AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article

Revisited electrochemical gas evolution reactions from the perspective of gas bubbles

Weinan Yin1Yuntao Cai1Lingbin Xie3Hao Huang1Enchi Zhu1Junan Pan1Jiaqi Bu1Hao Chen1Ye Yuan1Zechao Zhuang2( )Longlu Wang1( )
College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications (NJUPT), Nanjing 210023, China
Department of Chemistry, Tsinghua University, Beijing 100084, China
State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) Nanjing University of Posts & Telecommunications, Nanjing 210023, China
Show Author Information

Graphical Abstract

This review can not only give aninsight into the gas bubbles in electrochemical gas evolutionreactions but also boost further research on bubbles from morediverse perspectives.

Abstract

Electrochemical gas evolution reactions are common but essential in many electrochemical processes including water electrolysis. During these processes, gas bubbles are constantly nucleating on reaction interfaces in electrolyte and consequently exert an impact on catalysts and the performance. In the past few decades, extensive studies have been conducted to characterize bubbles with emerging advanced technologies, manage behaviors of bubbles, and apply bubbles to various domains. In this review, we summarize representative discoveries as well as recent advancements in electrochemical gas evolution reactions from the perspective of gas bubbles. Finally, we end up this review with a profound outlook on future research topics from the combination of experiments and theoretical techniques, non-negligible bubble effects, gravity-free situation, and reactions under practical industrial conditions.

References

[1]

Sun, C.; Wang. L. L.; Zhao, W. W.; Xie, L. B.; Wang, J.; Li, J. M.; Li, B. X.; Liu, S. J.; Zhuang, Z. C.; Zhao, Q. Atomic-level design of active site on two-dimensional MoS2 toward efficient hydrogen evolution: Experiment, theory, and artificial intelligence modelling. Adv. Funct. Mater. 2022, 32, 2206163.

[2]

Wang, L. L.; Xie, L. B.; Zhao, W. W.; Liu, S. J.; Zhao, Q. Oxygen-facilitated dynamic active-site generation on strained MoS2 during photo-catalytic hydrogen evolution. Chem. Eng. J. 2021, 405, 127028.

[3]

Li, Y.; Yin, K.; Wang, L. L.; Lu, X. L.; Zhang, Y. Q.; Liu, Y. T.; Yan, D. F.; Song, Y. Z.; Luo, S. L. Engineering MoS2 nanomesh with holes and lattice defects for highly active hydrogen evolution reaction. Appl. Catal. B:Environ. 2018, 239, 537–544.

[4]

Zhuang, Z. C.; Li, Y. H.; Yu, R. H.; Xia, L. X.; Yang, J. R.; Lang, Z. Q.; Zhu, J. X.; Huang, J. Z.; Wang, J. O.; Wang, Y. et al. Reversely trapping atoms from a perovskite surface for high-performance and durable fuel cell cathodes. Nat. Catal. 2022, 5, 300–310.

[5]

Hao, J. C.; Zhuang, Z. C.; Cao, K. C.; Gao, G. H.; Wang, C.; Lai, F. L.; Lu, S. L.; Ma, P. M.; Dong, W. F.; Liu, T. X. et al. Unraveling the electronegativity-dominated intermediate adsorption on high-entropy alloy electrocatalysts. Nat. Commun. 2022, 13, 2262.

[6]

Wang, L. L.; Liu, X.; Zhang, Q. F.; Zhou, G.; Pei, Y.; Chen, S. H.; Wang, J.; Rao, A. M.; Yang, H. G.; Lu, B. G. Quasi-one-dimensional Mo chains for efficient hydrogen evolution reaction. Nano Energy 2019, 61, 194–200.

[7]

Zhou, G.; Shan, Y.; Wang, L. L.; Hu, Y. Y.; Guo, J. H.; Hu, F. R.; Shen, J. C.; Gu, Y.; Cui, J. T.; Liu, L. Z. et al. Photoinduced semiconductor-metal transition in ultrathin troilite FeS nanosheets to trigger efficient hydrogen evolution. Nat. Commun. 2019, 10, 399.

[8]

Liu, Z. H.; Du, Y.; Zhang, P. F.; Zhuang, Z. C.; Wang, D. S. Bringing catalytic order out of chaos with nitrogen-doped ordered mesoporous carbon. Matter 2021, 4, 3161–3194.

[9]

Wang, L. L.; Zhou, G.; Luo, H.; Zhang, Q. F.; Wang, J.; Zhao, C. W.; Rao, A. M.; Xu, B.; Lu, B. G. Enhancing catalytic activity of tungsten disulfide through topology. Appl. Catal. B: Environ. 2019, 256, 117802.

[10]

Chang, C.; Wang, L. L.; Xie, L. B.; Zhao, W. W.; Liu, S. J.; Zhuang, Z. C.; Liu, S. J.; Li, J. M.; Liu, X.; Zhao, Q. Amorphous molybdenum sulfide and its Mo-S motifs: Structural characteristics, synthetic strategies, and comprehensive applications. Nano Res. 2022, 15, 8613–8635.

[11]

Li, L.; Yang, H. Q.; Qi, G. C.; Ma, J. H.; Xie, X. L.; Zhao, H.; Gao, F. Synthesis and photoluminescence of hollow microspheres constructed with ZnO nanorods by H2 bubble templates. Chem. Phys. Lett. 2008, 455, 93–97.

[12]

Chen, Q. J.; Luo, L. White H. S. Electrochemical generation of a hydrogen bubble at a recessed platinum nanopore electrode. Langmuir 2015, 31, 4573–4581.

[13]

Luo,J. H.; Jiang, S. J.; Sun, C. Z.; Song, S. Q. In-plane coupling electric field driving charge directional transfer for highly efficient H2 bubble evolution. Chem. Eng. J. 2020, 396, 125365.

[14]

Zhou, Y.; Yang, Y.; Zhu, X.; Zhang, T.; Ye, D. D.; Chen, R.; Liao, Q. Novel superaerophobic anode with fern-shaped Pd nanoarray for high-performance direct formic acid fuel cell. Adv. Funct. Mater. 2022, 32, 2201872.

[15]

Tong, G. X.; Guan, J. G.; Xiao, Z. D.; Mou, F. Z.; Wang, W.; Yan, G. Q. In situ generated H2 bubble-engaged assembly: A one-step approach for shape-controlled growth of Fe nanostructures. Chem. Mater. 2008, 20, 3535–3539.

[16]

Kuo, C. L.; Chen, C. T.; Ho, C. C. Research on nano H2/O2 bubble generating mechanism and characteristics. Front. Chem. 2022, 10, 919114.

[17]

Shen, Y. F.; Pan, J. N.; Hu, X. Y.; Wen, H. M.; Xiao, J. Q.; Hu, J. Hydrogen bubble-directed tubular structure: A novel mechanism to facilely synthesize nanotube arrays with controllable wall thickness. ACS Appl. Mater. Interfaces 2021, 13, 5418–5424.

[18]

Pan, J.; Yu, S. W.; Jing, Z. W.; Zhou, Q. T.; Dong, Y. F.; Lou, X. D.; Xia, F. Electrocatalytic hydrogen evolution reaction related to nanochannel materials. Small Struct. 2021, 2, 2100076.

[19]

Huang, C.; Guo, Z. G. The wettability of gas bubbles: From macro behavior to nano structures to applications. Nanoscale 2018, 10, 19659–19672.

[20]

Zhuang, Z. C.; Li, Y.; Huang, J. Z.; Li, Z. L.; Zhao, K. N.; Zhao, Y. L.; Xu, L.; Zhou, L.; Moskaleva, L. V.; Mai, L. Q. Sisyphus effects in hydrogen electrochemistry on metal silicides enabled by silicene subunit edge. Sci. Bull. 2019, 64, 617–624.

[21]

Zhang, S. Q.; Liu, X.; Liu, C. B.; Luo, S. L.; Wang, L. L.; Cai, T.; Zeng, Y. X.; Yuan, J. L.; Dong, W. Y.; Pei, Y. et al. MoS2 quantum dot growth induced by S vacancies in a ZnIn2S4 monolayer: Atomic-level heterostructure for photocatalytic hydrogen production. ACS Nano 2018, 12, 751–758.

[22]

Zhuang, Z. C.; Huang, J. Z.; Li, Y.; Zhou, L.; Mai, L. Q. The holy grail in platinum-free electrocatalytic hydrogen evolution: Molybdenum-based catalysts and recent advances. ChemElectroChem 2019, 6, 3570–3589.

[23]

Zhang, S. Q.; Wang, L. L.; Liu, C. B.; Luo, J. M.; Crittenden, J.; Liu, X.; Cai, T.; Yuan, J. L.; Pei, Y.; Liu, Y. T. Photocatalytic wastewater purification with simultaneous hydrogen production using MoS2 QD-decorated hierarchical assembly of ZnIn2S4 on reduced graphene oxide photocatalyst. Water Res. 2017, 121, 11–19.

[24]

Li, Y.; Wang, L. L.; Cai, T.; Zhang, S. Q.; Liu, Y. T.; Song, Y. Z.; Dong, X. R.; Hu, L. Glucose-assisted synthesize 1D/2D nearly vertical CdS/MoS2 heterostructures for efficient photocatalytic hydrogen evolution. Chem. Eng. J. 2017, 321, 366–374.

[25]

Wang, S. H.; Wang, L. L.; Xie, L. B.; Zhao, W. W.; Liu, X.; Zhuang, Z. C.; Zhuang, Y. L.; Chen, J.; Liu, S. J.; Zhao, Q. Dislocation-strained MoS2 nanosheets for high-efficiency hydrogen evolution reaction. Nano Res. 2022, 15, 4996–5003.

[26]

Wang, W.; Zhou, L. J.; Hu, S.; Novoselov, K. S.; Cao, Y. Visualizing piezoelectricity on 2D crystals nanobubbles. Adv. Funct. Mater. 2021, 31, 2005053.

[27]

Lou, S. T.; Ouyang, Z. Q.; Zhang, Y.; Li, X. J.; Hu, J.; Li, M. Q.; Yang, F. J. Nanobubbles on solid surface imaged by atomic force microscopy. J. Vac. Sci. Technol. B 2000, 18, 2573–2575.

[28]

Ishida, N.; Inoue, T.; Miyahara, M.; Higashitani, K. Nano bubbles on a hydrophobic surface in water observed by tapping-mode atomic force microscopy. Langmuir 2000, 16, 6377–6380.

[29]

Walczyk, W.; Schönherr, H. Closer look at the effect of AFM imaging conditions on the apparent dimensions of surface nanobubbles. Langmuir 2013, 29, 620–632.

[30]

Teshima, H.; Takahashi, K.; Takata, Y.; Nishiyama, T. Wettability of AFM tip influences the profile of interfacial nanobubbles. J. Appl. Phys. 2018, 123, 054303.

[31]

Yang, S. J.; Dammer, S. M.; Bremond, N.; Zandvilet, H. J. W.; Kooij, E. S.; Lohse. D. Characterization of nanobubbles on hydrophobic surfaces in water. Langmuir 2007, 23, 7072–7077.

[32]

An, H. J.; Liu, G. M.; Atkin, R.; Craig, V. S. J. Surface nanobubbles in nonaqueous media: Looking for nanobubbles in DMSO, formamide, propylene carbonate, ethylammonium nitrate, and propylammonium nitrate. ACS Nano 2015, 9, 7596–7607.

[33]

Hampton, M. A.; Nguyen, A. V. Nanobubbles and the nanobubble bridging capillary force. Adv. Colloid Interface Sci. 2010, 154, 30–55.

[34]

Li, D. Y.; Jing, D. L.; Pan, Y. L.; Wang, W. J.; Zhao, X. Z. Coalescence and stability analysis of surface nanobubbles on the polystyrene/water interface. Langmuir 2014, 30, 6079–6088.

[35]

Wang, Y. F.; Gordon, E.; Ren, H. Mapping the nucleation of H2 bubbles on polycrystalline Pt via scanning electrochemical cell microscopy. J. Phys. Chem. Lett. 2019, 10, 3887–3892.

[36]

Liu, Y. L.; Jin, C.; Liu, Y. W.; Ruiz, K. H.; Ren, H.; Fan, Y. C.; White, H. S.; Chen, Q. J. Visualization and quantification of electrochemical H2 bubble nucleation at Pt, Au, and MoS2 substrates. ACS Sens. 2020, 6, 355–363.

[37]

Jin, C.; Liu, Y. L.; Shan, Y.; Chen, Q. J. Scanning electrochemical cell microscope study of individual H2 gas bubble nucleation on platinum: Effect of surfactants. Chin. J. Anal. Chem. 2021, 49, e21055–e21064.

[38]

Li, S. P.; Du, Y.; He, T.; Shen, Y. B.; Bai, C.; Ning, F. D.; Hu, X.; Wang, W. H.; Xi, S. B.; Zhou, X. C. Nanobubbles: An effective way to study gas-generating catalysis on a single nanoparticle. J. Am. Chem. Soc. 2017, 139, 14277–14284.

[39]

Zhang, T.; Li, S. P.; Du, Y.; He, T.; Shen, Y. B.; Bai, C.; Huang, Y. J.; Zhou, X. C. Revealing the activity distribution of a single nanocatalyst by locating single nanobubbles with super-resolution microscopy. J. Phys. Chem. Lett. 2018, 9, 5630–5635.

[40]

Chan, C. U.; Ohl, C. D. Total-internal-reflection-fluorescence microscopy for the study of nanobubble dynamics. Phys. Rev. Lett. 2012, 109, 174501.

[41]

Hao, R.; Fan, Y. S.; Howard, M. D.; Vaughan, J. C.; Zhang, B. Imaging nanobubble nucleation and hydrogen spillover during electrocatalytic water splitting. Proc. Natl. Acad. Sci. USA 2018, 115, 5878–5883.

[42]

Su, H.; Fang, Y. M.; Chen, F. Y.; Wang, W. Monitoring the dynamic photocatalytic activity of single CdS nanoparticles by lighting up H2 nanobubbles with fluorescent dyes. Chem. Sci. 2018, 9, 1448–1453.

[43]

Tan, B. H.; An, H. J.; Ohl, C. D. Resolving the pinning force of nanobubbles with optical microscopy. Phys. Rev. Lett. 2017, 118, 054501.

[44]

Lu, Y.; Yin, W. J.; Peng, K. L.; Wang, K.; Hu, Q.; Selloni, A.; Chen, F. R.; Liu, L. M.; Sui, M. L. Self-hydrogenated shell promoting photocatalytic H2 evolution on anatase TiO2. Nat. Commun. 2018, 9, 2752.

[45]

Zhang, Z. Y.; Qiang, J.; Wang, S. S.; Xu, M.; Gan, M.; Rao, Z. G.; Tian, T. F.; Ke, S. M.; Zhou, Y. B.; Hu, Y. B. et al. Visualization of bubble nucleation and growth confined in 2D flakes. Small 2021, 17, 2103301.

[46]

Uchida, T.; Oshita, S.; Ohmori, M.; Tsuno, T.; Soejima, K.; Shinozaki, S.; Take, Y.; Mitsuda, K. Transmission electron microscopic observations of nanobubbles and their capture of impurities in wastewater. Nanoscale Res. Lett. 2011, 6, 295.

[47]

Wang, W.; Xu, T.; Chen, J. G.; Shangguan, J. Y.; Dong, H.; Ma, H. S.; Zhang, Q. B.; Yang, J. W.; Bai, T. T.; Guo, Z. R. et al. Solid–liquid–gas reaction accelerated by gas molecule tunnelling-like effect. Nat. Mater. 2022, 21, 859–863.

[48]

Xiao, L. P.; Wang, G. H.; Huang, X. C.; Zhou, S. Y.; Zhou, R. S.; Jiang, Y. H.; Liu, S. G.; Li, G.; Zheng, H. M.; Sun, S. G. et al. Efficient CO2 reduction MOFs derivatives transformation mechanism revealed by in-situ liquid phase TEM. Appl. Catal. B: Environ. 2022, 307, 121164.

[49]

Liu, Y.; Dillon, S. J. In situ observation of electrolytic H2 evolution adjacent to gold cathodes. Chem. Commun. 2014, 50, 1761–1763.

[50]

Li, M.; Tonggu, L. G.; Zhan, X.; Tony, L.; Wang, L. G. Cryo-EM visualization of nanobubbles in aqueous solutions. Langmuir 2016, 32, 11111–11115.

[51]

Zhou, L. M.; Wang, X. Y.; Shin, H. J.; Wang, J.; Tai, R. Z.; Zhang, X. H.; Fang, H. P.; Xiao, W.; Wang, L.; Wang, C. L. et al. Ultrahigh density of gas molecules confined in surface nanobubbles in ambient water. J. Am. Chem. Soc. 2020, 142, 5583–5593.

[52]

Xie, L. B.; Wang, L. L.; Zhao, W. W.; Liu, S. J.; Huang, W.; Zhao, Q. WS2 moiré superlattices derived from mechanical flexibility for hydrogen evolution reaction. Nat. Commun. 2021, 12, 5070.

[53]

Bae, M.; Kang, Y.; Lee, D. W.; Jeon, D.; Ryu, J. Superaerophobic polyethyleneimine hydrogels for improving electrochemical hydrogen production by promoting bubble detachment. Adv. Energy Mater. 2022, 12, 2201452.

[54]

Xiang, C. X.; Suram, S. K.; Haber, J. A.; Guevarra, D. W.; Soedarmadji, E.; Jin, J.; Gregoire, J. M. High-throughput bubble screening method for combinatorial discovery of electrocatalysts for water splitting. ACS Comb. Sci. 2014, 16, 47–52.

[55]

Liu, X. Z.; Zou, P.; Song, L. J.; Zang, B. W.; Yao, B. N.; Xu, W.; Li, F. S.; Schroers, J.; Huo, J. T.; Wang, J. Q. Combinatorial high-throughput methods for designing hydrogen evolution reaction catalysts. ACS Catal. 2022, 12, 3789–3796.

[56]

Yan, D. F.; Dong, C. L.; Huang, Y. C.; Zou, Y. Q.; Xie, C.; Wang, Y. Y.; Zhang, Y. Q.; Liu, D. D.; Shen, S. H.; Wang, S. Y. Engineering the coordination geometry of metal-organic complex electrocatalysts for highly enhanced oxygen evolution reaction. J. Mater. Chem. A 2018, 6, 805–810.

[57]

Gadea, E. D.; Perez Sirkin, Y. A.; Molinero, V.; Scherlis, D. A. Electrochemically generated nanobubbles: Invariance of the current with respect to electrode size and potential. J. Phys. Chem. Lett. 2020, 11, 6573–6579.

[58]

Wang, M.; Zhu, H. W. Machine learning for transition-metal-based hydrogen generation electrocatalysts. ACS Catal. 2021, 11, 3930–3937.

[59]

Park, Y. S.; Choi, W. S.; Jang, M. J.; Lee, J. H.; Park, S.; Jin, H.; Seo, M. H.; Lee, K. H.; Yin, Y. D.; Kim, Y. et al. Three-dimensional dendritic Cu-Co-P electrode by one-step electrodeposition on a hydrogen bubble template for hydrogen evolution reaction. ACS Sustain. Chem. Eng. 2019, 7, 10734–10741.

[60]

Lettieri, S.; Zeng, J. Q.; Farkhondehfal, M. A.; Savino, U.; Fontana, M.; Pirri, C. F.; Sacco, A. Correlation between impedance spectroscopy and bubble-induced mass transport in the electrochemical reduction of carbon dioxide. J. Energy Chem. 2022, 67, 500–507.

[61]

He, Z. Y.; Mo, Z.; Fu, J. J.; Yan, P. C.; Chen, H. X.; Song, Y. H.; Yuan, J. J.; Chen, Z. G.; Li, H. M.; Xu, H. A bubble-assisted strategy to prepare porous ultrathin carbon nitride for highly-active photocatalytic hydrogen production. J. Alloys Compd. 2022, 904, 163788.

[62]

Yang, Y. G.; Min, F. Y.; Qiao, Y. L.; Li, Z.; Vogelbacher. F.; Liu, Z. X.; Lv. W. K.; Wang, Y.; Song, Y. L. Embossed transparent electrodes assembled by bubble templates for efficient flexible perovskite solar cells. Nano Energy 2021, 89, 106384.

[63]

Vesztergom, S.; Dutta, A.; Rahaman, M.; Kiran, K.; Montiel, L. Z.; Broekmann, P. Hydrogen bubble templated metal foams as efficient catalysts of CO2 electroreduction. ChemCatChem 2021, 13, 1039–1058.

[64]

Obata, K.; Abdi, F. F. Bubble-induced convection stabilizes the local pH during solar water splitting in neutral pH electrolytes. Sustain. Energy Fuels 2021, 5, 3791–3801.

[65]

Zhao, X.; Ren, H.; Luo, L. Gas bubbles in electrochemical gas evolution reactions. Langmuir 2019, 35, 5392–5408.

[66]

Tang, C.; Wang, H. F.; Zhang, Q. Multiscale principles to boost reactivity in gas-involving energy electrocatalysis. Acc. Chem. Res. 2018, 51, 881–889.

[67]

Hong, J.; Bae, J. H.; Jo, H.; Park, H. Y.; Lee, S.; Hong, S. J.; Chun, H.; Cho, M. K.; Kim, J.; Kim, J. et al. Metastable hexagonal close-packed palladium hydride in liquid cell TEM. Nature 2022, 603, 631–636.

[68]

Ebejer, N.; Güell, A. G.; Lai, S. C. S.; McKelvey, K.; Snowden, M. E.; Unwin, P. R. Scanning electrochemical cell microscopy: A versatile technique for nanoscale electrochemistry and functional imaging. Annu. Rev. Anal. Chem. 2013, 6, 329–351.

[69]

Zhang, P.; Xiang, H. Y.; Tao, L.; Dong, H. J.; Zhou, Y. G.; Hu, T. S.; Chen, X. L.; Liu, S.; Wang, S. Y.; Garaj, S. Chemically activated MoS2 for efficient hydrogen production. Nano Energy 2019, 57, 535–541.

[70]

Zhao, X. H.; Chen, S.; Yin, H. J.; Jiang, S. Y.; Zhao, K.; Kang, J.; Liu, P. F.; Jiang, L. X.; Zhu, Z. J.; Cui, D. D. et al. Perovskite microcrystals with intercalated monolayer MoS2 nanosheets as advanced photocatalyst for solar-powered hydrogen generation. Matter 2020, 3, 935–949.

[71]

Zhang, X. H.; Khan, A.; Ducker, W. A. A nanoscale gas state. Phys. Rev. Lett. 2007, 98, 136101.

[72]

Lu, Z. Y.; Zhu, W.; Yu, X. Y.; Zhang, H. C.; Li, Y. J.; Sun, X. M.; Wang, X. W.; Wang, H.; Wang, J. M.; Luo, J. et al. Ultrahigh hydrogen evolution performance of under-water “superaerophobic” MoS2 nanostructured electrodes. Adv. Mater. 2014, 26, 2683–2687.

[73]

Han, N. N.; Yang, K. R.; Lu, Z. Y.; Li, Y. Z.; Xu W. W.; Gao T. F.; Cai, Z.; Zhang, Y.; Batista, V. S.; Liu, W. et al. Nitrogen-doped tungsten carbide nanoarray as an efficient bifunctional electrocatalyst for water splitting in acid. Nat. Commun. 2018, 9, 924.

[74]

Lu, Z. Y.; Li, Y. J.; Lei, X. D.; Liu, J. F.; Sun, X. M. Nanoarray based “superaerophobic” surfaces for gas evolution reaction electrodes. Mater. Horiz. 2015, 2, 294–298.

[75]

Shan, X. Y.; Liu, J.; Mu, H. R.; Xiao, Y.; Mei, B. B.; Liu, W. G.; Lin, G.; Jiang, Z.; Wen, L. P.; Jiang, L. An engineered superhydrophilic/superaerophobic electrocatalyst composed of the supported CoMoSx chalcogel for overall water splitting. Angew. Chem., Int. Ed. 2020, 59, 1659–1665.

[76]

Song, Q.; Xue, Z. J.; Liu, C.; Qiao, X. Z.; Liu, L.; Huang, C. H.; Liu, K. Y.; Li, X.; Lu, Z. L.; Wang, T. General strategy to optimize gas evolution reaction via assembled striped-pattern superlattices. J. Am. Chem. Soc. 2020, 142, 1857–1863.

[77]

Lv, P. Y.; Peñas, P.; Le The, H.; Eijkel, J.; van den Berg, A.; Zhang, X. H.; Lohse, D. Self-propelled detachment upon coalescence of surface bubbles. Phys. Rev. Lett. 2021, 127, 235501.

[78]

Hu, Q.; Wang, Z. Y.; Huang, X. W.; Qin, Y. J.; Yang, H. P.; Ren, X. Z.; Zhang, Q. L.; Liu, J. H.; Shao, M. H.; He, C. X. Integrating well-controlled core–shell structures into “superaerophobic” electrodes for water oxidation at large current densities. Appl. Catal. B: Environ. 2021, 286, 119920.

[79]

Jeon, D.; Park, J.; Shin, C.; Kim, H.; Jang, J. W.; Lee, D. W.; Ryu, J. Superaerophobic hydrogels for enhanced electrochemical and photoelectrochemical hydrogen production. Sci. Adv. 2020, 6, eaaz3944.

[80]

Tan, J. W.; Kang, B.; Kim, K.; Kang, D.; Lee, H.; Ma, S.; Jang, G.; Lee, H.; Moon, J. Hydrogel protection strategy to stabilize water-splitting photoelectrodes. Nat. Energy 2022, 7, 537–547.

[81]

Hodges, A.; Hoang, A. L.; Tsekouras, G.; Wagner, K.; Lee, C. Y.; Swiegers, G. F.; Wallace, G. G. A high-performance capillary-fed electrolysis cell promises more cost-competitive renewable hydrogen. Nat. Commun. 2022, 13, 1304.

[82]

Zhang, J. K.; Dong, F. Y.; Wang, C. Q.; Wang, J. M.; Jiang, L.; Yu, C. M. Integrated bundle electrode with wettability-gradient copper cones inducing continuous generation, directional transport, and efficient collection of H2 bubbles. ACS Appl. Mater. Interfaces 2021, 13, 32435–32441.

[83]

Yang, Y.; Li, J.; Yang, W.; Yang, Y. R.; Fu, Q.; Zhang, L.; Liao, Q.; Zhu, X. An open-structured carbon fiber brush electrode for efficient hydrogen evolution by inducing oriented bubble transport. Chem. Eng. J. 2021, 407, 127159.

[84]

Zhang, S.; Xu, L. S.; Wu, J.; Yang, Y.; Zhang, C. X.; Tao, H. Y.; Lin, J. Q.; Huang, L. C.; Fang, W. C.; Shi, K. Y. et al. Femtosecond laser micro-nano processing for boosting bubble releasing of gas evolution reactions. Nano Res. 2022, 15, 1672–1679.

[85]

Mu, H. R.; Lin, G.; Zhang. Y. Y.; Xiao, Y.; Liu, J. Rational engineering of superaerophobic CoMoSx electrocatalysts for overall water splitting. Colloids Surf. A:Physicochem. Eng. Asp. 2021, 623, 126734.

[86]

Xu, Q.; Wang, P. C.; Wan, L.; Xu, Z.; Sultana, M. Z.; Wang, B. G. Superhydrophilic/superaerophobic hierarchical NiP2@MoO2/Co(Ni)MoO4 core–shell array electrocatalysts for efficient hydrogen production at large current densities. ACS Appl. Mater. Interfaces 2022, 14, 19448–19458.

[87]

Yu, X. X.; Yu, Z. Y.; Zhang, X. L.; Zheng, Y. R.; Duan, Y.; Gao, Q.; Wu, R.; Sun, B.; Gao, M. R.; Wang, G. X. et al. “Superaerophobic” nickel phosphide nanoarray catalyst for efficient hydrogen evolution at ultrahigh current densities. J. Am. Chem. Soc. 2019, 141, 7537–7543.

[88]

George, J. E.; Chidangil, S.; George, S. D. Recent progress in fabricating superaerophobic and superaerophilic surfaces. Adv. Mater. Interfaces 2017, 4, 1601088.

[89]

Li, Y. J.; Zhang, H. C.; Xu, T. H.; Lu, Z. Y.; Wu, X. C.; Wan, P. B.; Sun, X. M.; Jiang, L. Under-water superaerophobic pine-shaped Pt nanoarray electrode for ultrahigh-performance hydrogen evolution. Adv. Funct. Mater. 2015, 25, 1737–1744.

[90]

Zhou, D. J.; Li, P. S.; Lin, X.; McKinley. A.; Kuang, Y.; Liu, W.; Lin, W. F.; Sun, X. M.; Duan, X. Layered double hydroxide-based electrocatalysts for the oxygen evolution reaction: Identification and tailoring of active sites, and superaerophobic nanoarray electrode assembly. Chem. Soc. Rev. 2021, 50, 8790–8817.

[91]

Lu, Z. Y.; Sun, M.; Xu, T. H.; Li, Y. J.; Xu, W. W.; Chang, Z.; Ding, Y.; Sun, X. M.; Jiang, L. Superaerophobic electrodes for direct hydrazine fuel cells. Adv. Mater. 2015, 27, 2361–2366.

[92]

Xu, W. W.; Lu, Z. Y.; Wan, P. B.; Kuang, Y.; Sun, X. M. High-performance water electrolysis system with double nanostructured superaerophobic electrodes. Small 2016, 12, 2492–2498.

[93]

Andaveh, R.; Darband, G. B.; Maleki, M.; Rouhaghdam, A. S. Superaerophobic/superhydrophilic surfaces as advanced electrocatalysts for the hydrogen evolution reaction: A comprehensive review. J. Mater. Chem. A 2022, 10, 5147–5173.

[94]

Zhang, Q.; Li, P. S.; Zhou, D. J.; Chang, Z.; Kuang, Y.; Sun, X. M. Superaerophobic ultrathin Ni-Mo alloy nanosheet array from in situ topotactic reduction for hydrogen evolution reaction. Small 2017, 13, 1701648.

[95]

Shang, L.; Zhao, Y. X.; Kong, X. Y.; Shi, R.; Waterhouse, G. I. N.; Wen, L. P.; Zhang, T. R. Underwater superaerophobic Ni nanoparticle-decorated nickel-molybdenum nitride nanowire arrays for hydrogen evolution in neutral media. Nano Energy 2020, 78, 105375.

[96]

Hao, J. H.; Yang, W. S.; Huang, Z. P.; Zhang, C. Superhydrophilic and superaerophobic copper phosphide microsheets for efficient electrocatalytic hydrogen and oxygen evolution. Adv. Mater. Interfaces 2016, 3, 1600236.

[97]

Yuan, J. X.; Cheng, X. D.; Wang, H. Q.; Lei, C. J.; Pardiwala, S.; Yang, B.; Li, Z. J.; Zhang, Q. H.; Lei, L. C.; Wang, S. B. et al. A superaerophobic bimetallic selenides heterostructure for efficient industrial-level oxygen evolution at ultra-high current densities. Nano-Micro Lett. 2020, 12, 104.

[98]

He, J. L.; Hu, B. B.; Zhao, Y. Superaerophobic electrode with metal@metal-oxide powder catalyst for oxygen evolution reaction. Adv. Funct. Mater. 2016, 26, 5998–6004.

[99]

Feng, Z. B.; Wang, E. P.; Huang, S.; Liu, J. M. A bifunctional nanoporous Ni-Co-Se electrocatalyst with a superaerophobic surface for water and hydrazine oxidation. Nanoscale 2020, 12, 4426–4434.

[100]

Yong, J. L.; Chen, F.; Huo, J. L.; Fang, Y.; Yang, Q.; Zhang, J. Z.; Hou, X. Femtosecond laser induced underwater superaerophilic and superaerophobic PDMS sheets with through microholes for selective passage of air bubbles and further collection of underwater gas. Nanoscale 2018, 10, 3688–3696.

[101]

Akbar, K.; Hussain, S.; Truong, L.; Roy, S. B.; Jeon, J. H.; Jerng, S. K.; Kim, M.; Yi, Y.; Jung, J.; Chun, S. H. Induced superaerophobicity onto a non-superaerophobic catalytic surface for enhanced hydrogen evolution reaction. ACS Appl. Mater. Interfaces 2017, 9, 43674–43680.

[102]

Tian, Y. M.; Lin, Z. W.; Yu, J.; Zhao, S. J.; Liu, Q.; Liu, J. Y.; Chen, R. R.; Qi, Y. F.; Zhang, H. S.; Li, R. M. et al. Superaerophobic quaternary Ni-Co-S-P nanoparticles for efficient overall water-splitting. ACS Sustain. Chem. Eng. 2019, 7, 14639–14646.

[103]

Xu, Y. Q.; Jiang, X. X.; Shao, G. L.; Xiang, H. Y.; Si, S. S.; Li, X.; Hu, T. S.; Hong, G.; Dong, S. L.; Li, H. M. et al. Interface effect of Ru-MoS2 nanoflowers on lignin substrate for enhanced hydrogen evolution activity. Energy Environ. Mater. 2021, 4, 117–125.

[104]

Jiang, M.; Wang, H.; Li, Y. J.; Zhang, H. C.; Zhang, G. X.; Lu, Z. Y.; Sun, X. M.; Jiang, L. Superaerophobic RuO2-based nanostructured electrode for high-performance chlorine evolution reaction. Small 2017, 13, 1602240.

[105]

Liu, M. Z.; Sun, Z.; Li, S. Y.; Nie, X. W.; Liu, Y. F.; Wang, E. D.; Zhao, Z. K. Hierarchical superhydrophilic/superaerophobic CoMnP/Ni2P nanosheet-based microplate arrays for enhanced overall water splitting. J. Mater. Chem. A 2021, 9, 22129–22139.

[106]

Ben, S.; Ning, Y. Z.; Zhao, Z. H.; Li, Q.; Zhang, X. D.; Jiang, L.; Liu, K. S. Underwater directional and continuous manipulation of gas bubbles on superaerophobic magnetically responsive microcilia array. Adv. Funct. Mater. 2022, 32, 2113374.

[107]

Li, X. Y.; Jiang, Y.; Zhang, Z. H.; Jiang, Z. H.; Lian, J. S.; Ren, L. Q. Facile and environmentally-friendly fabrication of underwater superaerophobic and superaerophilic metallic surfaces through laser ablation and heat treatment. Colloids Surf. A: Physicochem. Eng. Aspects 2021, 621, 126547.

[108]

Ning, Y. Z.; Zhang, D.; Ben, S.; Zhao, Z. H.; Zha, J. L.; Tian, D. L.; Liu, K. S.; Jiang, L. An innovative design by single-layer superaerophobic mesh: Continuous underwater bubble antibuoyancy collection and transportation. Adv. Funct. Mater. 2020, 30, 1907027.

[109]

Yu, C. M.; Cao, M. Y.; Dong, Z. C.; Li, K.; Yu, C. L.; Wang, J. M.; Jiang, L. Aerophilic electrode with cone shape for continuous generation and efficient collection of H2 bubbles. Adv. Funct. Mater. 2016, 26, 6830–6835.

[110]

Yong, J. L.; Chen, F.; Li, W. T.; Huo, J. L.; Fang, Y.; Yang, Q.; Bian, H.; Hou, X. Underwater superaerophobic and superaerophilic nanoneedles-structured meshes for water/bubbles separation: Removing or collecting gas bubbles in water. Global Challenges 2018, 2, 1700133.

[111]

Perez Sirkin, Y. A.; Gadea, E. D.; Scherlis, D. A.; Molinero, V. Mechanisms of nucleation and stationary states of electrochemically generated nanobubbles. J. Am. Chem. Soc. 2019, 141, 10801–10811.

[112]

Wu, B.; Wang, T.; Liu, B.; Li, H. M.; Wang, Y. L.; Wang, S. J.; Zhang, L. L.; Jiang, S. K.; Pei, C. L.; Gong, J. L. Stable solar water splitting with wettable organic-layer-protected silicon photocathodes. Nat. Commun. 2022, 13, 4460.

[113]

Cheng, X. L.; Wang, L. L.; Xie, L. B.; Sun, C.; Zhao, W. W.; Liu, X.; Zhuang, Z. C.; Liu, S. J.; Zhao, Q. Defect-driven selective oxidation of MoS2 nanosheets with photothermal effect for photo-catalytic hydrogen evolution reaction. Chem. Eng. J. 2022, 439, 135757.

[114]

Wang, L. L.; Liu, X.; Luo, J. M.; Duan, X. D.; Crittenden, J.; Liu, C. B.; Zhang, S. Q.; Pei, Y.; Zeng, Y. X.; Duan, X. F. Self-optimization of the active site of molybdenum disulfide by an irreversible phase transition during photocatalytic hydrogen evolution. Angew. Chem. 2017, 129, 7718–7722.

[115]

Liu, M. M.; Li, H. X.; Liu, S. J.; Wang, L. L.; Xie, L. B.; Zhuang, Z. C.; Sun, C.; Wang, J.; Tang, M.; Sun, S. J. et al. Tailoring activation sites of metastable distorted 1T'-phase MoS2 by Ni doping for enhanced hydrogen evolution. Nano Res. 2022, 15, 5946–5952.

[116]

Zhuang, Z. C.; Li, Y.; Li, Y. H.; Huang, J. Z.; Wei, B.; Sun, R.; Ren, Y. J.; Ding, J.; Zhu, J. X.; Lang, Z. Q. et al. Atomically dispersed nonmagnetic electron traps improve oxygen reduction activity of perovskite oxides. Energy Environ. Sci. 2021, 14, 1016–1028.

[117]

Tang, M.; Yin, W. N.; Liu, S. J.; Yu, H. X.; He, Y. H.; Cai, Y. T.; Wang, L. L. Sulfur line vacancies in MoS2 for catalytic hydrogen evolution reaction. Crystals 2022, 12, 1218.

[118]
Liu, X.; Hou, Y. H.; Tang, M.; Wang, L. L. Atom elimination strategy for MoS2 nanosheets to enhance photocatalytic hydrogen evolution. Chin. Chem. Lett., in press, https://doi.org/10.1016/j.cclet.2022.05.003.
[119]

Shao, G. L.; Xue, X. X.; Wu, B. B.; Lin, Y. C.; Ouzounian, M.; Hu, T. S.; Xu, Y. Q.; Liu, X.; Li, S. S.; Suenaga, K. et al. Template-assisted synthesis of metallic 1T'-Sn0.3W0.7S2 nanosheets for hydrogen evolution reaction. Adv. Funct. Mater. 2020, 30, 1906069.

[120]

Chen, J.; Tang, Y. M.; Wang, S. H.; Xie, L. B.; Chang, C.; Cheng, X. L.; Liu, M. M.; Wang, L. L.; Wang, L. H. Ingeniously designed Ni-Mo-S/ZnIn2S4 composite for multi-photocatalytic reaction systems. Chin. Chem. Lett. 2022, 33, 1468–1474.

[121]

Ou, H. H.; Ning, S. B.; Zhu, P.; Chen, S. H.; Han, A. L.; Kang, Q.; Hu, Z. F.; Ye, J. H.; Wang, D. S.; Li, Y. D. Carbon nitride photocatalysts with integrated oxidation and reduction atomic active centers for improved CO2 conversion. Angew. Chem., Int. Ed. 2022, 61, e202206579.

[122]

Shi, A. Q.; Sun, D. Z.; Zhang, X. M.; Ji, S. L.; Wang, L. L.; Li, X. A.; Zhao, Q.; Niu, X. H. Direct Z-scheme photocatalytic system: Insights into the formative factors of photogenerated carriers transfer channel from ultrafast dynamics. ACS Catal. 2022, 12, 9570–9578.

[123]

Mou, F. Z.; Li, Y.; Chen, C. R.; Li, W.; Yin, Y. X.; Ma, H. R.; Guan, J. G. Single-component TiO2 tubular microengines with motion controlled by light-induced bubbles. Small 2015, 11, 2564–2570.

[124]

Vogel, Y. B.; Evans, C. W.; Belotti, M.; Xu, L. K.; Russell, I. C.; Yu, L. J.; Fung, A. K. K.; Hill, N. S.; Darwish, N.; Gonçales, V. R. et al. The corona of a surface bubble promotes electrochemical reactions. Nat. Commun. 2020, 11, 6323.

[125]

Cui, T. T.; Wang, Y. P.; Ye, T.; Wu, J.; Chen, Z. Q.; Li, J.; Lei, Y. P.; Wang, D. S.; Li, Y. D. Engineering dual single-atom sites on 2D ultrathin N-doped carbon nanosheets attaining ultra-low-temperature zinc-air battery. Angew. Chem., Int. Ed. 2022, 61, e202115219.

[126]

Chen, S. H.; Li, W. H.; Jiang, W. J.; Yang, J. R.; Zhu, J. X.; Wang, L. Q.; Ou, H. H.; Zhuang, Z. C.; Chen, M. Z.; Sun, X. H. et al. MOF encapsulating N-heterocyclic carbene-ligated copper single-atom site catalyst towards efficient methane electrosynthesis. Angew. Chem., Int. Ed. 2022, 61, e202114450.

[127]

Zhu, Y. W.; Chen, J.; Shao, L. H.; Xia, X. N.; Liu, Y. T.; Wang, L. L. Oriented facet heterojunctions on CdS nanowires with high photoactivity and photostability for water splitting. Appl. Catal. B: Environ. 2020, 268, 118744.

[128]

Fu, Y.; Shan, Y.; Zhou, G.; Long, L. Y.; Wang, L. L.; Yin, K. B.; Guo, J. H.; Shen, J. C.; Liu, L. Z.; Wu, X. L. Electric strain in dual metal Janus nanosheets induces structural phase transition for efficient hydrogen evolution. Joule 2019, 3, 2955–2967.

[129]

Wang, Y.; Zheng, M.; Li, Y. R.; Ye, C. L.; Chen, J.; Ye, J. Y.; Zhang, Q. H.; Li, J.; Zhou, Z. Y.; Fu, X. Z. et al. p–d orbital hybridization induced by a monodispersed ga site on a Pt3Mn nanocatalyst boosts ethanol electrooxidation. Angew. Chem., Int. Ed. 2022, 61, e202115735.

[130]

Lu, X. L.; Zhang, Q. F.; Wang, J.; Chen, S. H.; Ge, J. M.; Liu, Z. M.; Wang, L. L.; Ding, H. B.; Gong, D. C.; Yang, H. G. et al. High performance bimetal sulfides for lithium-sulfur batteries. Chem. Eng. J. 2019, 358, 955–961.

[131]

Zheng, X. B.; Yang, J. R.; Xu, Z. F.; Wang, Q. S.; Wu, J. B.; Zhang, E. H.; Dou, S. X.; Sun, W. P.; Wang, D. S.; Li, Y. D. Ru-Co pair sites catalyst boosts the energetics for the oxygen evolution reaction. Angew. Chem., Int. Ed. 2022, 61, e202205946.

[132]

Zhang, E. H.; Tao, L.; An, J. K.; Zhang, J. W.; Meng, L. Z.; Zheng, X. B.; Wang, Y.; Li, N.; Du, S. X.; Zhang, J. T. et al. Engineering the local atomic environments of indium single-atom catalysts for efficient electrochemical production of hydrogen peroxide. Angew. Chem., Int. Ed. 2022, 61, e202117347.

[133]

Yan, D. F.; Xia, C. F.; He, C. H.; Liu, Q. Q.; Chen, G. D.; Guo, W.; Xia, B. Y. A substrate-induced fabrication of active free-standing nanocarbon film as air cathode in rechargeable zinc-air batteries. Small 2022, 18, 2106606.

[134]

Yan, D. F.; Li, Y. X.; Huo, J.; Chen, R.; Dai, L. M.; Wang, S. Y. Defect chemistry of nonprecious-metal electrocatalysts for oxygen reactions. Adv. Mater. 2017, 29, 1606459.

[135]

Ranaweera, R.; Ghafari, C.; Luo, L. Bubble-nucleation-based method for the selective and sensitive electrochemical detection of surfactants. Anal. Chem. 2019, 91, 7744–7748.

[136]

Chen, J. X.; Zheng, X. L.; Zhang, J. X.; Ma, Q.; Zhao, Z. W.; Huang, L.; Wu, W. W.; Wang, Y.; Wang, J.; Dong, S. J. Bubble-templated synthesis of nanocatalyst Co/C as NADH oxidase mimic. Natl. Sci. Rev. 2022, 9, nwab186.

[137]

Wang, G. Z.; Chang, J. F.; Koul, S.; Kushima, A.; Yang, Y. CO2 bubble-assisted Pt exposure in PtFeNi porous film for high-performance zinc-air battery. J. Am. Chem. Soc. 2021, 143, 11595–11601.

[138]

Wan, L.; Xu, Z.; Xu, Q.; Wang, P. C.; Wang, B. G. Overall design of novel 3D-ordered MEA with drastically enhanced mass transport for alkaline electrolyzers. Energy Environ. Sci. 2022, 15, 1882–1892.

Nano Research
Pages 4381-4398
Cite this article:
Yin W, Cai Y, Xie L, et al. Revisited electrochemical gas evolution reactions from the perspective of gas bubbles. Nano Research, 2023, 16(4): 4381-4398. https://doi.org/10.1007/s12274-022-5133-5
Topics:

1242

Views

42

Crossref

47

Web of Science

43

Scopus

0

CSCD

Altmetrics

Received: 18 September 2022
Revised: 29 September 2022
Accepted: 01 October 2022
Published: 23 December 2022
© Tsinghua University Press 2022
Return