AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Electrochemical biosensor employing PbS colloidal quantum dots/Au nanospheres-modified electrode for ultrasensitive glucose detection

Yunong Zhao§Jing Huang§Qing HuangYanbing TaoRuiqin GuHua-Yao LiHuan Liu( )
School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Optics Valley Laboratory, Huazhong University of Science and Technology, Wuhan 430074, China

§ Yunong Zhao and Jing Huang contributed equally to this work.

Show Author Information

Graphical Abstract

We demonstrate a sensitive glucose electrochemical biosensor through the synergetic labelling strategy utilizing PbS colloidal quantum dots (CQDs) and Au nanospheres (AuNSs). The electrochemical biosensor employing PbS CQDs/AuNSs/GOx-modified electrode is capable of transducing the glucose enzyme-catalyzed reaction into significant current signals. The glucose sensor exhibits good linear response in the concentration range of 0.1 μM–10 mM, and the limit of detection (LOD) is as low as 1.432 nM.

Abstract

Rapid and accurate detection of glucose is of great significance for diabetic management. Highly sensitive glucose sensors promise to achieve noninvasive detection technology, enabling more convenient and efficient means for large-scale screening and long-term dynamic monitoring of diabetes patients. In this work, we demonstrate a sensitive glucose electrochemical biosensor through the synergetic labelling strategy utilizing PbS colloidal quantum dots (CQDs) and Au nanospheres (AuNSs). The PbS CQDs/AuNSs/glucose oxidase (GOx) mixture could be stably immobilized on the carbon electrode surface via the one-step dip-coating method. The electrochemical biosensor employing PbS CQDs/AuNSs/GOx-modified electrode integrates the functions of specific molecule recognition, signal transduction as well as signal amplification. The sensor is capable of transducing the glucose enzyme-catalyzed reaction into significant current signals, exhibiting a good linear response in the glucose concentration range of 0.1 μM–10 mM with the limit of detection being 1.432 nM.

Electronic Supplementary Material

Download File(s)
12274_2022_5138_MOESM1_ESM.pdf (609.2 KB)

References

[1]

Krentz, A. J.; Hompesch, M. Glucose: Archetypal biomarker in diabetes diagnosis, clinical management and research. Biomark. Med. 2016, 10, 1153–1166.

[2]

Harding, J. L.; Pavkov, M. E.; Magliano, D. J.; Shaw, J. E.; Gregg. E. W. Global trends in diabetes complications: A review of current evidence. Diabetologia 2019, 62, 3–16.

[3]

Tariq, S.; Mirza, M. R.; Choudhary, M. I.; Sultan, R.; Zafar, M. Prediction of Type 2 diabetes at pre-diabetes stage by mass spectrometry: a preliminary study. Int. J. Pept. Res. Ther. 2022, 28, 111.

[4]

Yoo, E. H.; Lee, S. Y. Glucose biosensors: An overview of use in clinical practice. Sensors 2010, 10, 4558–4576.

[5]

Sun, K.; Yang, Y. K.; Zhou, H.; Yin, S. Y.; Qin, W. P.; Yu, J. B.; Chiu, D. T.; Yuan, Z.; Zhang, X. J.; Wu, C. F. Ultrabright polymer-dot transducer enabled wireless glucose monitoring via a smartphone. ACS Nano 2018, 12, 5176–5184.

[6]

Sun, X. C. Glucose detection through surface-enhanced Raman spectroscopy: A review. Anal. Chim. Acta 2022, 1206, 339226.

[7]

Zhang, R. C.; Liu, S. Y.; Jin, H. R.; Luo, Y. Q.; Zheng, Z. S.; Gao, F.; Zheng, Y. J. Noninvasive electromagnetic wave sensing of glucose. Sensors 2019, 19, 1151.

[8]

Sabu, C.; Henna, T. K.; Raphey, V. R.; Nivitha, K. P.; Pramod, K. Advanced biosensors for glucose and insulin. Biosens. Bioelectron. 2019, 141, 111201.

[9]

Zhou, Y.; Hu, Q.; Yu, F.; Ran, G. Y.; Wang, H. Y.; Shepherd, N. D.; D’Alessandro, D. M.; Kurmoo, M.; Zuo, J. L. A metal-organic framework based on a nickel bis(dithiolene) connector: Synthesis, crystal structure, and application as an electrochemical glucose sensor. J. Am. Chem. Soc. 2020, 142, 20313–20317.

[10]

Hassan, M. H.; Vyas, C.; Grieve, B.; Bartolo, P. Recent advances in enzymatic and non-enzymatic electrochemical glucose sensing. Sensors 2021, 21, 4672.

[11]

Wei, M.; Qiao, Y. X.; Zhao, H. T.; Liang, J.; Li, T. S.; Luo, Y. L.; Lu, S. Y.; Shi, X. F.; Lu, W. B.; Sun, X. P. Electrochemical non-enzymatic glucose sensors: Recent progress and perspectives. Chem. Commun. 2020, 56, 14553–14569.

[12]

Piao, Y. X.; Han, D. J.; Azad, M. R.; Park, M.; Seo, T. S. Enzyme incorporated microfluidic device for in-situ glucose detection in water-in-air microdroplets. Biosens. Bioelectron. 2015, 65, 220–225.

[13]

Bruen, D.; Delaney, C.; Florea, L.; Diamond, D. Glucose sensing for diabetes monitoring: Recent developments. Sensors 2017, 17, 1866.

[14]

Du, Y. Q.; Zhang, W. J.; Wang, M. L. Sensing of salivary glucose using nano-structured biosensors. Biosensors 2016, 6, 10.

[15]

Deng, H. M.; Teo, A. K. L.; Gao, Z. Q. An interference-free glucose biosensor based on a novel low potential redox polymer mediator. Sens. Actuators B Chem. 2014, 191, 522–528.

[16]

Krishna, R.; Campiña, J. M.; Fernandes, P. M. V.; Ventura, J.; Titus, E.; Silva, A. F. Reduced graphene oxide-nickel nanoparticles/biopolymer composite films for the sub-millimolar detection of glucose. Analyst 2016, 141, 4151–4161.

[17]

Ciaurriz, P.; Bravo, E.; Hamad-Schifferli, K. Effect of architecture on the activity of glucose oxidase/horseradish peroxidase/carbon nanoparticle conjugates. J. Colloid Interface Sci. 2014, 414, 73–81.

[18]

Kowalewska, B.; Jakubow, K. The impact of immobilization process on the electrochemical performance, bioactivity and conformation of glucose oxidase enzyme. Sens. Actuators B Chem. 2017, 238, 852–861.

[19]

Teymourian, H.; Barfidokht, A.; Wang, J. Electrochemical glucose sensors in diabetes management: An updated review (2010–2020). Chem. Soc. Rev. 2020, 49, 7671–7709.

[20]

Witkowska Nery, E.; Kundys, M.; Jeleń, P. S.; Jönsson-Niedziółka, M. Electrochemical glucose sensing: Is there still room for improvement? Anal. Chem. 2016, 88, 11271–11282.

[21]

Kwak, K.; Kumar, S. S.; Pyo, K.; Lee, D. Ionic liquid of a gold nanocluster: A versatile matrix for electrochemical biosensors. ACS Nano 2014, 8, 671–679.

[22]

Hui, J. N.; Cui, J. W.; Xu, G. Q.; Adeloju, S. B.; Wu, Y. C. Direct electrochemistry of glucose oxidase based on Nafion-graphene-GOD modified gold electrode and application to glucose detection. Mater. Lett. 2013, 108, 88–91.

[23]

Raymundo-Pereira, P. A.; Shimizu, F. M.; Coelho, D.; Piazzeta, M. H. O.; Gobbi, A. L.; Machado, S. A. S.; Oliveira, O. N. Jr. A nanostructured bifunctional platform for sensing of glucose biomarker in artificial saliva: Synergy in hybrid Pt/Au surfaces. Biosens. Bioelectron. 2016, 86, 369–376.

[24]

Vargas, E.; Teymourian, H.; Tehrani, F.; Eksin, E.; Sánchez-Tirado, E.; Warren, P.; Erdem, A.; Dassau, E.; Wang, J. Enzymatic/immunoassay dual-biomarker sensing chip: Towards decentralized insulin/glucose detection. Angew. Chem., Int. Ed. 2019, 58, 6376–6379.

[25]

Cao, Q. P.; Liang, B.; Tu, T. T.; Wei, J. W.; Fang, L.; Ye, X. S. Three-dimensional paper-based microfluidic electrochemical integrated devices (3D-PMED) for wearable electrochemical glucose detection. RSC Adv. 2019, 9, 5674–5681.

[26]

Kim, K. B.; Lee, W. C.; Cho, C. H.; Park, D. S.; Cho, S. J.; Shim, Y. B. Continuous glucose monitoring using a microneedle array sensor coupled with a wireless signal transmitter. Sens. Actuators B Chem. 2019, 281, 14–21.

[27]

Liu, H.; Li, M.; Shao, G.; Zhang, W. K.; Wang, W. W.; Song, H. B.; Cao, H. F.; Ma, W. L.; Tang, J. Enhancement of hydrogen sulfide gas sensing of PbS colloidal quantum dots by remote doping through ligand exchange. Sens. Actuators B Chem. 2015, 212, 434–439.

[28]

Liu, H.; Li, M.; Voznyy, O.; Hu, L.; Fu, Q. Y.; Zhou, D. X.; Xia, Z.; Sargent, E. H.; Tang, J. Physically flexible, rapid-response gas sensor based on colloidal quantum dot solids. Adv. Mater. 2014, 26, 2718–2724.

[29]

Zhao, Y. N.; Chen, J. J.; Hu, Z. X.; Chen, Y.; Tao, Y. B.; Wang, L.; Li, L.; Wang, P.; Li, H. Y.; Zhang, J. B. et al. All-solid-state SARS-CoV-2 protein biosensor employing colloidal quantum dots-modified electrode. Biosens. Bioelectron. 2022, 202, 113974.

[30]

Zhao, Y. N.; Tao, Y. B.; Huang, Q.; Huang, J.; Kuang, J. Y.; Gu, R. Q.; Zeng, P.; Li, H. Y.; Liang, H. G.; Liu, H. Electrochemical biosensor employing Bi2S3 nanocrystals-modified electrode for bladder cancer biomarker detection. Chemosensors 2022, 10, 48.

[31]

Gu, Z. G.; Yang, S. P.; Li, Z. J.; Sun, X. L.; Wang, G. L.; Fang, Y. J.; Liu, J. K. An ultrasensitive electrochemical biosensor for glucose using CdTe-CdS core–shell quantum dot as ultrafast electron transfer relay between graphene-gold nanocomposite and gold nanoparticle. Electrochim. Acta 2011, 56, 9162–9167.

[32]

Razmi, H.; Mohammad-Rezaei, R. Graphene quantum dots as a new substrate for immobilization and direct electrochemistry of glucose oxidase: Application to sensitive glucose determination. Biosens. Bioelectron. 2013, 41, 498–504.

[33]

Liu, Q.; Lu, X. B.; Li, J.; Yao, X.; Li, J. H. Direct electrochemistry of glucose oxidase and electrochemical biosensing of glucose on quantum dots/carbon nanotubes electrodes. Biosens. Bioelectron. 2007, 22, 3203–3209.

[34]

Boles, M. A.; Ling, D. S,; Hyeon, T.; Talapin, D. V. The surface science of nanocrystals. Nat. Mater. 2021, 4, 141–153.

[35]

Qiu, C. C.; Wang, X.; Liu, X. Y.; Hou, S. F.; Ma, H. Y. Direct electrochemistry of glucose oxidase immobilized on nanostructured gold thin films and its application to bioelectrochemical glucose sensor. Electrochim. Acta 2012, 67, 140–146.

[36]

Singh, J.; Khanra, P.; Kuila, T.; Srivastava, M.; Das, A. K.; Kim, N. H.; Jung, B. J.; Kim, D. Y.; Lee, S. H.; Lee, D. W. et al. Preparation of sulfonated poly(ether-ether-ketone) functionalized ternary graphene/AuNPs/chitosan nanocomposite for efficient glucose biosensor. Process Biochem. 2013, 48, 1724–1735.

[37]

Zhang, W. J.; Du, Y. Q.; Wang, M. L. On-chip highly sensitive saliva glucose sensing using multilayer films composed of single-walled carbon nanotubes, gold nanoparticles, and glucose oxidase. Sens. Biosensing Res. 2015, 4, 96–102.

[38]

Li, Y.; Ling, W.; Liu, X. Y.; Shang, X.; Zhou, P.; Chen, Z. R.; Xu, H.; Huang, X. Metal-organic frameworks as functional materials for implantable flexible biochemical sensors. Nano Res. 2021, 14, 2981–3009.

[39]

Holland, J. T.; Lau, C.; Brozik, S.; Atanassov, P.; Banta, S. Engineering of glucose oxidase for direct electron transfer via site-specific gold nanoparticle conjugation. J. Am. Chem. Soc. 2011, 133, 19262–19265.

[40]

de Arquer, F. P. G.; Talapin, D. V.; Klimov, V. I.; Arakawa, Y.; Bayer, M.; Sargent, E. H. Semiconductor quantum dots: Technological progress and future challenges. Science 2021, 373, eaaz8541.

[41]

Liu, M. X.; Yazdani, N.; Yarema, M.; Jansen, M.; Wood, V.; Sargent, E. H. Colloidal quantum dot electronics. Nat. Electron. 2021, 4, 548–558.

[42]

Choi, J. H.; Wang, H.; Oh, S. J.; Paik, T.; Sung, P.; Sung, J.; Ye, X. C.; Zhao, T. S.; Diroll, B. T.; Murray, C. B. et al. Exploiting the colloidal nanocrystal library to construct electronic devices. Science 2016, 352, 205–208.

[43]

Bandekar, J. Amide modes and protein conformation. Biochim. Biophys. Acta 1992, 1120, 123–143.

[44]

Wang, Q. S.; Ye, F. Y.; Fang, T. T.; Niu, W. H.; Liu, P.; Min, X. M.; Li, X. Bovine serum albumin-directed synthesis of biocompatible CdSe quantum dots and bacteria labeling. J. Colloid Interface Sci. 2011, 355, 9–14.

[45]

Mehdizadeh, B.; Maleknia, L.; Amirabadi, A.; Shabani, M. Glucose sensing by a glassy carbon electrode modified with glucose oxidase/chitosan/graphene oxide nanofibers. Diam. Relat. Mater. 2020, 109, 108073.

[46]

Sriwichai, S.; Phanichphant, S. Fabrication and characterization of electrospun poly(3-aminobenzylamine)/functionalized multi-walled carbon nanotubes composite film for electrochemical glucose biosensor. Express Polym. Lett. 2022, 16, 439–450.

[47]

Qi, M.; Zhang, Y.; Cao, C. M.; Lu, Y.; Liu, G. Z. Increased sensitivity of extracellular glucose monitoring based on AuNP decorated GO nanocomposites. RSC Adv. 2016, 6, 39180–39187.

[48]

Rakhi, R. B.; Nayak, P.; Xia, C.; Alshareef, H. N. Novel Amperometric glucose biosensor based on MXene nanocomposite. Sci. Rep. 2016, 6, 36422.

[49]

Maity, D.; Minitha, C. R.; Rajendra Kumar, R. T. Glucose oxidase immobilized amine terminated multiwall carbon nanotubes/reduced graphene oxide/polyaniline/gold nanoparticles modified screen-printed carbon electrode for highly sensitive Amperometric glucose detection. Mater. Sci. Eng. C 2019, 105, 110075.

[50]

Zhang, T.; Ran, J. H.; Ma, C.; Yang, B. A universal approach to enhance glucose biosensor performance by building blocks of Au nanoparticles. Adv. Mater. Interfaces 2020, 7, 2000227.

[51]

Yang, P. Q.; Peng, J. M.; Chu, Z. Y.; Jiang, D. F.; Jin, W. Q. Facile synthesis of Prussian blue nanocubes/silver nanowires network as a water-based ink for the direct screen-printed flexible biosensor chips. Biosens. Bioelectron. 2017, 92, 709–717.

[52]

Hou, C.; Zhao, D. Y.; Wang, Y.; Zhang, S. F.; Li, S. Y. Preparation of magnetic Fe3O4/PPy@ZIF-8 nanocomposite for glucose oxidase immobilization and used as glucose electrochemical biosensor. J. Electroanal. Chem. 2018, 822, 50–56.

[53]

Park, S. M.; Yoo, J. S. Electrochemical impedance spectroscopy for better electrochemical measurements. Anal. Chem. 2003, 75, 455A–461A.

[54]

Lust, E.; Jänes, A.; Arulepp, M. Influence of solvent nature on the electrochemical parameters of electrical double layer capacitors. J. Electroanal. Chem. 2004, 562, 33–42.

[55]

Bradbury, C. R.; Zhao, J. J.; Fermín, D. J. Distance-independent charge-transfer resistance at gold electrodes modified by thiol monolayers and metal nanoparticles. J. Phys. Chem. C 2008, 112, 10153–10160.

Nano Research
Pages 4085-4092
Cite this article:
Zhao Y, Huang J, Huang Q, et al. Electrochemical biosensor employing PbS colloidal quantum dots/Au nanospheres-modified electrode for ultrasensitive glucose detection. Nano Research, 2023, 16(3): 4085-4092. https://doi.org/10.1007/s12274-022-5138-0
Topics:
Part of a topical collection:

5234

Views

15

Crossref

16

Web of Science

15

Scopus

0

CSCD

Altmetrics

Received: 30 June 2022
Revised: 16 September 2022
Accepted: 03 October 2022
Published: 09 November 2022
© Tsinghua University Press 2022
Return