Graphical Abstract

With the widespread prevailing of flexible electronics in human–machine interfaces, health monitor, and human motion detection, ultrasoft flexible sensors are urgently desired with critical demands in conformality. Herein, a temperature-sensitive ionogel with near-infrared (NIR)-light controlled adhesion is prepared by electrostatic interaction of poly(diallyl dimethylammonium chloride) (PDDA) and acrylic acid, as well as the incorporation of the conductive polydopamine modified polypyrrole nanoparticles (PPy-PDA NPs). The PPy-PDA NPs could weaken the tough interaction between polymer chains and depress the Young’s modulus of the ionogel, thus promoting the ionogel ultrasoft (34 kPa) and highly stretchable (1,013%) performance to tensile deformations. In addition, the high photothermal conversion capacity of PPy-PDA NPs ensured the ionogel excellent NIR-light controlled adhesion and temperature sensitivity, which facilitated the ionogel on-demand removal and promised a reliable thermal sensor. Moreover, the resulted ultrasoft flexible sensor exhibited high sensitivity and stability to both strain and pressure in a broad range of deformations, enabling a precise monitoring on various human motions and physiological activities. The temperature-sensitive, ultrasoft, and controlled adhesive capabilities prompted great potential of the flexible ionogel in medical diagnosis and wearable electronics.
Gerratt, A. P.; Michaud, H. O.; Lacour, S. P. Elastomeric electronic skin for prosthetic tactile sensation. Adv. Funct. Mater. 2015, 25, 2287–2295.
Su, G. H.; Cao, J.; Zhang, X. Q.; Zhang, Y. L.; Yin, S. Y.; Jia, L. Y.; Guo, Q. Q.; Zhang, X. X.; Zhang, J. H.; Zhou, T. Human-tissue-inspired anti-fatigue-fracture hydrogel for a sensitive wide-range human–machine interface. J. Mater. Chem. A 2020, 8, 2074–2082.
Hu, W. P.; Zhang, H.; Salaita, K.; Sirringhaus, H. SmartMat : Smart materials to smart world. SmartMat 2020, 1, e1014.
Xia, K. L.; Chen, X. Y.; Shen, X. Y.; Li, S.; Yin, Z.; Zhang, M. C.; Liang, X. P.; Zhang, Y. Y. Carbonized Chinese art paper-based high-performance wearable strain sensor for human activity monitoring. ACS Appl. Electron. Mater. 2019, 1, 2415–2421.
Wang, C. Y.; Xia, K. L.; Jian, M. Q.; Wang, H. M.; Zhang, M. C.; Zhang, Y. Y. Carbonized silk georgette as an ultrasensitive wearable strain sensor for full-range human activity monitoring. J. Mater. Chem. C 2017, 5, 7604–7611.
Luan, H. X.; Zhang, D. Z.; Xu, Z. Y.; Zhao, W. H.; Yang, C. Q.; Chen, X. Y. MXene-based composite double-network multifunctional hydrogels as highly sensitive strain sensors. J. Mater. Chem. C 2022, 10, 7604–7613.
Zhao, W.; Qu, X. Y.; Xu, Q.; Lu, Y.; Yuan, W.; Wang, W. J.; Wang, Q.; Huang, W.; Dong, X. C. Ultrastretchable, self-healable, and wearable epidermal sensors based on ultralong Ag nanowires composited binary-networked hydrogels. Adv. Electron. Mater. 2020, 6, 2000267.
Yu, Q. Y.; Qin, Z. H.; Ji, F.; Chen, S.; Luo, S. Y.; Yao, M. M.; Wu, X. J.; Liu, W. W.; Sun, X.; Zhang, H. T. et al. Low-temperature tolerant strain sensors based on triple crosslinked organohydrogels with ultrastretchability. Chem. Eng. J. 2021, 404, 126559.
Wu, Z. X.; Ding, H. J.; Tao, K.; Wei, Y. M.; Gui, X. C.; Shi, W. X.; Xie, X.; Wu, J. Ultrasensitive, stretchable, and fast-response temperature sensors based on hydrogel films for wearable applications. ACS Appl. Mater. Interfaces 2021, 13, 21854–21864.
Yuan, W.; Qu, X. Y.; Lu, Y.; Zhao, W.; Ren, Y. F.; Wang, Q.; Wang, W. J.; Dong, X. C. MXene-composited highly stretchable, sensitive and durable hydrogel for flexible strain sensors. Chin. Chem. Lett. 2021, 32, 2021–2026.
Huang, J. R.; Peng, S. J.; Gu, J. F.; Chen, G. Q.; Gao, J. H.; Zhang, J.; Hou, L. X.; Yang, X. X.; Jiang, X. C.; Guan, L. H. Correction: Self-powered integrated system of a strain sensor and flexible all-solid-state supercapacitor by using a high performance ionic organohydrogel. Mater. Horiz. 2020, 7, 2768–2769.
Xu, J. J.; Jing, R. N.; Ren, X. Y.; Gao, G. H. Fish-inspired anti-icing hydrogel sensors with low-temperature adhesion and toughness. J. Mater. Chem. A 2020, 8, 9373–9381.
Li, S.; Zhang, Y.; Wang, Y. L.; Xia, K. L.; Yin, Z.; Wang, H. M.; Zhang, M. C.; Liang, X. P.; Lu, H. J.; Zhu, M. J. et al. Physical sensors for skin-inspired electronics. InfoMat 2020, 2, 184–211.
Zhang, X. F.; Ma, X. F.; Hou, T.; Guo, K. C.; Yin, J. Y.; Wang, Z. G.; Shu, L.; He, M.; Yao, J. F. Inorganic salts induce thermally reversible and anti-freezing cellulose hydrogels. Angew. Chem., Int. Ed. 2019, 58, 7366–7370.
Zhang, H. X.; Niu, W. B.; Zhang, S. F. Extremely stretchable, stable, and durable strain sensors based on double-network organogels. ACS Appl. Mater. Interfaces 2018, 10, 32640–32648.
Han, S. J.; Liu, C. R.; Lin, X. Y.; Zheng, J. W.; Wu, J.; Liu, C. Dual conductive network hydrogel for a highly conductive, self-healing, anti-freezing, and non-drying strain sensor. ACS Appl. Polym. Mater. 2020, 2, 996–1005.
Ge, G.; Lu, Y.; Qu, X. Y.; Zhao, W.; Ren, Y. F.; Wang, W. J.; Wang, Q.; Huang, W.; Dong, X. C. Muscle-inspired self-healing hydrogels for strain and temperature sensor. ACS Nano 2020, 14, 218–228.
Li, T. Q.; Wang, Y. T.; Li, S. H.; Liu, X. K.; Sun, J. Q. Mechanically robust, elastic, and healable ionogels for highly sensitive ultra-durable ionic skins. Adv. Mater. 2020, 32, 2002706.
Zhao, G. R.; Zhang, Y. W.; Shi, N.; Liu, Z. R.; Zhang, X. D.; Wu, M. Q.; Pan, C. F.; Liu, H. L.; Li, L. L.; Wang, Z. L. Transparent and stretchable triboelectric nanogenerator for self-powered tactile sensing. Nano Energy 2019, 59, 302–310.
Zhao, X. L.; Zhou, K. L.; Zhong, Y. J.; Liu, P.; Li, Z. C.; Pan, J. L.; Long, Y.; Huang, M. R.; Brakat, A.; Zhu, H. W. Hydrophobic ionic liquid-in-polymer composites for ultrafast, linear response and highly sensitive humidity sensing. Nano Res. 2021, 14, 1202–1209.
Zhao, F.; Shi, Y.; Pan, L. J.; Yu, G. H. Multifunctional nanostructured conductive polymer gels: Synthesis, properties, and applications. Acc. Chem. Res. 2017, 50, 1734–1743.
Choi, S.; Han, S. I.; Jung, D.; Hwang, H. J.; Lim, C.; Bae, S.; Park, O. K.; Tschabrunn, C. M.; Lee, M.; Bae, S. Y. et al. Highly conductive, stretchable and biocompatible Ag-Au core–sheath nanowire composite for wearable and implantable bioelectronics. Nat. Nanotechnol. 2018, 13, 1048–1056.
Strümpler, R.; Glatz-Reichenbach, J. FEATURE ARTICLE conducting polymer composites. J Electroceram. 1999, 3, 329–346.
Kaur, G.; Adhikari, R.; Cass, P.; Bown, M.; Gunatillake, P. Electrically conductive polymers and composites for biomedical applications. RSC Adv. 2015, 5, 37553–37567.
Wang, Y.; Zhu, C. X.; Pfattner, R.; Yan, H. P.; Jin, L. H.; Chen, S. C.; Molina-Lopez, F.; Lissel, F.; Liu, J.; Rabiah, N. I. et al. A highly stretchable, transparent, and conductive polymer. Sci. Adv. 2017, 3, e1602076.
Krogsgaard, M.; Nue, V.; Birkedal, H. Mussel-inspired materials: Self-healing through coordination chemistry. Chem.—Eur. J. 2016, 22, 844–857.
Mrówczyński, R.; Markiewicz, R.; Liebscher, J. Chemistry of polydopamine analogues. Polym. Int. 2016, 65, 1288–1299.
Zhang, W.; Pan, Z. H.; Yang, F. K.; Zhao, B. X. A facile in situ approach to polypyrrole functionalization through bioinspired catechols. Adv. Funct. Mater. 2015, 25, 1588–1597.
Duan, J. J.; Xie, W. K.; Yang, P. H.; Li, J.; Xue, G. B.; Chen, Q.; Yu, B. Y.; Liu, R.; Zhou, J. Tough hydrogel diodes with tunable interfacial adhesion for safe and durable wearable batteries. Nano Energy 2018, 48, 569–574.
Feng, L.; Shi, W. B.; Chen, Q.; Cheng, H. T.; Bao, J. X.; Jiang, C. J.; Zhao, W. F.; Zhao, C. S. Smart asymmetric hydrogel with integrated multi-functions of NIR-triggered tunable adhesion, self-deformation, and bacterial eradication. Adv. Healthc. Mater. 2021, 10, 2100784.
Nam, H. G.; Nam, M. G.; Yoo, P. J.; Kim, J. H. Hydrogen bonding-based strongly adhesive coacervate hydrogels synthesized using poly(N-vinylpyrrolidone) and tannic acid. Soft Matter 2019, 15, 785–791.
Chen, Q.; Feng, L.; Cheng, H. T.; Wang, Y. L.; Wu, H.; Xu, T.; Zhao, W. F.; Zhao, C. S. Mussel-inspired ultra-stretchable, universally sticky, and highly conductive nanocomposite hydrogels. J. Mater. Chem. B 2021, 9, 2221–2232.
Liu, Y. L.; Ai, K. L.; Liu, J. H.; Deng, M.; He, Y. Y.; Lu, L. H. Dopamine-melanin colloidal nanospheres: An efficient near-infrared photothermal therapeutic agent for in vivo cancer therapy. Adv. Mater. 2013, 25, 1353–1359.
Schmidt, H.; Stephan, M.; Safarov, J.; Kul, I.; Nocke, J.; Abdulagatov, I. M.; Hassel, E. Experimental study of the density and viscosity of 1-ethyl-3-methylimidazolium ethyl sulfate. J. Chem. Thermodyn. 2012, 47, 68–75.
Marcelo, G.; Tarazona, M. P.; Saiz, E. Solution properties of poly(diallyldimethylammonium chloride) (PDDA). Polymer 2005, 46, 2584–2594.
Zhang, X. L.; Peng, Y. J.; Wang, X. Y.; Ran, R. Melanin-inspired conductive hydrogel sensors with ultrahigh stretchable, self-healing, and photothermal capacities. ACS Appl. Polym. Mater. 2021, 3, 1899–1911.
Wei, D. L.; Zhu, J. Q.; Luo, L. C.; Huang, H. B.; Li, L.; Yu, X. H. Ultra-stretchable, fast self-healing, conductive hydrogels for writing circuits and magnetic sensors. Polym. Int. 2022, 71, 837–846.
Wu, F.; Chen, N.; Chen, R. J.; Zhu, Q. Z.; Tan, G. Q.; Li, L. Self-regulative nanogelator solid electrolyte: A new option to improve the safety of lithium battery. Adv. Sci. 2016, 3, 1500306.
Lu, Y.; Qu, X. Y.; Wang, S. Y.; Zhao, Y.; Ren, Y. F.; Zhao, W. L.; Wang, Q.; Sun, C. C.; Wang, W. J.; Dong, X. C. Ultradurable, freeze-resistant, and healable MXene-based ionic gels for multi-functional electronic skin. Nano Res. 2022, 15, 4421–4430.
Ma, L. L.; Wang, J. X.; He, J. M.; Yao, Y. L.; Zhu, X. D.; Peng, L.; Yang, J.; Liu, X. R.; Qu, M. N. Ultra-sensitive, durable and stretchable ionic skins with biomimetic micronanostructures for multi-signal detection, high-precision motion monitoring, and underwater sensing. J. Mater. Chem. A 2021, 9, 26949–26962.