Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
The key to hindering the commercial application of Ni-rich layered cathode is its severe structural and interface degradation during the undesired phase transition (hexagonal to hexagonal (H2 → H3)), degenerating from the build-up of mechanical strain and undesired parasitic reactions. Herein, a perovskite Li0.35La0.55TiO3 (LLTO) layer is built onto Ni-rich cathodes crystal to induce layered@spinel@perovskite heterostructure to solve the root cause of capacity fade. Intensive exploration based on structure characterizations, in situ X-ray diffraction techniques, and first-principles calculations demonstrate that such a unique heterostructure not only can improve the ability of the host structure to withstand the mechanical strain but also provides fast diffusion channels for lithium ions as well as provides a protective barrier against electrolyte corrosion. Impressively, the LLTO modified LiNi0.9Co0.05Mn0.05O2 cathode manifests an unexpected cyclability with an extremely high-capacity retention of ≈ 94.6% after 100 cycles, which is superior to the pristine LiNi0.9Co0.05Mn0.05O2 (79.8%). Furthermore, this modified electrode also shows significantly enhanced cycling stability even withstanding a high cut-off voltage of 4.6 V. This surface self-reconstruction strategy provides deep insight into the structure/interface engineering to synergistically stabilize structure stability and regulate the physicochemical properties of Ni-rich cathodes, which will also unlock a new perspective of surface interface engineering for layered cathode materials.
Park, N. Y.; Ryu, H. H.; Park, G. T.; Noh, T. C.; Sun, Y. K. Optimized Ni-rich NCMA cathode for electric vehicle batteries. Adv. Energy Mater. 2021, 11, 2003767.
Wang, X. X.; Ding, Y. L.; Deng, Y. P.; Chen, Z. W. Ni-rich/Co-poor layered cathode for automotive Li-Ion batteries: Promises and challenges. Adv. Energy Mater. 2020, 10, 1903864.
Namkoong, B.; Park, N. Y.; Park, G. T.; Shin, J. Y.; Beierling, T.; Yoon, C. S.; Sun, Y. K. High-energy Ni-rich cathode materials for long-range and long-life electric vehicles. Adv. Energy Mater. 2022, 12, 2200615.
Dong, T. T.; Mu, P. Z.; Zhang, S.; Zhang, H. R.; Liu, W.; Cui, G. L. How do polymer binders assist transition metal oxide cathodes to address the challenge of high-voltage lithium battery applications? Electrochem. Energy Rev. 2021, 4, 545–565.
Reddy, R. C. K.; Lin, X. M.; Zeb, A.; Su, C. Y. Metal–organic frameworks and their derivatives as cathodes for lithium-ion battery applications: A review. Electrochem. Energy Rev. 2022, 5, 312–347.
Yoon, C. S.; Park, K. J.; Kim, U. H.; Kang, K. H.; Ryu, H. H.; Sun, Y. K. High-energy Ni-rich Li[NixCoyMn1−x−y]O2 cathodes via compositional partitioning for next-generation electric vehicles. Chem. Mater. 2017, 29, 10436–10445.
Sun, H. H.; Ryu, H. H.; Kim, U. H.; Weeks, J. A.; Heller, A.; Sun, Y. K.; Mullins, C. B. Beyond doping and coating: Prospective strategies for stable high-capacity layered Ni-rich cathodes. ACS Energy Lett. 2020, 5, 1136–1146.
Choi, J. U.; Voronina, N.; Sun, Y. K.; Myung, S. T. Recent progress and perspective of advanced high-energy co-less Ni-rich cathodes for Li-ion batteries: Yesterday, today, and tomorrow. Adv. Energy Mater. 2020, 10, 2002027.
Yin, S. Y.; Deng, W. T.; Chen, J.; Gao, X.; Zou, G. Q.; Hou, H. S.; Ji, X. B. Fundamental and solutions of microcrack in Ni-rich layered oxide cathode materials of lithium-ion batteries. Nano Energy 2021, 83, 105854.
Ren, X. G.; Li, Y. J.; Xi, X. M.; Liu, S. W.; Xiong, Y. K.; Zhang, D. W.; Wang, S.; Zheng, J. C. Modification of LiNi0.8Co0.1Mn0.1O2 cathode materials from the perspective of chemical stabilization and kinetic hindrance. J. Power Sources 2021, 499, 229756.
Zhang, S. S. Problems and their origins of Ni-rich layered oxide cathode materials. Energy Storage Mater. 2020, 24, 247–254.
Li, J. Y.; Zhou, Z. W.; Luo, Z. Y.; He, Z. J.; Zheng, J. C.; Li, Y. J.; Mao, J.; Dai, K. H. Microcrack generation and modification of Ni-rich cathodes for Li-ion batteries: A review. Sustainable Mater. Technol. 2021, 29, e00305.
Ryu, H. H.; Park, K. J.; Yoon, C. S.; Sun, Y. K. Capacity fading of Ni-rich Li[NixCoyMn1−x−y]O2 (0.6 ≤ x ≤ 0. 95) cathodes for high-energy-density lithium-ion batteries: Bulk or surface degradation? Chem. Mater. 2018, 30, 1155–1163.
Nam, G. W.; Park, N. Y.; Park, K. J.; Yang, J. H.; Liu, J.; Yoon, C. S.; Sun, Y. K. Capacity fading of Ni-rich NCA cathodes: Effect of microcracking extent. ACS Energy Lett. 2019, 4, 2995–3001.
Wu, F.; Dong, J. Y.; Chen, L.; Bao, L. Y.; Li, N.; Cao, D. Y.; Lu, Y.; Xue, R. X.; Liu, N.; Wei, L. et al. High-voltage and high-safety nickel-rich layered cathode enabled by a self-reconstructive cathode–electrolyte interphase layer. Energy Storage Mater. 2021, 41, 495–504.
Wu, F.; Liu, N.; Chen, L.; Li, N.; Lu, Y.; Cao, D. Y.; Xu, M. Z.; Wang, Z. R.; Su, Y. F. A universal method for enhancing the structural stability of Ni-rich cathodes via the synergistic effect of dual-element cosubstitution. ACS Appl. Mater. Interfaces 2021, 13, 24925–24936.
Fan, X. M.; Huang, Y. D.; Wei, H. X.; Tang, L. B.; He, Z. J.; Yan, C.; Mao, J.; Dai, K. H.; Zheng, J. C. Surface modification engineering enabling 4.6 V single-crystalline Ni-rich cathode with superior long-term cyclability. Adv. Funct. Mater. 2022, 32, 2109421.
Luo, L.; Wang, D.; Zhou, Z. R.; Dong, P.; Yang, S. Y.; Duan, J. G.; Zhang, Y. J. Engineering a robust interface on Ni-rich cathodes via a novel dry doping process toward advanced high-voltage performance. ACS Appl. Mater. Interfaces 2021, 13, 45068–45076.
Xu, Q.; Li, X. F.; Sari, H. M. K.; Li, W. B.; Liu, W.; Hao, Y. C.; Qin, J.; Cao, B.; Xiao, W.; Xu, Y. et al. Surface engineering of LiNi0.8Mn0.1Co0.1O2 towards boosting lithium storage: Bimetallic oxides versus monometallic oxides. Nano Energy 2020, 77, 105034.
Feng, Z.; Rajagopalan, R.; Sun, D.; Tang, Y. G.; Wang, H. Y. In situ formation of hybrid Li3PO4-AlPO4-Al(PO3)3 coating layer on LiNi0.8Co0.1Mn0.1O2 cathode with enhanced electrochemical properties for lithium-ion battery. Chem. Eng. J. 2020, 382, 122959.
Zou, P. J.; Lin, Z. H.; Fan, M. N.; Wang, F.; Liu, Y.; Xiong, X. H. Facile and efficient fabrication of Li3PO4-coated Ni-rich cathode for high-performance lithium-ion battery. Appl. Surf. Sci. 2020, 504, 144506.
Zhong, Z. Q.; Chen, L. Z.; Zhu, C. B.; Ren, W. B.; Kong, L. Y.; Wan, Y. X. Nano LiFePO4 coated Ni rich composite as cathode for lithium ion batteries with high thermal ability and excellent cycling performance. J. Power Sources 2020, 464, 228235.
Du, K.; Xie, H. B.; Hu, G. R.; Peng, Z. D.; Cao, Y. B.; Yu, F. Enhancing the thermal and upper voltage performance of Ni-rich cathode material by a homogeneous and facile coating method: Spray-drying coating with nano-Al2O3. ACS Appl. Mater. Interfaces 2016, 8, 17713–17720.
Wu, F.; Li, Q.; Chen, L.; Lu, Y.; Su, Y. F.; Bao, L. Y.; Chen, R. J.; Chen, S. Use of Ce to reinforce the interface of Ni-rich LiNi0.8Co0.1Mn0.1O2 cathode materials for lithium-ion batteries under high operating voltage. ChemSusChem 2019, 12, 935–943.
Ho, V. C.; Jeong, S.; Yim, T.; Mun, J. Crucial role of thioacetamide for ZrO2 coating on the fragile surface of Ni-rich layered cathode in lithium ion batteries. J. Power Sources 2020, 450, 227625.
Gan, Q. M.; Qin, N.; Zhu, Y. H.; Huang, Z. X.; Zhang, F. C.; Gu, S.; Xie, J. W.; Zhang, K. L.; Lu, L.; Lu, Z. G. Polyvinylpyrrolidone-induced uniform surface-conductive polymer coating endows Ni-rich LiNi0.8Co0.1Mn0.1O2 with enhanced cyclability for lithium-ion batteries. ACS Appl. Mater. Interfaces 2019, 11, 12594–12604.
Yin, S. Y.; Chen, H. Y.; Chen, J.; Massoudi, A.; Deng, W. T.; Gao, X.; Zhang, S.; Wang, Y.; Lin, T. W.; Banks, C. E. et al. Chemical-mechanical effects in Ni-rich cathode materials. Chem. Mater. 2022, 34, 1509–1523.
Wang, L. G.; Lei, X. C.; Liu, T. C.; Dai, A.; Su, D.; Amine, K.; Lu, J.; Wu, T. P. Regulation of surface defect chemistry toward stable Ni-rich cathodes. Adv. Mater. 2022, 34, 2200744.
Chakraborty, A.; Kunnikuruvan, S.; Kumar, S.; Markovsky, B.; Aurbach, D.; Dixit, M.; Major, D. T. Layered cathode materials for lithium-ion batteries: Review of computational studies on LiNi1−x−yCoxMnyO2 and LiNi1−x−yCoxAlyO2. Chem. Mater. 2020, 32, 915–952.
Kim, J.; Lee, H.; Cha, H.; Yoon, M.; Park, M.; Cho, J. Prospect and reality of Ni-rich cathode for commercialization. Adv. Energy Mater. 2018, 8, 1702028.
Tang, M. J.; Yang, J.; Chen, N. T.; Zhu, S. C.; Wang, X.; Wang, T.; Zhang, C. C.; Xia, Y. Y. Overall structural modification of a layered Ni-rich cathode for enhanced cycling stability and rate capability at high voltage. J. Mater. Chem. A 2019, 7, 6080–6089.
Hara, M.; Nakano, H.; Dokko, K.; Okuda, S.; Kaeriyama, A.; Kanamura, K. Fabrication of all solid-state lithium-ion batteries with three-dimensionally ordered composite electrode consisting of Li0.35La0.55TiO3 and LiMn2O4. J. Power Sources 2009, 189, 485–489.
Yuan, S. H.; Zhang, H. Z.; Song, D. W.; Ma, Y.; Shi, X. X.; Li, C. L.; Zhang, L. Q. Regulate the lattice oxygen activity and structural stability of lithium-rich layered oxides by integrated strategies. Chem. Eng. J. 2022, 439, 135677.
Ku, K.; Son, S. B.; Gim, J.; Park, J.; Liang, Y. J.; Stark, A.; Lee, E.; Libera, J. Understanding the constant-voltage fast-charging process using a high-rate Ni-rich cathode material for lithium-ion batteries. J. Mater. Chem. A 2022, 10, 288–295.
Jeong, M.; Kim, H.; Lee, W.; Ahn, S. J.; Lee, E.; Yoon, W. S. Stabilizing effects of Al-doping on Ni-rich LiNi0.80Co0.15Mn0.05O2 cathode for Li rechargeable batteries. J. Power Sources 2020, 474, 228592.
Wu, F.; Liu, N.; Chen, L.; Su, Y. F.; Tan, G. Q.; Bao, L. Y.; Zhang, Q. Y.; Lu, Y.; Wang, J.; Chen, S. et al. Improving the reversibility of the H2–H3 phase transitions for layered Ni-rich oxide cathode towards retarded structural transition and enhanced cycle stability. Nano Energy 2019, 59, 50–57.
Tan, Z. L.; Li, Y. Y.; Xi, X. M.; Yang, J. C.; Xu, Y. L.; Xiong, Y. K.; Wang, S.; Liu, S. W.; Zheng, J. C. Lattice engineering to alleviate microcrack of LiNi0.9Co0.05Mn0.05O2 cathode for optimization their Li+ storage functionalities. Electrochim. Acta 2022, 401, 139482.
Tan, Z. L.; Li, Y. J.; Xi, X. M.; Jiang, S. J.; Li, X. H.; Shen, X. J.; Hao, S. P.; Zheng, J. C.; He, Z. J. Lattice engineering to refine particles and strengthen bonds of the LiNi0.9Co0.05Mn0.05O2 cathode toward efficient lithium ion storage. ACS Sustainable Chem. Eng. 2022, 10, 3532–3545.
Li, X. L.; Guan, H. L.; Ma, Z. J.; Liang, M.; Song, D. W.; Zhang, H. Z.; Shi, X. X.; Li, C. L.; Jiao, L. F.; Zhang, L. Q. In/ex situ Raman spectra combined with EIS for observing interface reactions between Ni-rich layered oxide cathode and sulfide electrolyte. J. Energy Chem. 2020, 48, 195–202.
Zhang, C. F.; Wan, J. J.; Li, Y. X.; Zheng, S. Y.; Zhou, K.; Wang, D. H.; Wang, D. F.; Hong, C. Y.; Gong, Z. L.; Yang, Y. Restraining the polarization increase of Ni-rich and low-Co cathodes upon cycling by Al-doping. J. Mater. Chem. A 2020, 8, 6893–6901.
Park, N. Y.; Park, G. T.; Kim, S. B.; Jung, W.; Park, B. C.; Sun, Y. K. Degradation mechanism of Ni-rich cathode materials: Focusing on particle interior. ACS Energy Lett. 2022, 7, 2362–2369.
Ryu, H. H.; Namkoong, B.; Kim, J. H.; Belharouak, I.; Yoon, C. S.; Sun, Y. K. Capacity fading mechanisms in Ni-rich single-crystal NCM cathodes. ACS Energy Lett. 2021, 6, 2726–2734.
Fan, X. M.; Hu, G. R.; Zhang, B.; Ou, X.; Zhang, J. F.; Zhao, W. G.; Jia, H. P.; Zou, L. F.; Li, P.; Yang, Y. Crack-free single-crystalline Ni-rich layered NCM cathode enable superior cycling performance of lithium-ion batteries. Nano Energy 2020, 70, 104450.
Jo, C. H.; Cho, D. H.; Noh, H. J.; Yashiro, H.; Sun, Y. K.; Myung, S. T. An effective method to reduce residual lithium compounds on Ni-rich Li[Ni0.6Co0.2Mn0.2]O2 active material using a phosphoric acid derived Li3PO4 nanolayer. Nano Res. 2015, 8, 1464–1479.
Manthiram, A.; Knight, J. C.; Myung, S. T.; Oh, S. M.; Sun, Y. K. Nickel-rich and lithium-rich layered oxide cathodes: Progress and perspectives. Adv. Energy Mater. 2016, 6, 1501010.
Wu, F.; Tian, J.; Su, Y. F.; Wang, J.; Zhang, C. Z.; Bao, L. Y.; He, T.; Li, J. H.; Chen, S. Effect of Ni2+ content on lithium/nickel disorder for Ni-rich cathode materials. ACS Appl. Mater. Interfaces 2015, 7, 7702–7708.