Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Despite immune checkpoint blockade (ICB) therapy has transformed cancer treatment, only 20.2% of these patients achieved a response. Understanding resistance mechanisms to ICB is important for the treatment of a wider population. In this work, we occasionally found that the silica nanoparticles (SiO2 NPs) accumulated in the liver can induce resistance to following ICB therapy to a subcutaneous tumor in mice. By analysis of T cells frequency, we uncovered that SiO2 NPs in the liver resulted in a siphoning of T cells from circulation to the liver by produced chemokines. In addition, liver immunosuppressive cells further inhibit the function and induce apoptosis of recruited T cells, leading to a systemic loss and reduced tumor infiltration of T cells, which contributes to poor responses to ICB therapy. However, such effect is not observed in poly(lactic-co-glycolic acid) (PLGA) NPs treated mice under the same conditions, likely due to their much lower immunogenicity in perturbing the liver immune microenvironment, indicating that cancer is not a local disease but an ecosystem that is linked to the distal environment. We further provide a new mechanism insight into ICB resistance induced by liver accumulation of nanoparticles.
Carlino, M. S.; Larkin, J.; Long, G. V. Immune checkpoint inhibitors in melanoma. Lancet 2021, 398, 1002–1014.
Fairfax, B. P.; Taylor, C. A.; Watson, R. A.; Nassiri, I.; Danielli, S.; Fang, H.; Mahe, E. A.; Cooper, R.; Woodcock, V.; Traill, Z. et al. Peripheral CD8+ T cell characteristics associated with durable responses to immune checkpoint blockade in patients with metastatic melanoma. Nat. Med. 2020, 26, 193–199.
Spranger, S.; Gajewski, T. F. Impact of oncogenic pathways on evasion of antitumour immune responses. Nat. Rev. Cancer 2018, 18, 139–147.
Reck, M.; Rodríguez-Abreu, D.; Robinson, A. G.; Hui, R. N.; Csőszi, T.; Fülöp, A.; Gottfried, M.; Peled, N.; Tafreshi, A.; Cuffe, S. et al. Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung cancer. N. Engl. J. Med. 2016, 375, 1823–1833.
Kalbasi, A.; Ribas, A. Tumour-intrinsic resistance to immune checkpoint blockade. Nat. Rev. Immunol. 2020, 20, 25–39.
Yu, J. L.; Green, M. D.; Li, S. S.; Sun, Y. L.; Journey, S. N.; Choi, J. E.; Rizvi, S. M.; Qin, A.; Waninger, J. J.; Lang, X. T. et al. Liver metastasis restrains immunotherapy efficacy via macrophage-mediated T cell elimination. Nat. Med. 2021, 27, 152–164.
Irvine, D. J.; Dane, E. L. Enhancing cancer immunotherapy with nanomedicine. Nat. Rev. Immunol. 2020, 20, 321–334.
Mitchell, M. J.; Billingsley, M. M.; Haley, R. M.; Wechsler, M. E.; Peppas, N. A.; Langer, R. Engineering precision nanoparticles for drug delivery. Nat. Rev. Drug Discov. 2021, 20, 101–124.
Fenton, O. S.; Olafson, K. N.; Pillai, P. S.; Mitchell, M. J.; Langer, R. Advances in biomaterials for drug delivery. Adv. Mater. 2018, 30, 1705328.
Zhang, Y. N.; Poon, W.; Tavares, A. J.; McGilvray, I. D.; Chan, W. C. W. Nanoparticle-liver interactions: Cellular uptake and hepatobiliary elimination. J. Control. Release 2016, 240, 332–348.
Tsoi, K. M.; MacParland, S. A.; Ma, X. Z.; Spetzler, V. N.; Echeverri, J.; Ouyang, B.; Fadel, S. M.; Sykes, E. A.; Goldaracena, N.; Kaths, J. M. et al. Mechanism of hard-nanomaterial clearance by the liver. Nat. Mater. 2016, 15, 1212–1221.
Li, J. L.; Chen, C. Y.; Xia, T. Understanding nanomaterial–liver interactions to facilitate the development of safer nanoapplications. Adv. Mater. 2022, 34, 2106456.
Wu, T. D.; Madireddi, S.; de Almeida, P. E.; Banchereau, R.; Chen, Y. J. J.; Chitre, A. S.; Chiang, E. Y.; Iftikhar, H.; O’Gorman, W. E.; Au-Yeung, A. et al. Peripheral T cell expansion predicts tumour infiltration and clinical response. Nature 2020, 579, 274–278.
Chen, X. Y.; Gao, C. Y. Influences of surface coating of PLGA nanoparticles on immune activation of macrophages. J. Mater. Chem. B 2018, 6, 2065–2077.
Kapoor, D. N.; Bhatia, A.; Kaur, R.; Sharma, R.; Kaur, G.; Dhawan, S. PLGA: A unique polymer for drug delivery. Ther. Deliv. 2015, 6, 41–58.
Rosenholm, J. M.; Mamaeva, V.; Sahlgren, C.; Lindén, M. Nanoparticles in targeted cancer therapy: Mesoporous silica nanoparticles entering preclinical development stage. Nanomedicine 2012, 7, 111–120.
Danhier, F.; Ansorena, E.; Silva, J. M.; Coco, R.; Le Breton, A.; Préat, V. PLGA-based nanoparticles:An overview of biomedical applications. J. Control. Release 2012, 161, 505–522.
Janjua, T. I.; Cao, Y. X.; Yu, C. Z.; Popat, A. Clinical translation of silica nanoparticles. Nat. Rev. Mater. 2021, 6, 1072–1074.
Ghitman, J.; Biru, E. I.; Stan, R.; Iovu, H. Review of hybrid PLGA nanoparticles: Future of smart drug delivery and theranostics medicine. Mater. Des. 2020, 193, 108805.
Wu, S. H.; Mou, C. Y.; Lin, H. P. Synthesis of mesoporous silica nanoparticles. Chem. Soc. Rev. 2013, 42, 3862–3875.
Gao, C. L.; Pan, J.; Lu, W. Y.; Zhang, M.; Zhou, L.; Tian, J. In-vitro evaluation of paclitaxel-loaded MPEG-PLGA nanoparticles on laryngeal cancer cells. Anticancer Drugs 2009, 20, 807–814.
Franco, F.; Jaccard, A.; Romero, P.; Yu, Y. R.; Ho, P. C. Metabolic and epigenetic regulation of T-cell exhaustion. Nat. Metab. 2020, 2, 1001–1012.
Lin, H.; Wei, S.; Hurt, E. M.; Green, M. D.; Zhao, L. L.; Vatan, L.; Szeliga, W.; Herbst, R.; Harms, P. W.; Fecher, L. A. et al. Host expression of PD-L1 determines efficacy of PD-L1 pathway blockade-mediated tumor regression. J. Clin. Invest. 2018, 128, 805–815.
Iwai, T.; Sugimoto, M.; Patil, N. S.; Bower, D.; Suzuki, M.; Kato, C.; Yorozu, K.; Kurasawa, M.; Shames, D. S.; Kondoh, O. Both T cell priming in lymph node and CXCR3-dependent migration are the key events for predicting the response of atezolizumab. Sci. Rep. 2021, 11, 13912.
Park, J. K.; Utsumi, T.; Seo, Y. E.; Deng, Y.; Satoh, A.; Saltzman, W. M.; Iwakiri, Y. Cellular distribution of injected PLGA-nanoparticles in the liver. Nanomedicine:Nanotechnol., Biol. Med. 2016, 12, 1365–1374.
Xie, G. P.; Sun, J.; Zhong, G. R.; Shi, L. Y.; Zhang, D. W. Biodistribution and toxicity of intravenously administered silica nanoparticles in mice. Arch. Toxicol. 2010, 84, 183–190.
Marshall, J. S.; Warrington, R.; Watson, W.; Kim, H. L. An introduction to immunology and immunopathology. Allergy Asthma Clin. Immunol. 2018, 14, 49.
Mariani, E.; Lisignoli, G.; Borzi, R. M.; Pulsatelli, L. Biomaterials: Foreign bodies or tuners for the immune response? Int. J. Mol. Sci. 2019, 20, 636.
Sun, M. Y.; Gu, P. F.; Yang, Y.; Yu, L. D.; Jiang, Z. S.; Li, J. Q.; Le, Y. Y.; Chen, Y.; Ba, Q.; Wang, H. Mesoporous silica nanoparticles inflame tumors to overcome anti-PD-1 resistance through TLR4-NFκB axis. J. Immunother. Cancer 2021, 9, e002508.
Abbaraju, P. L.; Jambhrunkar, M.; Yang, Y. N.; Liu, Y.; Lu, Y.; Yu, C. Z. Asymmetric mesoporous silica nanoparticles as potent and safe immunoadjuvants provoke high immune responses. Chem. Commun. 2018, 54, 2020–2023.
Fahey, S.; Dempsey, E.; Long, A. The role of chemokines in acute and chronic hepatitis C infection. Cell. Mol. Immunol. 2014, 11, 25–40.
Qian, B. Z.; Li, J. F.; Zhang, H.; Kitamura, T.; Zhang, J. H.; Campion, L. R.; Kaiser, E. A.; Snyder, L. A.; Pollard, J. W. CCL2 recruits inflammatory monocytes to facilitate breast-tumour metastasis. Nature 2011, 475, 222–225.
Aldinucci, D.; Colombatti, A. The inflammatory chemokine CCL5 and cancer progression. Mediators Inflamm. 2014, 2014, 292376.
Lang, K. S.; Georgiev, P.; Recher, M.; Navarini, A. A.; Bergthaler, A.; Heikenwalder, M.; Harris, N. L.; Junt, T.; Odermatt, B.; Clavien, P. A. et al. Immunoprivileged status of the liver is controlled by Toll-like receptor 3 signaling. J. Clin. Invest. 2006, 116, 2456–2463.
Zhou, J.; Peng, H.; Li, K.; Qu, K.; Wang, B. H.; Wu, Y. Z.; Ye, L. L.; Dong, Z. J.; Wei, H. M.; Sun, R. et al. Liver-resident NK cells control antiviral activity of hepatic T cells via the PD-1-PD-L1 axis. Immunity 2019, 50, 403–417.e4.
Gabrilovich, D. I.; Ostrand-Rosenberg, S.; Bronte, V. Coordinated regulation of myeloid cells by tumours. Nat. Rev. Immunol. 2012, 12, 253–268.
Wolf, Y.; Anderson, A. C.; Kuchroo, V. K. TIM3 comes of age as an inhibitory receptor. Nat. Rev. Immunol. 2020, 20, 173–185.
Highfill, S. L.; Cui, Y. Z.; Giles, A. J.; Smith, J. P.; Zhang, H.; Morse, E.; Kaplan, R. N.; Mackall, C. L. Disruption of CXCR2-mediated MDSC tumor trafficking enhances anti-PD1 efficacy. Sci. Transl. Med. 2014, 6, 237ra67.
Dammeijer, F.; van Gulijk, M.; Mulder, E. E.; Lukkes, M.; Klaase, L.; van den Bosch, T.; van Nimwegen, M.; Lau, S. P.; Latupeirissa, K.; Schetters, S. et al. The PD-1/PD-L1-checkpoint restrains T cell immunity in tumor-draining lymph nodes. Cancer Cell 2020, 38, 685–700.e8.
Nguyen, T. L.; Choi, Y.; Kim, J. Mesoporous silica as a versatile platform for cancer immunotherapy. Adv. Mater. 2019, 31, 1803953.
Li, Y.; Zhao, R. F.; Cheng, K. M.; Zhang, K. Y.; Wang, Y. Z.; Zhang, Y. L.; Li, Y. J.; Liu, G. N.; Xu, J. C.; Xu, J. Q. et al. Bacterial outer membrane vesicles presenting programmed death 1 for improved cancer immunotherapy via immune activation and checkpoint inhibition. ACS Nano 2020, 14, 16698–16711.
Makadia, H. K.; Siegel, S. J. Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers 2011, 3, 1377–1397.