AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

New insight into pyrrolic-N site effect towards the first NIR window absorption of pyrrolic-N-rich carbon dots

Fitri Aulia Permatasari1,2Reza Umami1Citra Deliana Dewi Sundari3,4Tirta Rona Mayangsari2,5Atthar Luqman Ivansyah3,6Fahdzi Muttaqien2,6,7,8Takashi Ogi9Ferry Iskandar1,2,8( )
Department of Physics, Faculty Mathematics and Natural Sciences, Institut Teknologi Bandung, Jalan Ganesha 10, Bandung, West Java 40132, Indonesia
Collaboration Research Center for Advanced Energy Materials, National Research and Innovation Agency - Institut Teknologi Bandung, Jalan Ganesha 10, Bandung, West Java 40132, Indonesia
Department of Chemistry, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung, West Java 40132, Indonesia
Department of Chemistry Education, UIN Sunan Gunung Djati Bandung, Jl. Cimincrang, Bandung, West Java 40292, Indonesia
Department of Chemistry, Universitas Pertamina, Jakarta 12220, Indonesia
Master Program in Computational Science, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung, West Java 40132, Indonesia
Instrumentation and Computational Physics Research Group, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung 40132, Indonesia
Research Center for Nanoscience and Nanotechnology, Institut Teknologi Bandung, Jalan Ganesha 10, Bandung, West Java 40132, Indonesia
Chemical Engineering Program, Department of Advanced Science and Engineering, Graduate School of Advanced Science and Engineering, Hiroshima University, Higashi-Hiroshima 739-8527, Japan
Show Author Information

Graphical Abstract

Pyrrolic-N-rich carbon dots exhibit a first near infrared (NIR) window absorption with high photothermal conversion of more than 50%. The mid-site pyrrolic-N is crucial to tailor the absorption spectrum and is entangled in the topological and electronic properties of carbon dots.

Abstract

Controlled C–N configurations, i.e., pyrrolic-N, pyridinic-N, and graphitic-N, are promising strategies to tailor the carbon dots’ (CDs) optical properties into the first near infrared (NIR) window (650–900 nm), a responsive range for biomedical application. However, a deep understanding of the role of the C–N configuration in the CDs’ properties is still challenging and thought-provoking owing to their complex structure. Here, an underlying pyrrolic-N concentration and position effect on the pyrrolic-N-rich CDs’ absorption was comprehensively elucidated based on the integrated experimental and computational studies. The as-synthesized pyrrolic-N-rich CDs exhibit a first NIR window absorption centered at 650 nm with high photothermal conversion. Pyrrolic-N concentrations from 1.4% to 11.3% and positions (edge and mid-site) were systematically investigated. A mid-site pyrrolic-N was subsequently generated after the pyrrolic-N concentration more than 10%. Edge-site pyrrolic-N induces a frontier orbital hybridization, reducing bandgap energy, while mid-site pyrrolic-N plays a critical role in inducing a first NIR window absorption owing to their high charge transfer. Also, pyrrolic-N-rich CDs inherit a bowl-like topological feature, elevating the CDs’ layer thickness as much as 0.71 nm. This study shed light on the design and optimization of pyrrolic-N on CDs for the first NIR window responsive materials in any biomedical application.

Electronic Supplementary Material

Download File(s)
12274_2022_5131_MOESM1_ESM.pdf (1.9 MB)

References

[1]

Zhang, M. R.; Su, R. G.; Zhong, J.; Fei, L.; Cai, W.; Guan, Q. W.; Li, W. J.; Li, N.; Chen, Y. S.; Cai, L. L. et al. Red/orange dual-emissive carbon dots for pH sensing and cell imaging. Nano Res. 2019, 12, 815–821.

[2]

Yan, F. Y.; Jiang, Y. X.; Sun, X. D.; Wei, J. F.; Chen, L.; Zhang, Y. Y. Multicolor carbon dots with concentration-tunable fluorescence and solvent-affected aggregation states for white light-emitting diodes. Nano Res. 2020, 13, 52–60.

[3]

Bhattacharyya, S.; Ehrat, F.; Urban, P.; Teves, R.; Wyrwich, R.; Döblinger, M.; Feldmann, J.; Urban, A. S.; Stolarczyk, J. K. Effect of nitrogen atom positioning on the trade-off between emissive and photocatalytic properties of carbon dots. Nat. Commun. 2017, 8, 1401.

[4]

Zhang, Q.; Wang, R. Y.; Feng, B. W.; Zhong, X. X.; Ostrikov, K. Photoluminescence mechanism of carbon dots: Triggering high-color-purity red fluorescence emission through edge amino protonation. Nat. Commun. 2021, 12, 6856.

[5]

Saleem, U.; Permatasari, F. A.; Iskandar, F.; Ogi, T.; Okuyama, K.; Darma, Y.; Zhao, M.; Loh, K. P.; Rusydi, A.; Coquet, P. et al. Surface plasmon enhanced nitrogen-doped graphene quantum dot emission by single bismuth telluride nanoplates. Adv. Opt. Mater. 2017, 5, 1700176.

[6]

Yang, C. B.; Chan, K. K.; Xu, G. X.; Yin, M. J.; Lin, G. M.; Wang, X. M.; Lin, W. J.; Birowosuto, M. D.; Zeng, S. W.; Ogi, T. et al. Biodegradable polymer-coated multifunctional graphene quantum dots for light-triggered synergetic therapy of pancreatic cancer. ACS Appl. Mater. Interfaces 2019, 11, 2768–2781.

[7]

Han, Y.; Liu, H. M.; Fan, M.; Gao, S. T.; Fan, D. H.; Wang, Z. G.; Chang, J.; Zhang, J. C.; Ge, K. Near-infrared-II photothermal ultra-small carbon dots promoting anticancer efficiency by enhancing tumor penetration. J. Colloid Interface Sci. 2022, 616, 595–604.

[8]

Tian, B. S.; Liu, S. K.; Feng, L. L.; Liu, S. H.; Gai, S. L.; Dai, Y. L.; Xie, L. S.; Liu, B.; Yang, P. P.; Zhao, Y. L. Renal-clearable nickel-doped carbon dots with boosted photothermal conversion efficiency for multimodal imaging-guided cancer therapy in the second near-infrared biowindow. Adv. Funct. Mater. 2021, 31, 2100549.

[9]

Zhu, P.; Wang, S. Y.; Zhang, Y. Q.; Li, Y. P.; Liu, Y. P.; Li, W. J.; Wang, Y. Y.; Yan, X.; Luo, D. X. Carbon dots in biomedicine: A review. ACS Appl. Bio Mater. 2022, 5, 2031–2045.

[10]

Feng, Z.; Tang, T.; Wu, T. X.; Yu, X. M.; Zhang, Y. H.; Wang, M.; Zheng, J. Y.; Ying, Y. Y.; Chen, S. Y.; Zhou, J. et al. Perfecting and extending the near-infrared imaging window. Light Sci. Appl. 2021, 10, 197.

[11]

Ogi, T.; Aishima, K.; Permatasari, F. A.; Iskandar, F.; Tanabe, E.; Okuyama, K. Kinetics of nitrogen-doped carbon dot formation: Via hydrothermal synthesis. New J. Chem. 2016, 40, 5555–5561.

[12]

Permatasari, F. A.; Aimon, A. H.; Iskandar, F.; Ogi, T.; Okuyama, K. Role of C–N configurations in the photoluminescence of graphene quantum dots synthesized by a hydrothermal route. Sci. Rep. 2016, 6, 21042.

[13]

Hess, S. C.; Permatasari, F. A.; Fukazawa, H.; Schneider, E. M.; Balgis, R.; Ogi, T.; Okuyama, K.; Stark, W. J. Direct synthesis of carbon quantum dots in aqueous polymer solution: One-pot reaction and preparation of transparent UV-blocking films. J. Mater. Chem. A 2017, 5, 5187–5194.

[14]

Indriyati; Primadona, I.; Permatasari, F. A.; Irham, M. A.; Nasir, M.; Iskandar, F. Recent advances and rational design strategies of carbon dots towards highly efficient solar evaporation. Nanoscale 2021, 13, 7523–7532.

[15]

Umami, R.; Permatasari, F. A.; Muyassiroh, D. A. M.; Santika, A. S.; Sundari, C. D. D.; Ivansyah, A. L.; Ogi, T.; Iskandar, F. A rational design of carbon dots via the combination of nitrogen and oxygen functional groups towards the first NIR window absorption. J. Mater. Chem. C 2022, 10, 1394–1402.

[16]

Permatasari, F. A.; Fukazawa, H.; Ogi, T.; Iskandar, F.; Okuyama, K. Design of pyrrolic-N-rich carbon dots with absorption in the first near-infrared window for photothermal therapy. ACS Appl. Nano Mater. 2018, 1, 2368–2375.

[17]

Taspika, M.; Permatasari, F. A.; Nuryadin, B. W.; Mayangsari, T. R.; Aimon, A. H.; Iskandar, F. Simultaneous ultraviolet and first near-infrared window absorption of luminescent carbon dots/PVA composite film. RSC Adv. 2019, 9, 7375–7381.

[18]

Sun, S.; Zhang, L.; Jiang, K.; Wu, A. G.; Lin, H. W. Toward high-efficient red emissive carbon dots: Facile preparation, unique properties, and applications as multifunctional theranostic agents. Chem. Mater. 2016, 28, 8659–8668.

[19]

Li, D.; Han, D.; Qu, S. N.; Liu, L.; Jing, P. T.; Zhou, D.; Ji, W. Y.; Wang, X. Y.; Zhang, T. F.; Shen, D. Z. Supra-(carbon nanodots) with a strong visible to near-infrared absorption band and efficient photothermal conversion. Light Sci. Appl. 2016, 5, e16120.

[20]

Duan, Q. Q.; Si, S.; Sang, S. B.; Wang, J. L.; Zhang, B. Y.; Guan, Z. W.; Jia, M. Y.; Xue, J. J. Study on the photothermal performance of supra-(carbon nanodots) developed with dicyandiamide N-doped. Colloids Surfaces A Physicochem. Eng. Asp. 2022, 648, 129346.

[21]

Permatasari, F. A.; Nakul, F.; Mayangsari, T. R.; Aimon, A. H.; Nuryadin, B. W.; Bisri, S. Z.; Ogi, T.; Iskandar, F. Solid-state nitrogen-doped carbon nanoparticles with tunable emission prepared by a microwave-assisted method. RSC Adv. 2021, 11, 39917–39923.

[22]

Yu, J. K.; Yong, X.; Tang, Z. Y.; Yang, B.; Lu, S. Y. Theoretical understanding of structure–property relationships in luminescence of carbon dots. J. Phys. Chem. Lett. 2021, 12, 7671–7687.

[23]

Li, L.; Li, Y. T.; Ye, Y.; Guo, R. T.; Wang, A. N.; Zou, G. Q.; Hou, H. S.; Ji, X. B. Kilogram-scale synthesis and functionalization of carbon dots for superior electrochemical potassium storage. ACS Nano 2021, 15, 6872–6885.

[24]

Rigodanza, F.; Burian, M.; Arcudi, F.; Đorđević, L.; Amenitsch, H.; Prato, M. Snapshots into carbon dots formation through a combined spectroscopic approach. Nat. Commun. 2021, 12, 2640.

[25]

Sarkar, S.; Sudolská, M.; Dubecký, M.; Reckmeier, C. J.; Rogach, A. L.; Zbořil, R.; Otyepka, M. Graphitic nitrogen doping in carbon dots causes red-shifted absorption. J. Phys. Chem. C 2016, 120, 1303–1308.

[26]

Jabed, M. A.; Zhao, J. L.; Kilin, D.; Yu, T. Understanding of light absorption properties of the N-doped graphene oxide quantum dot with TD-DFT. J. Phys. Chem. C 2021, 125, 14979–14990.

[27]

Yang, M.; Lian, Z.; Si, C. W.; Li, B. Revealing the role of nitrogen dopants in tuning the electronic and optical properties of graphene quantum dots via a TD-DFT study. Phys. Chem. Chem. Phys. 2020, 22, 28230–28237.

[28]

Kundelev, E. V.; Tepliakov, N. V.; Leonov, M. Y.; Maslov, V. G.; Baranov, A. V.; Fedorov, A. V.; Rukhlenko, I. D.; Rogach, A. L. Amino functionalization of carbon dots leads to red emission enhancement. J. Phys. Chem. Lett. 2019, 10, 5111–5116.

[29]
Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H. et al. Gaussian 09, Revision E. 01; Gaussian Inc.: Wallingford, 2016.
[30]
Chemcraft-graphical software for visualization of quantum chemistry computations. [Online]. https://www.chemcraftprog.com.
[31]

Lu, T.; Chen, F. W. Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem. 2012, 33, 580–592.

[32]

Feng, J. G.; Guo, Q.; Song, N.; Liu, H. Y.; Dong, H. Z.; Chen, Y. J.; Yu, L. Y.; Dong, L. F. Density functional theory study on optical and electronic properties of co-doped graphene quantum dots based on different nitrogen doping patterns. Diam. Relat. Mater. 2021, 113, 108264.

[33]

Chen, S. W.; Ullah, N.; Zhang, R. Q. Engineering the excited state of graphitic carbon nitride nanostructures by covalently bonding with graphene quantum dots. Theor. Chem. Acc. 2020, 139, 20.

[34]

Cocchi, C.; Prezzi, D.; Ruini, A.; Caldas, M. J.; Molinari, E. Electronics and optics of graphene nanoflakes: Edge functionalization and structural distortions. J. Phys. Chem. C 2012, 116, 17328–17335.

[35]

Döring, A.; Ushakova, E.; Rogach, A. L. Chiral carbon dots: Synthesis, optical properties, and emerging applications. Light Sci. Appl. 2022, 11, 75.

[36]

Yuan, F. L.; Yuan, T.; Sui, L.; Wang, Z.; Xi, Z.; Li, Y.; Li, X.; Fan, L.; Tan, Z.; Chen, A. Engineering triangular carbon quantum dots with unprecedented narrow bandwidth emission for multicolored LEDs. Nat. Commun. 2018, 9, 2249.

[37]

Li, Y. H.; Shu, H. B.; Niu, X. H.; Wang, J. L. Electronic and optical properties of edge-functionalized graphene quantum dots and the underlying mechanism. J. Phys. Chem. C 2015, 119, 24950–24957.

[38]

Tian, K. S.; Wang, J. Y.; Cao, L.; Yang, W.; Guo, W. C.; Liu, S. H.; Li, W.; Wang, F. Y.; Li, X. A.; Xu, Z. P. et al. Single-site pyrrolic-nitrogen-doped sp2-hybridized carbon materials and their pseudocapacitance. Nat. Commun. 2020, 11, 3884.

[39]

Wang, H.; Haydel, P.; Sui, N.; Wang, L. N.; Liang, Y.; Yu, W. W. Wide emission shifts and high quantum yields of solvatochromic carbon dots with rich pyrrolic nitrogen. Nano Res. 2020, 13, 2492–2499.

[40]

Wu, S. H.; Zhou, R. H.; Chen, H. J.; Zhang, J. Y.; Wu, P. Highly efficient oxygen photosensitization of carbon dots: The role of nitrogen doping. Nanoscale 2020, 12, 5543–5553.

[41]

Cai, W.; Zhang, T.; Xu, M.; Zhang, M. R.; Guo, Y. J.; Zhang, L. P.; Street, J.; Ong, W. J.; Xu, Q. Full color carbon dots through surface engineering for constructing white light-emitting diodes. J. Mater. Chem. C 2019, 7, 2212–2218.

[42]

Bai, Y. L.; Zhao, J. J.; Wang, S. L.; Lin, T. R.; Ye, F. G.; Zhao, S. L. Carbon dots with absorption red-shifting for two-photon fluorescence imaging of tumor tissue pH and synergistic phototherapy. ACS Appl. Mater. Interfaces 2021, 13, 35365–35375.

[43]

Tetsuka, H.; Nagoya, A.; Fukusumi, T.; Matsui, T. Molecularly designed, nitrogen-functionalized graphene quantum dots for optoelectronic devices. Adv. Mater. 2016, 28, 4632–4638.

[44]

Ma, B.; Blanco, M.; Calvillo, L.; Chen, L. J.; Chen, G.; Lau, T. C.; Dražić, G.; Bonin, J.; Robert, M.; Granozzi, G. Hybridization of molecular and graphene materials for CO2 photocatalytic reduction with selectivity control. J. Am. Chem. Soc. 2021, 143, 8414–8425.

[45]

Chen, F.; Wu, X. L.; Shi, C. Y.; Lin, H. J.; Chen, J. R.; Shi, Y. P.; Wang, S. B.; Duan, X. G. Molecular engineering toward pyrrolic N-rich M-N4 (M = Cr, Mn, Fe, Co, Cu) single-atom sites for enhanced heterogeneous fenton-like reaction. Adv. Funct. Mater. 2021, 31, 2007877.

[46]

Feng, J. G.; Dong, H. Z.; Pang, B. L.; Shao, F. F.; Zhang, C. K.; Yu, L. Y.; Dong, L. F. Theoretical study on the optical and electronic properties of graphene quantum dots doped with heteroatoms. Phys. Chem. Chem. Phys. 2018, 20, 15244–15252.

[47]

Kim, B. G.; Ma, X.; Chen, C.; Ie, Y.; Coir, E. W.; Hashemi, H.; Aso, Y.; Green, P. F.; Kieffer, J.; Kim, J. Energy level modulation of HOMO, LUMO, and band-gap in conjugated polymers for organic photovoltaic applications. Adv. Funct. Mater. 2013, 23, 439–445.

[48]

Zhang, S. Y.; Gao, M. J.; Zhai, Y. P.; Wen, J. Q.; Yu, J. K.; He, T. W.; Kang, Z. H.; Lu, S. Y. Which kind of nitrogen chemical states doped carbon dots loaded by g-C3N4 is the best for photocatalytic hydrogen production. J. Colloid Interface Sci. 2022, 622, 662–674.

[49]

Guégan, F.; Pigeon, T.; De Proft, F.; Tognetti, V.; Joubert, L.; Chermette, H.; Ayers, P. W.; Luneau, D.; Morell, C. Understanding chemical selectivity through well selected excited states. J. Phys. Chem. A 2020, 124, 633–641.

[50]

De Medeiros, T. V.; Manioudakis, J.; Noun, F.; Macairan, J. R.; Victoria, F.; Naccache, R. Microwave-assisted synthesis of carbon dots and their applications. J. Mater. Chem. C 2019, 7, 7175–7195.

[51]

Song, L. Q.; Shi, J. J.; Lu, J.; Lu, C. Structure observation of graphene quantum dots by single-layered formation in layered confinement space. Chem. Sci. 2015, 6, 4846–4850.

[52]

Ren, Q. L.; Ga, L.; Ai, J. Rapid synthesis of highly fluorescent nitrogen-doped graphene quantum dots for effective detection of ferric ions and as fluorescent ink. ACS Omega 2019, 4, 15842–15848.

[53]

Kim, J. K.; Kim, S. J.; Park, M. J.; Bae, S.; Cho, S. P.; Du, Q. G.; Wang, D. H.; Park, J. H.; Hong, B. H. Surface-engineered graphene quantum dots incorporated into polymer layers for high performance organic photovoltaics. Sci. Rep. 2015, 5, 14276.

[54]

Wu, W. T.; Wu, H. X.; Zhong, M.; Guo, S. W. Dual role of graphene quantum dots in active layer of inverted bulk heterojunction organic photovoltaic devices. ACS Omega 2019, 4, 16159–16165.

[55]

Khojasteh, H.; Amiri, M.; Sohrabi, A.; Khanahmadzadeh, S.; Salavati-Niasari, M.; Moayedi, H. Synthesis of magnetically reusable Fe3O4/TiO2-N, P co-doped graphene quantum dot nancomposites using hexachlorocyclophosphazene; high photoluminance property and photocatalytic promoter. J. Mater. Res. Technol. 2020, 9, 1380–1388.

[56]

Parr, R. G.; Szentpály, L. V.; Liu, S. B. Electrophilicity index. J. Am. Chem. Soc. 1999, 121, 1922–1924.

[57]

Chattaraj, P. K.; Sarkar, U.; Roy, D. R. Electrophilicity index. Chem. Rev. 2006, 106, 2065–2091.

[58]

Abdelati, M. A.; Fadlallah, M. M.; Gamal, Y. E. E. D.; Maarouf, A. A. Pristine and holey graphene quantum dots: Optical properties using time independent and dependent density functional theory. Phys. E Low-Dimens. Syst. Nanostruct. 2021, 128, 114602.

Nano Research
Pages 6001-6009
Cite this article:
Permatasari FA, Umami R, Dewi Sundari CD, et al. New insight into pyrrolic-N site effect towards the first NIR window absorption of pyrrolic-N-rich carbon dots. Nano Research, 2023, 16(4): 6001-6009. https://doi.org/10.1007/s12274-022-5131-7
Topics:

1771

Views

12

Crossref

16

Web of Science

15

Scopus

0

CSCD

Altmetrics

Received: 04 August 2022
Revised: 29 September 2022
Accepted: 01 October 2022
Published: 11 January 2023
© Tsinghua University Press 2022
Return