AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

High-density single antibody electrochemical nanoarrays

Khalil Chennit1Yannick Coffinier2Shuo Li3Nicolas Clément3( )Agnès Anne1( )Arnaud Chovin1Christophe Demaille1( )
Université Paris Cité, CNRS, Laboratoire d’Electrochimie Moléculaire, Paris F-75013, France
Institute of Electronics, Microelectronics and Nanotechnology, CNRS, University of Lille, Avenue Poincaré, BP60069, Villeneuve d’Ascq 59652, France
IIS, LIMMS/CNRS-IIS UMI2820, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
Show Author Information

Graphical Abstract

A single-antibody nanodot array is fabricated and electrochemically interrogated, at the ensemble and single nanodot scale.

Abstract

The fabrication and electrochemical interrogation of very high density single-antibody nanoarrays is reported. Gold nanodots, 15 nm in diameter, arranged in large (cm2) square arrays with a pitch of 200 nm, are used as carriers for primary antibodies (immunoglobulin G (IgG)), further recognized by secondary redox-labeled detection antibodies. Ensemble scale interrogation of the antibody array by cyclic voltammetry, and nanoscale interrogation of individual nanodots by mediator tethered atomic force-scanning electrochemical microscopy (Mt/AFM-SECM), enable the occupancy of nanodots by single antibody molecules to be demonstrated. Experiments involving the competitive adsorption of antibodies of different species onto the nanodots evidence the possibility of using single-antibody nanoarrays for digital electrochemical immunoassays.

Electronic Supplementary Material

Download File(s)
12274_2022_5137_MOESM1_ESM.pdf (704.3 KB)

References

[1]

Chen, Z. Q.; Dodig-Crnković, T.; Schwenk, J. M.; Tao, S. C. Current applications of antibody microarrays. Clin. Proteomics 2018, 15, 7.

[2]

Wingren, C.; Borrebaeck, C. A. K. Progress in miniaturization of protein arrays—A step closer to high-density nanoarrays. Drug Discov. Today 2007, 12, 813–819.

[3]

Borrebaeck, C. A. K.; Wingren, C. Design of high-density antibody microarrays for disease proteomics: Key technological issues. J. Proteomics 2009, 72, 928–935.

[4]

Ghatnekar-Nilsson, S.; Dexlin, L.; Wingren, C.; Montelius, L.; Borrebaeck, C. A. K. Design of atto-vial based recombinant antibody arrays combined with a planar wave-guide detection system. Proteomics 2007, 7, 540–547.

[5]

Petersson, L.; Coen, M.; Amro, N. A.; Truedsson, L.; Borrebaeck, C. A. K.; Wingren, C. Miniaturization of multiplexed planar recombinant antibody arrays for serum protein profiling. Bioanalysis 2014, 6, 1175–1185.

[6]

Lee, K. B.; Park, S. J.; Mirkin, C. A.; Smith, J. C.; Mrksich, M. Protein nanoarrays generated by dip-pen nanolithography. Science 2002, 295, 1702–1705.

[7]

Nam, J. M.; Han, S. W.; Lee, K. B.; Liu, X. G.; Ratner, M. A.; Mirkin, C. A. Bioactive protein nanoarrays on nickel oxide surfaces formed by dip-pen nanolithography. Angew. Chem., Int. Ed. 2004, 43, 1246–1249.

[8]

Lynch, M.; Mosher, C.; Huff, J.; Nettikadan, S.; Johnson, J.; Henderson, E. Functional protein nanoarrays for biomarker profiling. Proteomics 2004, 4, 1695–1702.

[9]

Bruckbauer, A.; Zhou, D. J.; Kang, D. J.; Korchev, Y. E.; Abell, C.; Klenerman, D. An addressable antibody nanoarray produced on a nanostructured surface. J. Am. Chem. Soc. 2004, 126, 6508–6509.

[10]
Zhou, G.; Bergeron, S.; Ricoult, S.; Juncker, D. Digitizing immunoassay on an antibody nanoarray to improve assay sensitivity. In 2013 Transducers & Eurosensors XXVII: 17th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS & EUROSENSORS XXVII), Barcelona, Spain, 2013, pp 2783–2786.
[11]

Hoff, J. D.; Cheng, L. J.; Meyhöfer, E.; Guo, L. J.; Hunt, A. J. Nanoscale protein patterning by imprint lithography. Nano Lett. 2004, 4, 853–857.

[12]

Palma, M.; Abramson, J. J.; Gorodetsky, A. A.; Penzo, E.; Gonzalez, R. L.; Sheetz, M. P.; Nuckolls, C.; Hone, J.; Wind, S. J. Selective biomolecular nanoarrays for parallel single-molecule investigations. J. Am. Chem. Soc. 2011, 133, 7656–7659.

[13]

Cai, H. G.; Wolfenson, H.; Depoil, D.; Dustin, M. L.; Sheetz, M. P.; Wind, S. J. Molecular occupancy of nanodot arrays. ACS Nano 2016, 10, 4173–4183.

[14]

Wiesbauer, M.; Wollhofen, R.; Vasic, B.; Schilcher, K.; Jacak, J.; Klar, T. A. Nano-anchors with single protein capacity produced with STED lithography. Nano Lett. 2013, 13, 5672–5678.

[15]

Schlapak, R.; Danzberger, J.; Haselgrübler, T.; Hinterdorfer, P.; Schäffler, F.; Howorka, S. Painting with biomolecules at the nanoscale: Biofunctionalization with tunable surface densities. Nano Lett. 2012, 12, 1983–1989.

[16]

Chai, J. N.; Wong, L. S.; Giam, L.; Mirkin, C. A. Single-molecule protein arrays enabled by scanning probe block copolymer lithography. Proc. Natl. Acad. Sci. USA 2011, 108, 19521–19525.

[17]

Tran, H.; Killops, K. L.; Campos, L. M. Advancements and challenges of patterning biomolecules with sub-50 nm features. Soft Matter 2013, 9, 6578–6586.

[18]

Shen, L.; Garland, A.; Wang, Y. N.; Li, Z. C.; Bielawski, C. W.; Guo, A.; Zhu, X. Y. Two dimensional nanoarrays of individual protein molecules. Small 2012, 8, 3169–3174.

[19]

Macpherson, J. V.; Unwin, P. R. Combined scanning electrochemical-atomic force microscopy. Anal. Chem. 2000, 72, 276–285.

[20]

Kueng, A.; Kranz, C.; Lugstein, A.; Bertagnolli, E.; Mizaikoff, B. Integrated AFM-SECM in tapping mode: Simultaneous topographical and electrochemical imaging of enzyme activity. Angew. Chem., Int. Ed. 2003, 42, 3238–3240.

[21]

Anne, A.; Cambril, E.; Chovin, A.; Demaille, C. Touching surface-attached molecules with a microelectrode: Mapping the distribution of redox-labeled macromolecules by electrochemical-atomic force microscopy. Anal. Chem. 2010, 82, 6353–6362.

[22]

Anne, A.; Chovin, A.; Demaille, C.; Lafouresse, M. High-resolution mapping of redox-immunomarked proteins using electrochemical-atomic force microscopy in molecule touching mode. Anal. Chem. 2011, 83, 7924–7932.

[23]

Shiku, H.; Matsue, T.; Uchida, I. Detection of microspotted carcinoembryonic antigen on a glass substrate by scanning electrochemical microscopy. Anal. Chem. 1996, 68, 1276–1278.

[24]
Horrocks, B. R.; Wittstock, G. In Scanning Electrochem. Microsc, 2nd ed.; Bard, A. J.; Mirkin, M. V. , Eds.; CRC Press: Boca Raton, 2012; pp 317–378.
[25]

Conzuelo, F.; Schulte, A.; Schuhmann, W. Biological imaging with scanning electrochemical microscopy. Proc. Math. Phys. Eng. Sci. 2018, 474, 1–24.

[26]

Bentley, C. L.; Edmondson, J.; Meloni, G. N.; Perry, D.; Shkirskiy, V.; Unwin, P. R. Nanoscale electrochemical mapping. Anal. Chem. 2019, 91, 84–108.

[27]

Mirkin, M. V.; Sun, T.; Yu, Y.; Zhou, M. Electrochemistry at one nanoparticle. Acc. Chem. Res. 2016, 49, 2328–2335.

[28]

Kausaite-Minkstimiene, A.; Ramanaviciene, A.; Kirlyte, J.; Ramanavicius, A. Comparative study of random and oriented antibody immobilization techniques on the binding capacity of immunosensor. Anal. Chem. 2010, 82, 6401–6408.

[29]

Tajima, N.; Takai, M.; Ishihara, K. Significance of antibody orientation unraveled: Well-oriented antibodies recorded high binding affinity. Anal. Chem. 2011, 83, 1969–1976.

[30]

Welch, N. G.; Scoble, J. A.; Muir, B. W.; Pigram, P. J. Orientation and characterization of immobilized antibodies for improved immunoassays (Review). Biointerphases 2017, 12, 02D301.

[31]

Gao, S. P.; Guisán, J. M.; Rocha-Martin, J. Oriented immobilization of antibodies onto sensing platforms—A critical review. Anal. Chim. Acta 2022, 1189, 338907.

[32]

Anne, A.; Demaille, C.; Moiroux, J. Elastic bounded diffusion. Dynamics of ferrocene-labeled poly(ethylene glycol) chains terminally attached to the outermost monolayer of successively self-assembled monolayers of immunoglobulins. J. Am. Chem. Soc. 1999, 121, 10379–10388.

[33]

Pease, L. F.; Elliott, J. T.; Tsai, D. H.; Zachariah, M. R.; Tarlov, M. J. Determination of protein aggregation with differential mobility analysis: Application to IgG antibody. Biotechnol. Bioeng. 2008, 101, 1214–1222.

[34]

Agheli, H.; Malmström, J.; Larsson, E. M.; Textor, M.; Sutherland, D. S. Large area protein nanopatterning for biological applications. Nano Lett. 2006, 6, 1165–1171.

[35]

Chennit, K.; Trasobares, J.; Anne, A.; Cambril, E.; Chovin, A.; Clément, N.; Demaille, C. Electrochemical imaging of dense molecular nanoarrays. Anal. Chem. 2017, 89, 11061–11069.

[36]

Laviron, E. General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems. J. Electroanal. Chem. Interfacial Electrochem. 1979, 101, 19–28.

[37]

Anne, A.; Demaille, C.; Moiroux, J. Elastic bounded diffusion and electron propagation:   Dynamics of the wiring of a self-assembly of immunoglobulins bearing terminally attached ferrocene poly(ethylene glycol) chains according to a spatially controlled organization. J. Am. Chem. Soc. 2001, 123, 4817–4825.

[38]

Clément, N.; Patriarche, G.; Smaali, K.; Vaurette, F.; Nishiguchi, K.; Troadec, D.; Fujiwara, A.; Vuillaume, D. Large array of sub-10-nm single-grain au nanodots for use in nanotechnology. Small 2011, 7, 2607–2613.

[39]

Cohen, L.; Walt, D. R. Single-molecule arrays for protein and nucleic acid analysis. Annu. Rev. Anal. Chem. 2017, 10, 345–363.

[40]

Cohen, L.; Walt, D. R. Highly sensitive and multiplexed protein measurements. Chem. Rev. 2019, 119, 293–321.

[41]

Anne, A.; Moiroux, J. Quantitative characterization of the flexibility of poly(ethylene glycol) chains attached to a glassy carbon electrode. Macromolecules 1999, 32, 5829–5835.

[42]

Paiva, T. O.; Torbensen, K.; Patel, A. N.; Anne, A.; Chovin, A.; Demaille, C.; Bataille, L.; Michon, T. Probing the enzymatic activity of individual biocatalytic fd-viral particles by electrochemical-atomic force microscopy. ACS Catal. 2020, 10, 7843–7856.

[43]

Trasobares, J.; Vaurette, F.; François, M.; Romijn, H.; Codron, J. L.; Vuillaume, D.; Théron, D.; Clément, N. High speed e-beam lithography for gold nanoarray fabrication and use in nanotechnology. Beilstein J. Nanotechnol. 2014, 5, 1918–1925.

[44]

Smaali, K.; Clément, N.; Patriarche, G.; Vuillaume, D. Conductance statistics from a large array of sub-10 nm molecular junctions. ACS Nano 2012, 6, 4639–4647.

[45]

Smaali, K.; Desbief, S.; Foti, G.; Frederiksen, T.; Sanchez-Portal, D.; Arnau, A.; Nys, J. P.; Leclère, P.; Vuillaume, D.; Clément, N. On the mechanical and electronic properties of thiolated gold nanocrystals. Nanoscale 2015, 7, 1809–1819.

[46]

Trasobares, J.; Rech, J.; Jonckheere, T.; Martin, T.; Aleveque, O.; Levillain, E.; Diez-Cabanes, V.; Olivier, Y.; Cornil, J.; Nys, J. P. et al. Estimation of π–π electronic couplings from current measurements. Nano Lett. 2017, 17, 3215–3224.

[47]

Abbou, J.; Demaille, C.; Druet, M.; Moiroux, J. Fabrication of submicrometer-sized gold electrodes of controlled geometry for scanning electrochemical-atomic force microscopy. Anal. Chem. 2002, 74, 6355–6363.

Nano Research
Pages 5412-5418
Cite this article:
Chennit K, Coffinier Y, Li S, et al. High-density single antibody electrochemical nanoarrays. Nano Research, 2023, 16(4): 5412-5418. https://doi.org/10.1007/s12274-022-5137-1
Topics:

10612

Views

3

Crossref

4

Web of Science

4

Scopus

0

CSCD

Altmetrics

Received: 29 June 2022
Revised: 06 September 2022
Accepted: 03 October 2022
Published: 18 November 2022
© Tsinghua University Press 2022
Return