Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Controlled C–N configurations, i.e., pyrrolic-N, pyridinic-N, and graphitic-N, are promising strategies to tailor the carbon dots’ (CDs) optical properties into the first near infrared (NIR) window (650–900 nm), a responsive range for biomedical application. However, a deep understanding of the role of the C–N configuration in the CDs’ properties is still challenging and thought-provoking owing to their complex structure. Here, an underlying pyrrolic-N concentration and position effect on the pyrrolic-N-rich CDs’ absorption was comprehensively elucidated based on the integrated experimental and computational studies. The as-synthesized pyrrolic-N-rich CDs exhibit a first NIR window absorption centered at 650 nm with high photothermal conversion. Pyrrolic-N concentrations from 1.4% to 11.3% and positions (edge and mid-site) were systematically investigated. A mid-site pyrrolic-N was subsequently generated after the pyrrolic-N concentration more than 10%. Edge-site pyrrolic-N induces a frontier orbital hybridization, reducing bandgap energy, while mid-site pyrrolic-N plays a critical role in inducing a first NIR window absorption owing to their high charge transfer. Also, pyrrolic-N-rich CDs inherit a bowl-like topological feature, elevating the CDs’ layer thickness as much as 0.71 nm. This study shed light on the design and optimization of pyrrolic-N on CDs for the first NIR window responsive materials in any biomedical application.
Zhang, M. R.; Su, R. G.; Zhong, J.; Fei, L.; Cai, W.; Guan, Q. W.; Li, W. J.; Li, N.; Chen, Y. S.; Cai, L. L. et al. Red/orange dual-emissive carbon dots for pH sensing and cell imaging. Nano Res. 2019, 12, 815–821.
Yan, F. Y.; Jiang, Y. X.; Sun, X. D.; Wei, J. F.; Chen, L.; Zhang, Y. Y. Multicolor carbon dots with concentration-tunable fluorescence and solvent-affected aggregation states for white light-emitting diodes. Nano Res. 2020, 13, 52–60.
Bhattacharyya, S.; Ehrat, F.; Urban, P.; Teves, R.; Wyrwich, R.; Döblinger, M.; Feldmann, J.; Urban, A. S.; Stolarczyk, J. K. Effect of nitrogen atom positioning on the trade-off between emissive and photocatalytic properties of carbon dots. Nat. Commun. 2017, 8, 1401.
Zhang, Q.; Wang, R. Y.; Feng, B. W.; Zhong, X. X.; Ostrikov, K. Photoluminescence mechanism of carbon dots: Triggering high-color-purity red fluorescence emission through edge amino protonation. Nat. Commun. 2021, 12, 6856.
Saleem, U.; Permatasari, F. A.; Iskandar, F.; Ogi, T.; Okuyama, K.; Darma, Y.; Zhao, M.; Loh, K. P.; Rusydi, A.; Coquet, P. et al. Surface plasmon enhanced nitrogen-doped graphene quantum dot emission by single bismuth telluride nanoplates. Adv. Opt. Mater. 2017, 5, 1700176.
Yang, C. B.; Chan, K. K.; Xu, G. X.; Yin, M. J.; Lin, G. M.; Wang, X. M.; Lin, W. J.; Birowosuto, M. D.; Zeng, S. W.; Ogi, T. et al. Biodegradable polymer-coated multifunctional graphene quantum dots for light-triggered synergetic therapy of pancreatic cancer. ACS Appl. Mater. Interfaces 2019, 11, 2768–2781.
Han, Y.; Liu, H. M.; Fan, M.; Gao, S. T.; Fan, D. H.; Wang, Z. G.; Chang, J.; Zhang, J. C.; Ge, K. Near-infrared-II photothermal ultra-small carbon dots promoting anticancer efficiency by enhancing tumor penetration. J. Colloid Interface Sci. 2022, 616, 595–604.
Tian, B. S.; Liu, S. K.; Feng, L. L.; Liu, S. H.; Gai, S. L.; Dai, Y. L.; Xie, L. S.; Liu, B.; Yang, P. P.; Zhao, Y. L. Renal-clearable nickel-doped carbon dots with boosted photothermal conversion efficiency for multimodal imaging-guided cancer therapy in the second near-infrared biowindow. Adv. Funct. Mater. 2021, 31, 2100549.
Zhu, P.; Wang, S. Y.; Zhang, Y. Q.; Li, Y. P.; Liu, Y. P.; Li, W. J.; Wang, Y. Y.; Yan, X.; Luo, D. X. Carbon dots in biomedicine: A review. ACS Appl. Bio Mater. 2022, 5, 2031–2045.
Feng, Z.; Tang, T.; Wu, T. X.; Yu, X. M.; Zhang, Y. H.; Wang, M.; Zheng, J. Y.; Ying, Y. Y.; Chen, S. Y.; Zhou, J. et al. Perfecting and extending the near-infrared imaging window. Light Sci. Appl. 2021, 10, 197.
Ogi, T.; Aishima, K.; Permatasari, F. A.; Iskandar, F.; Tanabe, E.; Okuyama, K. Kinetics of nitrogen-doped carbon dot formation: Via hydrothermal synthesis. New J. Chem. 2016, 40, 5555–5561.
Permatasari, F. A.; Aimon, A. H.; Iskandar, F.; Ogi, T.; Okuyama, K. Role of C–N configurations in the photoluminescence of graphene quantum dots synthesized by a hydrothermal route. Sci. Rep. 2016, 6, 21042.
Hess, S. C.; Permatasari, F. A.; Fukazawa, H.; Schneider, E. M.; Balgis, R.; Ogi, T.; Okuyama, K.; Stark, W. J. Direct synthesis of carbon quantum dots in aqueous polymer solution: One-pot reaction and preparation of transparent UV-blocking films. J. Mater. Chem. A 2017, 5, 5187–5194.
Indriyati; Primadona, I.; Permatasari, F. A.; Irham, M. A.; Nasir, M.; Iskandar, F. Recent advances and rational design strategies of carbon dots towards highly efficient solar evaporation. Nanoscale 2021, 13, 7523–7532.
Umami, R.; Permatasari, F. A.; Muyassiroh, D. A. M.; Santika, A. S.; Sundari, C. D. D.; Ivansyah, A. L.; Ogi, T.; Iskandar, F. A rational design of carbon dots via the combination of nitrogen and oxygen functional groups towards the first NIR window absorption. J. Mater. Chem. C 2022, 10, 1394–1402.
Permatasari, F. A.; Fukazawa, H.; Ogi, T.; Iskandar, F.; Okuyama, K. Design of pyrrolic-N-rich carbon dots with absorption in the first near-infrared window for photothermal therapy. ACS Appl. Nano Mater. 2018, 1, 2368–2375.
Taspika, M.; Permatasari, F. A.; Nuryadin, B. W.; Mayangsari, T. R.; Aimon, A. H.; Iskandar, F. Simultaneous ultraviolet and first near-infrared window absorption of luminescent carbon dots/PVA composite film. RSC Adv. 2019, 9, 7375–7381.
Sun, S.; Zhang, L.; Jiang, K.; Wu, A. G.; Lin, H. W. Toward high-efficient red emissive carbon dots: Facile preparation, unique properties, and applications as multifunctional theranostic agents. Chem. Mater. 2016, 28, 8659–8668.
Li, D.; Han, D.; Qu, S. N.; Liu, L.; Jing, P. T.; Zhou, D.; Ji, W. Y.; Wang, X. Y.; Zhang, T. F.; Shen, D. Z. Supra-(carbon nanodots) with a strong visible to near-infrared absorption band and efficient photothermal conversion. Light Sci. Appl. 2016, 5, e16120.
Duan, Q. Q.; Si, S.; Sang, S. B.; Wang, J. L.; Zhang, B. Y.; Guan, Z. W.; Jia, M. Y.; Xue, J. J. Study on the photothermal performance of supra-(carbon nanodots) developed with dicyandiamide N-doped. Colloids Surfaces A Physicochem. Eng. Asp. 2022, 648, 129346.
Permatasari, F. A.; Nakul, F.; Mayangsari, T. R.; Aimon, A. H.; Nuryadin, B. W.; Bisri, S. Z.; Ogi, T.; Iskandar, F. Solid-state nitrogen-doped carbon nanoparticles with tunable emission prepared by a microwave-assisted method. RSC Adv. 2021, 11, 39917–39923.
Yu, J. K.; Yong, X.; Tang, Z. Y.; Yang, B.; Lu, S. Y. Theoretical understanding of structure–property relationships in luminescence of carbon dots. J. Phys. Chem. Lett. 2021, 12, 7671–7687.
Li, L.; Li, Y. T.; Ye, Y.; Guo, R. T.; Wang, A. N.; Zou, G. Q.; Hou, H. S.; Ji, X. B. Kilogram-scale synthesis and functionalization of carbon dots for superior electrochemical potassium storage. ACS Nano 2021, 15, 6872–6885.
Rigodanza, F.; Burian, M.; Arcudi, F.; Đorđević, L.; Amenitsch, H.; Prato, M. Snapshots into carbon dots formation through a combined spectroscopic approach. Nat. Commun. 2021, 12, 2640.
Sarkar, S.; Sudolská, M.; Dubecký, M.; Reckmeier, C. J.; Rogach, A. L.; Zbořil, R.; Otyepka, M. Graphitic nitrogen doping in carbon dots causes red-shifted absorption. J. Phys. Chem. C 2016, 120, 1303–1308.
Jabed, M. A.; Zhao, J. L.; Kilin, D.; Yu, T. Understanding of light absorption properties of the N-doped graphene oxide quantum dot with TD-DFT. J. Phys. Chem. C 2021, 125, 14979–14990.
Yang, M.; Lian, Z.; Si, C. W.; Li, B. Revealing the role of nitrogen dopants in tuning the electronic and optical properties of graphene quantum dots via a TD-DFT study. Phys. Chem. Chem. Phys. 2020, 22, 28230–28237.
Kundelev, E. V.; Tepliakov, N. V.; Leonov, M. Y.; Maslov, V. G.; Baranov, A. V.; Fedorov, A. V.; Rukhlenko, I. D.; Rogach, A. L. Amino functionalization of carbon dots leads to red emission enhancement. J. Phys. Chem. Lett. 2019, 10, 5111–5116.
Lu, T.; Chen, F. W. Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem. 2012, 33, 580–592.
Feng, J. G.; Guo, Q.; Song, N.; Liu, H. Y.; Dong, H. Z.; Chen, Y. J.; Yu, L. Y.; Dong, L. F. Density functional theory study on optical and electronic properties of co-doped graphene quantum dots based on different nitrogen doping patterns. Diam. Relat. Mater. 2021, 113, 108264.
Chen, S. W.; Ullah, N.; Zhang, R. Q. Engineering the excited state of graphitic carbon nitride nanostructures by covalently bonding with graphene quantum dots. Theor. Chem. Acc. 2020, 139, 20.
Cocchi, C.; Prezzi, D.; Ruini, A.; Caldas, M. J.; Molinari, E. Electronics and optics of graphene nanoflakes: Edge functionalization and structural distortions. J. Phys. Chem. C 2012, 116, 17328–17335.
Döring, A.; Ushakova, E.; Rogach, A. L. Chiral carbon dots: Synthesis, optical properties, and emerging applications. Light Sci. Appl. 2022, 11, 75.
Yuan, F. L.; Yuan, T.; Sui, L.; Wang, Z.; Xi, Z.; Li, Y.; Li, X.; Fan, L.; Tan, Z.; Chen, A. Engineering triangular carbon quantum dots with unprecedented narrow bandwidth emission for multicolored LEDs. Nat. Commun. 2018, 9, 2249.
Li, Y. H.; Shu, H. B.; Niu, X. H.; Wang, J. L. Electronic and optical properties of edge-functionalized graphene quantum dots and the underlying mechanism. J. Phys. Chem. C 2015, 119, 24950–24957.
Tian, K. S.; Wang, J. Y.; Cao, L.; Yang, W.; Guo, W. C.; Liu, S. H.; Li, W.; Wang, F. Y.; Li, X. A.; Xu, Z. P. et al. Single-site pyrrolic-nitrogen-doped sp2-hybridized carbon materials and their pseudocapacitance. Nat. Commun. 2020, 11, 3884.
Wang, H.; Haydel, P.; Sui, N.; Wang, L. N.; Liang, Y.; Yu, W. W. Wide emission shifts and high quantum yields of solvatochromic carbon dots with rich pyrrolic nitrogen. Nano Res. 2020, 13, 2492–2499.
Wu, S. H.; Zhou, R. H.; Chen, H. J.; Zhang, J. Y.; Wu, P. Highly efficient oxygen photosensitization of carbon dots: The role of nitrogen doping. Nanoscale 2020, 12, 5543–5553.
Cai, W.; Zhang, T.; Xu, M.; Zhang, M. R.; Guo, Y. J.; Zhang, L. P.; Street, J.; Ong, W. J.; Xu, Q. Full color carbon dots through surface engineering for constructing white light-emitting diodes. J. Mater. Chem. C 2019, 7, 2212–2218.
Bai, Y. L.; Zhao, J. J.; Wang, S. L.; Lin, T. R.; Ye, F. G.; Zhao, S. L. Carbon dots with absorption red-shifting for two-photon fluorescence imaging of tumor tissue pH and synergistic phototherapy. ACS Appl. Mater. Interfaces 2021, 13, 35365–35375.
Tetsuka, H.; Nagoya, A.; Fukusumi, T.; Matsui, T. Molecularly designed, nitrogen-functionalized graphene quantum dots for optoelectronic devices. Adv. Mater. 2016, 28, 4632–4638.
Ma, B.; Blanco, M.; Calvillo, L.; Chen, L. J.; Chen, G.; Lau, T. C.; Dražić, G.; Bonin, J.; Robert, M.; Granozzi, G. Hybridization of molecular and graphene materials for CO2 photocatalytic reduction with selectivity control. J. Am. Chem. Soc. 2021, 143, 8414–8425.
Chen, F.; Wu, X. L.; Shi, C. Y.; Lin, H. J.; Chen, J. R.; Shi, Y. P.; Wang, S. B.; Duan, X. G. Molecular engineering toward pyrrolic N-rich M-N4 (M = Cr, Mn, Fe, Co, Cu) single-atom sites for enhanced heterogeneous fenton-like reaction. Adv. Funct. Mater. 2021, 31, 2007877.
Feng, J. G.; Dong, H. Z.; Pang, B. L.; Shao, F. F.; Zhang, C. K.; Yu, L. Y.; Dong, L. F. Theoretical study on the optical and electronic properties of graphene quantum dots doped with heteroatoms. Phys. Chem. Chem. Phys. 2018, 20, 15244–15252.
Kim, B. G.; Ma, X.; Chen, C.; Ie, Y.; Coir, E. W.; Hashemi, H.; Aso, Y.; Green, P. F.; Kieffer, J.; Kim, J. Energy level modulation of HOMO, LUMO, and band-gap in conjugated polymers for organic photovoltaic applications. Adv. Funct. Mater. 2013, 23, 439–445.
Zhang, S. Y.; Gao, M. J.; Zhai, Y. P.; Wen, J. Q.; Yu, J. K.; He, T. W.; Kang, Z. H.; Lu, S. Y. Which kind of nitrogen chemical states doped carbon dots loaded by g-C3N4 is the best for photocatalytic hydrogen production. J. Colloid Interface Sci. 2022, 622, 662–674.
Guégan, F.; Pigeon, T.; De Proft, F.; Tognetti, V.; Joubert, L.; Chermette, H.; Ayers, P. W.; Luneau, D.; Morell, C. Understanding chemical selectivity through well selected excited states. J. Phys. Chem. A 2020, 124, 633–641.
De Medeiros, T. V.; Manioudakis, J.; Noun, F.; Macairan, J. R.; Victoria, F.; Naccache, R. Microwave-assisted synthesis of carbon dots and their applications. J. Mater. Chem. C 2019, 7, 7175–7195.
Song, L. Q.; Shi, J. J.; Lu, J.; Lu, C. Structure observation of graphene quantum dots by single-layered formation in layered confinement space. Chem. Sci. 2015, 6, 4846–4850.
Ren, Q. L.; Ga, L.; Ai, J. Rapid synthesis of highly fluorescent nitrogen-doped graphene quantum dots for effective detection of ferric ions and as fluorescent ink. ACS Omega 2019, 4, 15842–15848.
Kim, J. K.; Kim, S. J.; Park, M. J.; Bae, S.; Cho, S. P.; Du, Q. G.; Wang, D. H.; Park, J. H.; Hong, B. H. Surface-engineered graphene quantum dots incorporated into polymer layers for high performance organic photovoltaics. Sci. Rep. 2015, 5, 14276.
Wu, W. T.; Wu, H. X.; Zhong, M.; Guo, S. W. Dual role of graphene quantum dots in active layer of inverted bulk heterojunction organic photovoltaic devices. ACS Omega 2019, 4, 16159–16165.
Khojasteh, H.; Amiri, M.; Sohrabi, A.; Khanahmadzadeh, S.; Salavati-Niasari, M.; Moayedi, H. Synthesis of magnetically reusable Fe3O4/TiO2-N, P co-doped graphene quantum dot nancomposites using hexachlorocyclophosphazene; high photoluminance property and photocatalytic promoter. J. Mater. Res. Technol. 2020, 9, 1380–1388.
Parr, R. G.; Szentpály, L. V.; Liu, S. B. Electrophilicity index. J. Am. Chem. Soc. 1999, 121, 1922–1924.
Chattaraj, P. K.; Sarkar, U.; Roy, D. R. Electrophilicity index. Chem. Rev. 2006, 106, 2065–2091.
Abdelati, M. A.; Fadlallah, M. M.; Gamal, Y. E. E. D.; Maarouf, A. A. Pristine and holey graphene quantum dots: Optical properties using time independent and dependent density functional theory. Phys. E Low-Dimens. Syst. Nanostruct. 2021, 128, 114602.