaterials as bioactive wound dressing for wound healing and skin tissue engineering. Nano-Micro Lett. 2022, 14, 1.
Hu, B. H.; Owh, C.; Chee, P. L.; Leow, W. R.; Liu, X.; Wu, Y. L.; Guo, P. Z.; Loh, X. J.; Chen, X. D. Supramolecular hydrogels for antimicrobial therapy.
Zhang, W.; Feng, P.; Chen, J.; Sun, Z. M.; Zhao, B. X. Electrically conductive hydrogels for flexible energy storage systems.