AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Three-phase interface induced charge modulation on MoO2/Mo2C-carbon tube for enhanced hydrogen evolution

Zhijie Zhang1Jing Zhao1Mengchen Wu1Qinghua Lu2( )Rui Liu1( )
Shanghai Key Laboratory of Development and Application for Metal-Functional Materials, School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China
Show Author Information

Graphical Abstract

A three-phase interfaced heterostructure of N,P co-doped carbon tube embedded with MoO2/Mo2C has been fabricated via a polymerizing-embedding and pyrolysis strategy. Electron modulation induced by the three-phase interface can reduce the adsorption Gibbs free energy (∆G) and accelerate the electron transfer, thus enhancing the catalytic hydrogen evolution reaction (HER) activity.

Abstract

Exploring superior electrocatalyst for hydrogen evolution reaction (HER) is an urgent need for hydrogen production based on water splitting. The redistribution of electrons and the increase of active sites through multi-interface designing of electrocatalyst are powerful strategies to improve the catalytic efficiency. Herein, a three-phase interface structure of N,P co-doped carbon tube embedded with MoO2/Mo2C (MoO2/Mo2C-CT) was fabricated via a cooperative polymerizing-embedding and pyrolysis strategy. Work function and X-ray photoelectron spectroscopy (XPS) verified that the interfacial charge was quantificationally modulated, achieving an intrinsically enhanced charge transfer by an induced built-in electric field. Theoretical study of density functional theory (DFT) illustrated that triple-interface structure showed a lower energy for H* + H2O* than that of single-interface counterparts. The triple-interface MoO2/Mo2C-CT delivered a lower overpotential of 129 mV at 10 mA·cm−2 than that of either single-interface MoO2-CT or Mo2C-CT catalyst. This work may put forward an attractive approach for modulating electronic structure and provide insights into the understanding of triple-interface structure towards HER.

Electronic Supplementary Material

Download File(s)
12274_2022_5140_MOESM1_ESM.pdf (2.4 MB)
12274_2022_5140_MOESM2_ESM.pdf (818.8 KB)

References

[1]

Davis, S. J.; Lewis, N. S.; Shaner, M.; Aggarwal, S.; Arent, D.; Azevedo, I. L.; Benson, S. M.; Bradley, T.; Brouwer, J.; Chiang, Y. M. et al. Net-zero emissions energy systems. Science 2018, 360, eaas9793.

[2]

Dinh, C. T.; Jain, A.; de Arquer, F. P. G.; De Luna, P.; Li, J.; Wang, N.; Zheng, X. L.; Cai, J.; Gregory, B. Z.; Voznyy, O. et al. Multi-site electrocatalysts for hydrogen evolution in neutral media by destabilization of water molecules. Nat. Energy 2019, 4, 107–114.

[3]

Li, M. G.; Zhao, Z. L.; Xia, Z. H.; Luo, M. C.; Zhang, Q. H.; Qin, Y. N.; Tao, L.; Yin, K.; Chao, Y. G.; Gu, L. et al. Exclusive strain effect boosts overall water splitting in PdCu/Ir core/shell nanocrystals. Angew. Chem., Int. Ed. 2021, 60, 8243–8250.

[4]

Anantharaj, S.; Noda, S.; Jothi, V. R.; Yi, S.; Driess, M.; Menezes, P. W. Strategies and perspectives to catch the missing pieces in energy-efficient hydrogen evolution reaction in alkaline media. Angew. Chem., Int. Ed. 2021, 60, 18981–19006.

[5]

Du, W.; Shi, Y. M.; Zhou, W.; Yu, Y. F.; Zhang, B. Unveiling the in situ dissolution and polymerization of Mo in Ni4Mo alloy for promoting the hydrogen evolution reaction. Angew. Chem., Int. Ed. 2021, 60, 7051–7055.

[6]

Feng, Y. Y.; Guan, Y. X.; Zhou, E. B.; Zhang, X.; Wang, Y. B. Nanoscale double-heterojunctional electrocatalyst for hydrogen evolution. Adv. Sci. 2022, 9, 2201339.

[7]

Xie, L. J.; Li, C. F.; Zhao, J. W.; Gu, L. F.; Wu, J. Q.; Wang, Y.; Li, G. R. Incorporating metal Co into CoMoO4/Co2Mo3O8 heterointerfaces with rich-oxygen vacancies for efficient hydrogen evolution catalysis. Chem. Eng. J. 2022, 430, 133119.

[8]

Sun, H. M.; Yan, Z. H.; Liu, F. M.; Xu, W. C.; Cheng, F. Y.; Chen, J. Self-supported transition-metal-based electrocatalysts for hydrogen and oxygen evolution. Adv. Mater. 2020, 32, 1806326.

[9]

Zhou, P.; Lv, X. S.; Xing, D. N.; Ma, F. H.; Liu, Y. Y.; Wang, Z. Y.; Wang, P.; Zheng, Z. K.; Dai, Y.; Huang, B. B. High-efficient electrocatalytic overall water splitting over vanadium doped hexagonal Ni0.2Mo0. 8N. Appl. Catal. B: Environ. 2020, 263, 118330.

[10]

Song, J. D.; Jin, Y. Q.; Zhang, L.; Dong, P. Y.; Li, J. W.; Xie, F. Y.; Zhang, H.; Chen, J.; Jin, Y. S.; Meng, H. et al. Phase-separated Mo-Ni alloy for hydrogen oxidation and evolution reactions with high activity and enhanced stability. Adv. Energy Mater. 2021, 11, 2003511.

[11]

Cai, J. L.; Ding, J.; Wei, D. H.; Xie, X.; Li, B. J.; Lu, S. Y.; Zhang, J. M.; Liu, Y. S.; Cai, Q.; Zang, S. Q. Coupling of Ru and O-vacancy on 2D Mo-based electrocatalyst via a solid-phase interface reaction strategy for hydrogen evolution reaction. Adv. Energy Mater. 2021, 11, 2100141.

[12]

Zhu, T.; Huang, J.; Huang, B. L.; Zhang, N.; Liu, S. H.; Yao, Q.; Haw, S. C.; Chang, Y. C.; Pao, C. W.; Chen, J. M. et al. High-index faceted RuCo nanoscrews for water electrosplitting. Adv. Energy Mater. 2020, 10, 2002860.

[13]

Gu, Y.; Wu, A. P.; Jiao, Y. Q.; Zheng, H. R.; Wang, X. Q.; Xie, Y.; Wang, L.; Tian, C. G.; Fu, H. G. Two-dimensional porous molybdenum phosphide/nitride heterojunction nanosheets for pH-universal hydrogen evolution reaction. Angew. Chem., Int. Ed. 2021, 60, 6673–6681.

[14]

Zhang, W. Y.; Huang, B. L.; Wang, K.; Yang, W. X.; Lv, F.; Li, N.; Chao, Y. G.; Zhou, P.; Yang, Y.; Li, Y. J. et al. WOx-surface decorated PtNi@Pt dendritic nanowires as efficient pH-universal hydrogen evolution electrocatalysts. Adv. Energy Mater 2021, 11, 2003192.

[15]

Li, C. F.; Zhao, J. W.; Xie, L. J.; Wu, J. Q.; Li, G. R. Water adsorption and dissociation promoted by Co*-/N-C*-biactive sites of metallic Co/N-doped carbon hybrids for efficient hydrogen evolution. Appl. Catal. B: Environ. 2021, 282, 119463.

[16]

Borse, R. A.; Kale, M. B.; Sonawane, S. H.; Wang, Y. B. Fluorographene and its composites: Fundamentals, electrophysical properties, DFT studies, and advanced applications. Adv. Funct. Mater. 2022, 32, 2202570.

[17]

Hu, J.; Zhang, C. X.; Zhang, Y. Z.; Yang, B. M.; Qi, Q. L.; Sun, M. Z.; Zi, F. T.; Leung, M. K. H.; Huang, B. L. Interface modulation of MoS2/metal oxide heterostructures for efficient hydrogen evolution electrocatalysis. Small 2020, 16, 2002212.

[18]

Yan, H. J.; Xie, Y.; Jiao, Y. Q.; Wu, A. P.; Tian, C. G.; Zhang, X. M.; Wang, L.; Fu, H. Holey reduced graphene oxide coupled with an Mo2N–Mo2C heterojunction for efficient hydrogen evolution. Adv. Mater. 2018, 30, 1704156.

[19]

Liu, W.; Wang, X. T.; Wang, F.; Du, K. F.; Zhang, Z. F.; Guo, Y. Z.; Yin, H. Y.; Wang, D. H. A durable and pH-universal self-standing MoC–Mo2C heterojunction electrode for efficient hydrogen evolution reaction. Nat. Commun. 2021, 12, 6776.

[20]

Vikraman, D.; Hussain, S.; Karuppasamy, K.; Feroze, A.; Kathalingam, A.; Sanmugam, A.; Chun, S. H.; Jung, J.; Kim, H. S. Engineering the novel MoSe2-Mo2C hybrid nanoarray electrodes for energy storage and water splitting applications. Appl. Catal. B: Environ. 2020, 264, 118531.

[21]

Wan, Y. C.; Wang, Z. J.; Li, J.; Lv, R. T. Mo2C–MoO2 heterostructure quantum dots for enhanced electrocatalytic nitrogen reduction to ammonia. ACS Nano 2022, 16, 643–654.

[22]

Li, N.; Li, R.; Zhao, J. H.; Liang, L.; Yu, Y.; Kong, L. C.; Chen, G. Y.; Yan, B. B. Multi-interface Mn3O4@ZnO/TiO2 with controllable charge transfer routes for highly selective denitrification under ultrasonic-assisted visible light photocatalysis. Chem. Eng. J. 2020, 394, 124997.

[23]

Zhou, C. X.; Wang, R. L.; Jiang, C. P.; Chen, J. W.; Wang, G. Dynamically optimized multi-interface novel BiSI-promoted redox sites spatially separated n–p–n double heterojunctions BiSI/MoS2/CdS for hydrogen evolution. Ind. Eng. Chem. Res. 2019, 58, 7844–7856.

[24]

Wang, H. Q.; Zhang, W. J.; Zhang, X. W.; Hu, S. X.; Zhang, Z. C.; Zhou, W. J.; Liu, H. Multi-interface collaboration of graphene cross-linked NiS-NiS2-Ni3S4 polymorph foam towards robust hydrogen evolution in alkaline electrolyte. Nano Res. 2021, 14, 4857–4864.

[25]

Qian, G. F.; Chen, J. L.; Yu, T. Q.; Liu, J. C.; Luo, L.; Yin, S. B. Three-phase heterojunction NiMo-based nano-needle for water splitting at industrial alkaline condition. Nano-Micro Lett. 2021, 14, 20.

[26]

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

[27]

Hammer, B.; Hansen, L. B.; Nørskov, J. K. Improved adsorption energetics within density-functional theory using revised Perdew–Burke–Ernzerhof functionals. Phys. Rev. B 1999, 59, 7413–7421.

[28]

Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 2006, 27, 1787–1799.

[29]

Monkhorst, H. J.; Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188–5192.

[30]

Ji, L.; Wang, J. Y.; Teng, X.; Dong, H.; He, X. M.; Chen, Z. F. N, P-doped molybdenum carbide nanofibers for efficient hydrogen production. ACS Appl. Mater. Interfaces 2018, 10, 14632–14640.

[31]

Chen, Y. Y.; Zhang, Y.; Jiang, W. J.; Zhang, X.; Dai, Z. H.; Wan, L. J.; Hu, J. S. Pomegranate-like N, P-doped Mo2C@C nanospheres as highly active electrocatalysts for Alkaline hydrogen evolution. ACS Nano 2016, 10, 8851–8860.

[32]

Tao, L.; Qiao, M.; Jin, R.; Li, Y.; Xiao, Z. H.; Wang, Y. Q.; Zhang, N. N.; Xie, C.; He, Q. G.; Jiang, D. C. et al. Bridging the surface charge and catalytic activity of a defective carbon electrocatalyst. Angew. Chem., Int. Ed. 2019, 58, 1019–1024.

[33]

Zhao, J.; Qin, R. X.; Liu, R. Urea-bridging synthesis of nitrogen-doped carbon tube supported single metallic atoms as bifunctional oxygen electrocatalyst for zinc-air battery. Appl. Catal. B: Environ. 2019, 256, 117778.

[34]

Jiao, L.; Yang, W. J.; Wan, G.; Zhang, R.; Zheng, X. S.; Zhou, H.; Yu, S. H.; Jiang, H. L. Single-atom electrocatalysts from multivariate metal-organic frameworks for highly selective reduction of CO2 at low pressures. Angew. Chem., Int. Ed. 2020, 59, 20589–20595.

[35]

Lu, Y.; Ang, H.; Yan, Q. Y.; Fong, E. Bioinspired synthesis of hierarchically porous MoO2/Mo2C nanocrystal decorated N-doped carbon foam for lithium-oxygen batteries. Chem. Mater. 2016, 28, 5743–5752.

[36]

Liu, S. H.; Li, F.; Wang, D.; Huang, C. M.; Zhao, Y. M.; Baek, J. B.; Xu, J. T. 3D Macroporous MoxC@N-C with incorporated Mo vacancies as anodes for high-performance lithium-ion batteries. Small Methods 2018, 2, 1800040.

[37]

He, L. Q.; Zhang, W. B.; Mo, Q. J.; Huang, W. J.; Yang, L. C.; Gao, Q. S. Molybdenum carbide-oxide heterostructures: In situ surface reconfiguration toward efficient electrocatalytic hydrogen evolution. Angew. Chem., Int. Ed. 2020, 59, 3544–3548.

[38]

Zhang, J.; Wang, T.; Pohl, D.; Rellinghaus, B.; Dong, R. H.; Liu, S. H.; Zhuang, X. D.; Feng, X. L. Interface engineering of MoS2/Ni3S2 heterostructures for highly enhanced electrochemical overall-water-splitting activity. Angew. Chem., Int. Ed. 2016, 55, 6702–6707.

[39]

Liu, Y. P.; Yu, G. T.; Li, G. D.; Sun, Y. H.; Asefa, T.; Chen, W.; Zou, X. X. Coupling Mo2C with nitrogen-rich nanocarbon leads to efficient hydrogen-evolution electrocatalytic sites. Angew. Chem., Int. Ed. 2015, 54, 10752–10757.

[40]

Li, J. S.; Wang, Y.; Liu, C. H.; Li, S. L.; Wang, Y. G.; Dong, L. Z.; Dai, Z. H.; Li, Y. F.; Lan, Y. Q. Coupled molybdenum carbide and reduced graphene oxide electrocatalysts for efficient hydrogen evolution. Nat. Commun. 2016, 7, 11204.

[41]

Ma, Y. Y.; Yang, T.; Zou, H. Y.; Zang, W. J.; Kou, Z. K.; Mao, L.; Feng, Y. P.; Shen, L.; Pennycook, S. J.; Duan, L. L. et al. Synergizing Mo single atoms and Mo2C nanoparticles on CNTs synchronizes selectivity and activity of electrocatalytic N2 reduction to ammonia. Adv. Mater. 2020, 32, 2002177.

[42]

Li, C. L.; Zhang, Z. J.; Liu, R. In situ growth of 3D NiFe LDH-POM micro-flowers on nickel foam for overall water splitting. Small 2020, 16, 2003777.

[43]

Zhao, J.; Li, Q. Q.; Zhang, Q. C.; Liu, R. Carbon tube-graphene heterostructure with different N-doping configurations induces an electrochemically active–active interface for efficient oxygen electrocatalysis. Chem. Eng. J. 2022, 431, 133730.

[44]

Tao, X. P.; Gao, Y. Y.; Wang, S. Y.; Wang, X. Y.; Liu, Y.; Zhao, Y.; Fan, F. T.; Dupuis, M.; Li, R. G.; Li, C. Interfacial charge modulation: An efficient strategy for boosting spatial charge separation on semiconductor photocatalysts. Adv. Energy Mater. 2019, 9, 1803951.

[45]

Miao, J.; Lang, Z. L.; Zhang, X. Y.; Kong, W. G.; Peng, O. W.; Yang, Y.; Wang, S. P.; Cheng, J. J.; He, T. C.; Amini, A. et al. Polyoxometalate-derived hexagonal molybdenum nitrides (MXenes) supported by boron, nitrogen codoped carbon nanotubes for efficient electrochemical hydrogen evolution from seawater. Adv. Funct. Mater. 2019, 29, 1805893.

[46]

Wu, M. C.; Zhao, J.; Li, C. L.; Liu, R. Heterogeneity in a metal-organic framework in situ guides engineering Co@CoO heterojunction for electrocatalytic H2 production in tandem with glucose oxidation. J. Mater. Chem. A 2022, 10, 4791–4799.

[47]

Han, L.; Sun, Y. Y.; Li, S.; Cheng, C.; Halbig, C. E.; Feicht, P.; Hübner, J. L.; Strasser, P.; Eigler, S. In-plane carbon lattice-defect regulating electrochemical oxygen reduction to hydrogen peroxide production over nitrogen-doped graphene. ACS Catal. 2019, 9, 1283–1288.

[48]

Van Deelen, T. W.; Hernández Mejía, C.; de Jong, K. P. Control of metal–support interactions in heterogeneous catalysts to enhance activity and selectivity. Nat. Catal. 2019, 2, 955–970.

[49]

Ren, J. T.; Chen, L.; Yang, D. D.; Yuan, Z. Y. Molybdenum-based nanoparticles (Mo2C, MoP and MoS2) coupled heteroatoms-doped carbon nanosheets for efficient hydrogen evolution reaction. Appl. Catal. B: Environ. 2020, 263, 118352.

[50]

Huang, L. C.; Yang, Y.; Zhang, C. X.; Yu, H.; Wang, T. T.; Dong, X. T.; Li, D.; Liu, Z. L. A nanostructured MoO2/MoS2/MoP heterojunction electrocatalyst for the hydrogen evolution reaction. Nanotechnology 2020, 31, 225403.

[51]

Yang, H.; Chen, X.; Hu, G. X.; Chen, W. T.; Bradley, S. J.; Zhang, W. J.; Verma, G.; Nann, T.; Jiang, D. E.; Kruger, P. E. et al. Highly efficient electrocatalytic hydrogen evolution promoted by O–Mo–C interfaces of ultrafine β-Mo2C nanostructures. Chem. Sci. 2020, 11, 3523–3530.

[52]

Liu, M. Z.; Yang, Y.; Luan, X. B.; Dai, X. P.; Zhang, X.; Yong, J. X.; Qiao, H. Y.; Zhao, H. H.; Song, W. Y.; Huang, X. L. Interface-synergistically enhanced acidic, neutral, and alkaline hydrogen evolution reaction over Mo2C/MoO2 heteronanorods. ACS Sustain. Chem. Eng. 2018, 6, 14356–14364.

[53]

Dong, J.; Wu, Q.; Huang, C. P.; Yao, W. F.; Xu, Q. J. Cost effective Mo rich Mo2C electrocatalysts for the hydrogen evolution reaction. J. Mater. Chem. A 2018, 6, 10028–10035.

[54]

Jian, C. Y.; Cai, Q.; Hong, W. T.; Li, J.; Liu, W. Edge-riched MoSe2/MoO2 hybrid electrocatalyst for efficient hydrogen evolution reaction. Small 2018, 14, 1703798.

[55]

Wang, D. Z.; Duan, Q. F.; Wu, Z. Z. Facile synthesis of MoP/MoO2 heterostructures for efficient hydrogen generation. Mater. Lett. 2019, 241, 227–230.

[56]

Wang, F.; Deng, W. A.; Li, Y. N.; Min, S. X.; Zhang, Z. G. In situ embedding of Mo2C/MoO3−x nanoparticles within a carbonized wood membrane as a self-supported pH-compatible cathode for efficient electrocatalytic H2 evolution. Dalton Trans 2020, 49, 8557–8565.

[57]

Lin, H. L.; Liu, N.; Shi, Z. P.; Guo, Y. L.; Tang, Y.; Gao, Q. S. Nanowires: Cobalt-doping in molybdenum-carbide nanowires toward efficient electrocatalytic hydrogen evolution. Adv. Funct. Mater. 2016, 26, 5581–5581.

[58]

Yi, M. J.; Lu, B. B.; Zhang, X. T.; Tan, Y. B.; Zhu, Z. Y.; Pan, Z. C.; Zhang, J. H. Ionic liquid-assisted synthesis of nickel cobalt phosphide embedded in N, P codoped-carbon with hollow and folded structures for efficient hydrogen evolution reaction and supercapacitor. Appl. Catal. B: Environ. 2021, 283, 119635.

[59]

Xie, H.; Chen, S. Q.; Liang, J. S.; Wang, T. Y.; Hou, Z. F.; Wang, H. L.; Chai, G. L.; Li, Q. Weakening intermediate bindings on CuPd/Pd core/shell nanoparticles to achieve Pt-like bifunctional activity for hydrogen evolution and oxygen reduction reactions. Adv. Funct. Mater. 2021, 31, 2100883.

[60]

Wang, X. X.; Li, L.; Wang, Z.; Wu, Z. Y.; Zhu, M.; Gai, S. L.; Liu, Z.; Yang, P. P. Construction of echinoids-like MoS2@NiS2 electrocatalyst for efficient and robust water oxidation. Electrochim. Acta 2020, 353, 136527.

Nano Research
Pages 4706-4714
Cite this article:
Zhang Z, Zhao J, Wu M, et al. Three-phase interface induced charge modulation on MoO2/Mo2C-carbon tube for enhanced hydrogen evolution. Nano Research, 2023, 16(4): 4706-4714. https://doi.org/10.1007/s12274-022-5140-6
Topics:

4936

Views

16

Crossref

19

Web of Science

17

Scopus

0

CSCD

Altmetrics

Received: 30 July 2022
Revised: 03 October 2022
Accepted: 06 October 2022
Published: 09 November 2022
© Tsinghua University Press 2022
Return