AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Nanoparticle accumulation in liver may induce resistance to immune checkpoint blockade therapy

Huaxing Dai§Qianyu Yang§Rong SunYue ZhangQingle MaYifan ShenBeilei WangYitong ChenJialu XuBo TianFang XuChao Wang ( )
Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China

§ Huaxing Dai and Qianyu Yang contributed equally to this work.

Show Author Information

Graphical Abstract

Nanoparticles (NPs) accumulated in liver may result in immune checkpoint blockade (ICB) immunotherapy resistance by inducing systemic and tumor-infiltrating T cell lose. This finding provides a new mechanism insight into the immunological effects of nanomaterials, which should be considered when designing nanomedicine treatment time window.

Abstract

Despite immune checkpoint blockade (ICB) therapy has transformed cancer treatment, only 20.2% of these patients achieved a response. Understanding resistance mechanisms to ICB is important for the treatment of a wider population. In this work, we occasionally found that the silica nanoparticles (SiO2 NPs) accumulated in the liver can induce resistance to following ICB therapy to a subcutaneous tumor in mice. By analysis of T cells frequency, we uncovered that SiO2 NPs in the liver resulted in a siphoning of T cells from circulation to the liver by produced chemokines. In addition, liver immunosuppressive cells further inhibit the function and induce apoptosis of recruited T cells, leading to a systemic loss and reduced tumor infiltration of T cells, which contributes to poor responses to ICB therapy. However, such effect is not observed in poly(lactic-co-glycolic acid) (PLGA) NPs treated mice under the same conditions, likely due to their much lower immunogenicity in perturbing the liver immune microenvironment, indicating that cancer is not a local disease but an ecosystem that is linked to the distal environment. We further provide a new mechanism insight into ICB resistance induced by liver accumulation of nanoparticles.

Electronic Supplementary Material

Download File(s)
12274_2022_5142_MOESM1_ESM.pdf (1.7 MB)

References

[1]

Carlino, M. S.; Larkin, J.; Long, G. V. Immune checkpoint inhibitors in melanoma. Lancet 2021, 398, 1002–1014.

[2]

Fairfax, B. P.; Taylor, C. A.; Watson, R. A.; Nassiri, I.; Danielli, S.; Fang, H.; Mahe, E. A.; Cooper, R.; Woodcock, V.; Traill, Z. et al. Peripheral CD8+ T cell characteristics associated with durable responses to immune checkpoint blockade in patients with metastatic melanoma. Nat. Med. 2020, 26, 193–199.

[3]

Spranger, S.; Gajewski, T. F. Impact of oncogenic pathways on evasion of antitumour immune responses. Nat. Rev. Cancer 2018, 18, 139–147.

[4]

Reck, M.; Rodríguez-Abreu, D.; Robinson, A. G.; Hui, R. N.; Csőszi, T.; Fülöp, A.; Gottfried, M.; Peled, N.; Tafreshi, A.; Cuffe, S. et al. Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung cancer. N. Engl. J. Med. 2016, 375, 1823–1833.

[5]

Kalbasi, A.; Ribas, A. Tumour-intrinsic resistance to immune checkpoint blockade. Nat. Rev. Immunol. 2020, 20, 25–39.

[6]

Yu, J. L.; Green, M. D.; Li, S. S.; Sun, Y. L.; Journey, S. N.; Choi, J. E.; Rizvi, S. M.; Qin, A.; Waninger, J. J.; Lang, X. T. et al. Liver metastasis restrains immunotherapy efficacy via macrophage-mediated T cell elimination. Nat. Med. 2021, 27, 152–164.

[7]

Irvine, D. J.; Dane, E. L. Enhancing cancer immunotherapy with nanomedicine. Nat. Rev. Immunol. 2020, 20, 321–334.

[8]

Mitchell, M. J.; Billingsley, M. M.; Haley, R. M.; Wechsler, M. E.; Peppas, N. A.; Langer, R. Engineering precision nanoparticles for drug delivery. Nat. Rev. Drug Discov. 2021, 20, 101–124.

[9]

Fenton, O. S.; Olafson, K. N.; Pillai, P. S.; Mitchell, M. J.; Langer, R. Advances in biomaterials for drug delivery. Adv. Mater. 2018, 30, 1705328.

[10]

Zhang, Y. N.; Poon, W.; Tavares, A. J.; McGilvray, I. D.; Chan, W. C. W. Nanoparticle-liver interactions: Cellular uptake and hepatobiliary elimination. J. Control. Release 2016, 240, 332–348.

[11]

Tsoi, K. M.; MacParland, S. A.; Ma, X. Z.; Spetzler, V. N.; Echeverri, J.; Ouyang, B.; Fadel, S. M.; Sykes, E. A.; Goldaracena, N.; Kaths, J. M. et al. Mechanism of hard-nanomaterial clearance by the liver. Nat. Mater. 2016, 15, 1212–1221.

[12]

Li, J. L.; Chen, C. Y.; Xia, T. Understanding nanomaterial–liver interactions to facilitate the development of safer nanoapplications. Adv. Mater. 2022, 34, 2106456.

[13]

Wu, T. D.; Madireddi, S.; de Almeida, P. E.; Banchereau, R.; Chen, Y. J. J.; Chitre, A. S.; Chiang, E. Y.; Iftikhar, H.; O’Gorman, W. E.; Au-Yeung, A. et al. Peripheral T cell expansion predicts tumour infiltration and clinical response. Nature 2020, 579, 274–278.

[14]

Chen, X. Y.; Gao, C. Y. Influences of surface coating of PLGA nanoparticles on immune activation of macrophages. J. Mater. Chem. B 2018, 6, 2065–2077.

[15]

Kapoor, D. N.; Bhatia, A.; Kaur, R.; Sharma, R.; Kaur, G.; Dhawan, S. PLGA: A unique polymer for drug delivery. Ther. Deliv. 2015, 6, 41–58.

[16]

Rosenholm, J. M.; Mamaeva, V.; Sahlgren, C.; Lindén, M. Nanoparticles in targeted cancer therapy: Mesoporous silica nanoparticles entering preclinical development stage. Nanomedicine 2012, 7, 111–120.

[17]

Danhier, F.; Ansorena, E.; Silva, J. M.; Coco, R.; Le Breton, A.; Préat, V. PLGA-based nanoparticles:An overview of biomedical applications. J. Control. Release 2012, 161, 505–522.

[18]

Janjua, T. I.; Cao, Y. X.; Yu, C. Z.; Popat, A. Clinical translation of silica nanoparticles. Nat. Rev. Mater. 2021, 6, 1072–1074.

[19]

Ghitman, J.; Biru, E. I.; Stan, R.; Iovu, H. Review of hybrid PLGA nanoparticles: Future of smart drug delivery and theranostics medicine. Mater. Des. 2020, 193, 108805.

[20]

Wu, S. H.; Mou, C. Y.; Lin, H. P. Synthesis of mesoporous silica nanoparticles. Chem. Soc. Rev. 2013, 42, 3862–3875.

[21]

Gao, C. L.; Pan, J.; Lu, W. Y.; Zhang, M.; Zhou, L.; Tian, J. In-vitro evaluation of paclitaxel-loaded MPEG-PLGA nanoparticles on laryngeal cancer cells. Anticancer Drugs 2009, 20, 807–814.

[22]

Franco, F.; Jaccard, A.; Romero, P.; Yu, Y. R.; Ho, P. C. Metabolic and epigenetic regulation of T-cell exhaustion. Nat. Metab. 2020, 2, 1001–1012.

[23]

Lin, H.; Wei, S.; Hurt, E. M.; Green, M. D.; Zhao, L. L.; Vatan, L.; Szeliga, W.; Herbst, R.; Harms, P. W.; Fecher, L. A. et al. Host expression of PD-L1 determines efficacy of PD-L1 pathway blockade-mediated tumor regression. J. Clin. Invest. 2018, 128, 805–815.

[24]

Iwai, T.; Sugimoto, M.; Patil, N. S.; Bower, D.; Suzuki, M.; Kato, C.; Yorozu, K.; Kurasawa, M.; Shames, D. S.; Kondoh, O. Both T cell priming in lymph node and CXCR3-dependent migration are the key events for predicting the response of atezolizumab. Sci. Rep. 2021, 11, 13912.

[25]

Park, J. K.; Utsumi, T.; Seo, Y. E.; Deng, Y.; Satoh, A.; Saltzman, W. M.; Iwakiri, Y. Cellular distribution of injected PLGA-nanoparticles in the liver. Nanomedicine:Nanotechnol., Biol. Med. 2016, 12, 1365–1374.

[26]

Xie, G. P.; Sun, J.; Zhong, G. R.; Shi, L. Y.; Zhang, D. W. Biodistribution and toxicity of intravenously administered silica nanoparticles in mice. Arch. Toxicol. 2010, 84, 183–190.

[27]

Marshall, J. S.; Warrington, R.; Watson, W.; Kim, H. L. An introduction to immunology and immunopathology. Allergy Asthma Clin. Immunol. 2018, 14, 49.

[28]

Mariani, E.; Lisignoli, G.; Borzi, R. M.; Pulsatelli, L. Biomaterials: Foreign bodies or tuners for the immune response? Int. J. Mol. Sci. 2019, 20, 636.

[29]

Sun, M. Y.; Gu, P. F.; Yang, Y.; Yu, L. D.; Jiang, Z. S.; Li, J. Q.; Le, Y. Y.; Chen, Y.; Ba, Q.; Wang, H. Mesoporous silica nanoparticles inflame tumors to overcome anti-PD-1 resistance through TLR4-NFκB axis. J. Immunother. Cancer 2021, 9, e002508.

[30]

Abbaraju, P. L.; Jambhrunkar, M.; Yang, Y. N.; Liu, Y.; Lu, Y.; Yu, C. Z. Asymmetric mesoporous silica nanoparticles as potent and safe immunoadjuvants provoke high immune responses. Chem. Commun. 2018, 54, 2020–2023.

[31]

Fahey, S.; Dempsey, E.; Long, A. The role of chemokines in acute and chronic hepatitis C infection. Cell. Mol. Immunol. 2014, 11, 25–40.

[32]
Tokunaga, R.; Zhang, W.; Naseem, M.; Puccini, A.; Berger, M. D.; Soni, S.; McSkane, M.; Baba, H.; Lenz, H. J. CXCL9, CXCL10, CXCL11/CXCR3 axis for immune activation—A target for novel cancer therapy. Cancer Treat. Rev. 2018, 63, 40–47.
[33]

Qian, B. Z.; Li, J. F.; Zhang, H.; Kitamura, T.; Zhang, J. H.; Campion, L. R.; Kaiser, E. A.; Snyder, L. A.; Pollard, J. W. CCL2 recruits inflammatory monocytes to facilitate breast-tumour metastasis. Nature 2011, 475, 222–225.

[34]

Aldinucci, D.; Colombatti, A. The inflammatory chemokine CCL5 and cancer progression. Mediators Inflamm. 2014, 2014, 292376.

[35]

Lang, K. S.; Georgiev, P.; Recher, M.; Navarini, A. A.; Bergthaler, A.; Heikenwalder, M.; Harris, N. L.; Junt, T.; Odermatt, B.; Clavien, P. A. et al. Immunoprivileged status of the liver is controlled by Toll-like receptor 3 signaling. J. Clin. Invest. 2006, 116, 2456–2463.

[36]

Zhou, J.; Peng, H.; Li, K.; Qu, K.; Wang, B. H.; Wu, Y. Z.; Ye, L. L.; Dong, Z. J.; Wei, H. M.; Sun, R. et al. Liver-resident NK cells control antiviral activity of hepatic T cells via the PD-1-PD-L1 axis. Immunity 2019, 50, 403–417.e4.

[37]

Gabrilovich, D. I.; Ostrand-Rosenberg, S.; Bronte, V. Coordinated regulation of myeloid cells by tumours. Nat. Rev. Immunol. 2012, 12, 253–268.

[38]

Wolf, Y.; Anderson, A. C.; Kuchroo, V. K. TIM3 comes of age as an inhibitory receptor. Nat. Rev. Immunol. 2020, 20, 173–185.

[39]

Highfill, S. L.; Cui, Y. Z.; Giles, A. J.; Smith, J. P.; Zhang, H.; Morse, E.; Kaplan, R. N.; Mackall, C. L. Disruption of CXCR2-mediated MDSC tumor trafficking enhances anti-PD1 efficacy. Sci. Transl. Med. 2014, 6, 237ra67.

[40]

Dammeijer, F.; van Gulijk, M.; Mulder, E. E.; Lukkes, M.; Klaase, L.; van den Bosch, T.; van Nimwegen, M.; Lau, S. P.; Latupeirissa, K.; Schetters, S. et al. The PD-1/PD-L1-checkpoint restrains T cell immunity in tumor-draining lymph nodes. Cancer Cell 2020, 38, 685–700.e8.

[41]

Nguyen, T. L.; Choi, Y.; Kim, J. Mesoporous silica as a versatile platform for cancer immunotherapy. Adv. Mater. 2019, 31, 1803953.

[42]

Li, Y.; Zhao, R. F.; Cheng, K. M.; Zhang, K. Y.; Wang, Y. Z.; Zhang, Y. L.; Li, Y. J.; Liu, G. N.; Xu, J. C.; Xu, J. Q. et al. Bacterial outer membrane vesicles presenting programmed death 1 for improved cancer immunotherapy via immune activation and checkpoint inhibition. ACS Nano 2020, 14, 16698–16711.

[43]

Makadia, H. K.; Siegel, S. J. Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers 2011, 3, 1377–1397.

Nano Research
Pages 5237-5246
Cite this article:
Dai H, Yang Q, Sun R, et al. Nanoparticle accumulation in liver may induce resistance to immune checkpoint blockade therapy. Nano Research, 2023, 16(4): 5237-5246. https://doi.org/10.1007/s12274-022-5142-4
Topics:

8061

Views

5

Crossref

6

Web of Science

5

Scopus

0

CSCD

Altmetrics

Received: 04 August 2022
Revised: 27 September 2022
Accepted: 02 October 2022
Published: 07 December 2022
© Tsinghua University Press 2022
Return