AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Structural self-reconstruction strategy empowering Ni-rich layered cathodes with low-strain for superior cyclabilities

Zhouliang Tan1,2Yunjiao Li1,2 ( )Xiaoming Xi3Shijie Jiang1,2Xiaohui Li1,2Xingjie Shen1,2Panpan Zhang4Zhenjiang He1,2
School of Metallurgy and Environment, Central South University, Changsha 410083, China
Engineering Research Center of the Ministry of Education for Advanced Battery Materials, Central South University, Changsha 410083, China
Changsha Research Institute of Mining and Metallurgy, Changsha 410083, China
Office of Laboratory and Equipment Management, Xinjiang University, Urumqi 830000, China
Show Author Information

Graphical Abstract

A perovskite Li0.35La0.55TiO3 (LLTO) layer is built on Ni-rich cathodes crystal to induce layered@spinel@perovskite heterostructure, which could effectively suppress the mechanical strain, cation mixing, and electrolyte corrosion. This work provides a new perspective of surface interface engineering for layered cathode materials.

Abstract

The key to hindering the commercial application of Ni-rich layered cathode is its severe structural and interface degradation during the undesired phase transition (hexagonal to hexagonal (H2 → H3)), degenerating from the build-up of mechanical strain and undesired parasitic reactions. Herein, a perovskite Li0.35La0.55TiO3 (LLTO) layer is built onto Ni-rich cathodes crystal to induce layered@spinel@perovskite heterostructure to solve the root cause of capacity fade. Intensive exploration based on structure characterizations, in situ X-ray diffraction techniques, and first-principles calculations demonstrate that such a unique heterostructure not only can improve the ability of the host structure to withstand the mechanical strain but also provides fast diffusion channels for lithium ions as well as provides a protective barrier against electrolyte corrosion. Impressively, the LLTO modified LiNi0.9Co0.05Mn0.05O2 cathode manifests an unexpected cyclability with an extremely high-capacity retention of ≈ 94.6% after 100 cycles, which is superior to the pristine LiNi0.9Co0.05Mn0.05O2 (79.8%). Furthermore, this modified electrode also shows significantly enhanced cycling stability even withstanding a high cut-off voltage of 4.6 V. This surface self-reconstruction strategy provides deep insight into the structure/interface engineering to synergistically stabilize structure stability and regulate the physicochemical properties of Ni-rich cathodes, which will also unlock a new perspective of surface interface engineering for layered cathode materials.

Electronic Supplementary Material

Download File(s)
12274_2022_5161_MOESM1_ESM.pdf (2.1 MB)

References

[1]

Park, N. Y.; Ryu, H. H.; Park, G. T.; Noh, T. C.; Sun, Y. K. Optimized Ni-rich NCMA cathode for electric vehicle batteries. Adv. Energy Mater. 2021, 11, 2003767.

[2]

Wang, X. X.; Ding, Y. L.; Deng, Y. P.; Chen, Z. W. Ni-rich/Co-poor layered cathode for automotive Li-Ion batteries: Promises and challenges. Adv. Energy Mater. 2020, 10, 1903864.

[3]

Namkoong, B.; Park, N. Y.; Park, G. T.; Shin, J. Y.; Beierling, T.; Yoon, C. S.; Sun, Y. K. High-energy Ni-rich cathode materials for long-range and long-life electric vehicles. Adv. Energy Mater. 2022, 12, 2200615.

[4]

Dong, T. T.; Mu, P. Z.; Zhang, S.; Zhang, H. R.; Liu, W.; Cui, G. L. How do polymer binders assist transition metal oxide cathodes to address the challenge of high-voltage lithium battery applications? Electrochem. Energy Rev. 2021, 4, 545–565.

[5]

Reddy, R. C. K.; Lin, X. M.; Zeb, A.; Su, C. Y. Metal–organic frameworks and their derivatives as cathodes for lithium-ion battery applications: A review. Electrochem. Energy Rev. 2022, 5, 312–347.

[6]

Yoon, C. S.; Park, K. J.; Kim, U. H.; Kang, K. H.; Ryu, H. H.; Sun, Y. K. High-energy Ni-rich Li[NixCoyMn1−xy]O2 cathodes via compositional partitioning for next-generation electric vehicles. Chem. Mater. 2017, 29, 10436–10445.

[7]

Sun, H. H.; Ryu, H. H.; Kim, U. H.; Weeks, J. A.; Heller, A.; Sun, Y. K.; Mullins, C. B. Beyond doping and coating: Prospective strategies for stable high-capacity layered Ni-rich cathodes. ACS Energy Lett. 2020, 5, 1136–1146.

[8]

Choi, J. U.; Voronina, N.; Sun, Y. K.; Myung, S. T. Recent progress and perspective of advanced high-energy co-less Ni-rich cathodes for Li-ion batteries: Yesterday, today, and tomorrow. Adv. Energy Mater. 2020, 10, 2002027.

[9]

Yin, S. Y.; Deng, W. T.; Chen, J.; Gao, X.; Zou, G. Q.; Hou, H. S.; Ji, X. B. Fundamental and solutions of microcrack in Ni-rich layered oxide cathode materials of lithium-ion batteries. Nano Energy 2021, 83, 105854.

[10]

Ren, X. G.; Li, Y. J.; Xi, X. M.; Liu, S. W.; Xiong, Y. K.; Zhang, D. W.; Wang, S.; Zheng, J. C. Modification of LiNi0.8Co0.1Mn0.1O2 cathode materials from the perspective of chemical stabilization and kinetic hindrance. J. Power Sources 2021, 499, 229756.

[11]

Zhang, S. S. Problems and their origins of Ni-rich layered oxide cathode materials. Energy Storage Mater. 2020, 24, 247–254.

[12]

Li, J. Y.; Zhou, Z. W.; Luo, Z. Y.; He, Z. J.; Zheng, J. C.; Li, Y. J.; Mao, J.; Dai, K. H. Microcrack generation and modification of Ni-rich cathodes for Li-ion batteries: A review. Sustainable Mater. Technol. 2021, 29, e00305.

[13]

Ryu, H. H.; Park, K. J.; Yoon, C. S.; Sun, Y. K. Capacity fading of Ni-rich Li[NixCoyMn1−xy]O2 (0.6 ≤ x ≤ 0. 95) cathodes for high-energy-density lithium-ion batteries: Bulk or surface degradation? Chem. Mater. 2018, 30, 1155–1163.

[14]

Nam, G. W.; Park, N. Y.; Park, K. J.; Yang, J. H.; Liu, J.; Yoon, C. S.; Sun, Y. K. Capacity fading of Ni-rich NCA cathodes: Effect of microcracking extent. ACS Energy Lett. 2019, 4, 2995–3001.

[15]

Wu, F.; Dong, J. Y.; Chen, L.; Bao, L. Y.; Li, N.; Cao, D. Y.; Lu, Y.; Xue, R. X.; Liu, N.; Wei, L. et al. High-voltage and high-safety nickel-rich layered cathode enabled by a self-reconstructive cathode–electrolyte interphase layer. Energy Storage Mater. 2021, 41, 495–504.

[16]

Wu, F.; Liu, N.; Chen, L.; Li, N.; Lu, Y.; Cao, D. Y.; Xu, M. Z.; Wang, Z. R.; Su, Y. F. A universal method for enhancing the structural stability of Ni-rich cathodes via the synergistic effect of dual-element cosubstitution. ACS Appl. Mater. Interfaces 2021, 13, 24925–24936.

[17]

Fan, X. M.; Huang, Y. D.; Wei, H. X.; Tang, L. B.; He, Z. J.; Yan, C.; Mao, J.; Dai, K. H.; Zheng, J. C. Surface modification engineering enabling 4.6 V single-crystalline Ni-rich cathode with superior long-term cyclability. Adv. Funct. Mater. 2022, 32, 2109421.

[18]

Luo, L.; Wang, D.; Zhou, Z. R.; Dong, P.; Yang, S. Y.; Duan, J. G.; Zhang, Y. J. Engineering a robust interface on Ni-rich cathodes via a novel dry doping process toward advanced high-voltage performance. ACS Appl. Mater. Interfaces 2021, 13, 45068–45076.

[19]

Xu, Q.; Li, X. F.; Sari, H. M. K.; Li, W. B.; Liu, W.; Hao, Y. C.; Qin, J.; Cao, B.; Xiao, W.; Xu, Y. et al. Surface engineering of LiNi0.8Mn0.1Co0.1O2 towards boosting lithium storage: Bimetallic oxides versus monometallic oxides. Nano Energy 2020, 77, 105034.

[20]

Feng, Z.; Rajagopalan, R.; Sun, D.; Tang, Y. G.; Wang, H. Y. In situ formation of hybrid Li3PO4-AlPO4-Al(PO3)3 coating layer on LiNi0.8Co0.1Mn0.1O2 cathode with enhanced electrochemical properties for lithium-ion battery. Chem. Eng. J. 2020, 382, 122959.

[21]

Zou, P. J.; Lin, Z. H.; Fan, M. N.; Wang, F.; Liu, Y.; Xiong, X. H. Facile and efficient fabrication of Li3PO4-coated Ni-rich cathode for high-performance lithium-ion battery. Appl. Surf. Sci. 2020, 504, 144506.

[22]

Zhong, Z. Q.; Chen, L. Z.; Zhu, C. B.; Ren, W. B.; Kong, L. Y.; Wan, Y. X. Nano LiFePO4 coated Ni rich composite as cathode for lithium ion batteries with high thermal ability and excellent cycling performance. J. Power Sources 2020, 464, 228235.

[23]

Du, K.; Xie, H. B.; Hu, G. R.; Peng, Z. D.; Cao, Y. B.; Yu, F. Enhancing the thermal and upper voltage performance of Ni-rich cathode material by a homogeneous and facile coating method: Spray-drying coating with nano-Al2O3. ACS Appl. Mater. Interfaces 2016, 8, 17713–17720.

[24]

Wu, F.; Li, Q.; Chen, L.; Lu, Y.; Su, Y. F.; Bao, L. Y.; Chen, R. J.; Chen, S. Use of Ce to reinforce the interface of Ni-rich LiNi0.8Co0.1Mn0.1O2 cathode materials for lithium-ion batteries under high operating voltage. ChemSusChem 2019, 12, 935–943.

[25]

Ho, V. C.; Jeong, S.; Yim, T.; Mun, J. Crucial role of thioacetamide for ZrO2 coating on the fragile surface of Ni-rich layered cathode in lithium ion batteries. J. Power Sources 2020, 450, 227625.

[26]

Gan, Q. M.; Qin, N.; Zhu, Y. H.; Huang, Z. X.; Zhang, F. C.; Gu, S.; Xie, J. W.; Zhang, K. L.; Lu, L.; Lu, Z. G. Polyvinylpyrrolidone-induced uniform surface-conductive polymer coating endows Ni-rich LiNi0.8Co0.1Mn0.1O2 with enhanced cyclability for lithium-ion batteries. ACS Appl. Mater. Interfaces 2019, 11, 12594–12604.

[27]

Yin, S. Y.; Chen, H. Y.; Chen, J.; Massoudi, A.; Deng, W. T.; Gao, X.; Zhang, S.; Wang, Y.; Lin, T. W.; Banks, C. E. et al. Chemical-mechanical effects in Ni-rich cathode materials. Chem. Mater. 2022, 34, 1509–1523.

[28]

Wang, L. G.; Lei, X. C.; Liu, T. C.; Dai, A.; Su, D.; Amine, K.; Lu, J.; Wu, T. P. Regulation of surface defect chemistry toward stable Ni-rich cathodes. Adv. Mater. 2022, 34, 2200744.

[29]

Chakraborty, A.; Kunnikuruvan, S.; Kumar, S.; Markovsky, B.; Aurbach, D.; Dixit, M.; Major, D. T. Layered cathode materials for lithium-ion batteries: Review of computational studies on LiNi1−xyCoxMnyO2 and LiNi1−xyCoxAlyO2. Chem. Mater. 2020, 32, 915–952.

[30]

Kim, J.; Lee, H.; Cha, H.; Yoon, M.; Park, M.; Cho, J. Prospect and reality of Ni-rich cathode for commercialization. Adv. Energy Mater. 2018, 8, 1702028.

[31]

Tang, M. J.; Yang, J.; Chen, N. T.; Zhu, S. C.; Wang, X.; Wang, T.; Zhang, C. C.; Xia, Y. Y. Overall structural modification of a layered Ni-rich cathode for enhanced cycling stability and rate capability at high voltage. J. Mater. Chem. A 2019, 7, 6080–6089.

[32]

Hara, M.; Nakano, H.; Dokko, K.; Okuda, S.; Kaeriyama, A.; Kanamura, K. Fabrication of all solid-state lithium-ion batteries with three-dimensionally ordered composite electrode consisting of Li0.35La0.55TiO3 and LiMn2O4. J. Power Sources 2009, 189, 485–489.

[33]

Yuan, S. H.; Zhang, H. Z.; Song, D. W.; Ma, Y.; Shi, X. X.; Li, C. L.; Zhang, L. Q. Regulate the lattice oxygen activity and structural stability of lithium-rich layered oxides by integrated strategies. Chem. Eng. J. 2022, 439, 135677.

[34]

Ku, K.; Son, S. B.; Gim, J.; Park, J.; Liang, Y. J.; Stark, A.; Lee, E.; Libera, J. Understanding the constant-voltage fast-charging process using a high-rate Ni-rich cathode material for lithium-ion batteries. J. Mater. Chem. A 2022, 10, 288–295.

[35]

Jeong, M.; Kim, H.; Lee, W.; Ahn, S. J.; Lee, E.; Yoon, W. S. Stabilizing effects of Al-doping on Ni-rich LiNi0.80Co0.15Mn0.05O2 cathode for Li rechargeable batteries. J. Power Sources 2020, 474, 228592.

[36]

Wu, F.; Liu, N.; Chen, L.; Su, Y. F.; Tan, G. Q.; Bao, L. Y.; Zhang, Q. Y.; Lu, Y.; Wang, J.; Chen, S. et al. Improving the reversibility of the H2–H3 phase transitions for layered Ni-rich oxide cathode towards retarded structural transition and enhanced cycle stability. Nano Energy 2019, 59, 50–57.

[37]

Tan, Z. L.; Li, Y. Y.; Xi, X. M.; Yang, J. C.; Xu, Y. L.; Xiong, Y. K.; Wang, S.; Liu, S. W.; Zheng, J. C. Lattice engineering to alleviate microcrack of LiNi0.9Co0.05Mn0.05O2 cathode for optimization their Li+ storage functionalities. Electrochim. Acta 2022, 401, 139482.

[38]

Tan, Z. L.; Li, Y. J.; Xi, X. M.; Jiang, S. J.; Li, X. H.; Shen, X. J.; Hao, S. P.; Zheng, J. C.; He, Z. J. Lattice engineering to refine particles and strengthen bonds of the LiNi0.9Co0.05Mn0.05O2 cathode toward efficient lithium ion storage. ACS Sustainable Chem. Eng. 2022, 10, 3532–3545.

[39]

Li, X. L.; Guan, H. L.; Ma, Z. J.; Liang, M.; Song, D. W.; Zhang, H. Z.; Shi, X. X.; Li, C. L.; Jiao, L. F.; Zhang, L. Q. In/ex situ Raman spectra combined with EIS for observing interface reactions between Ni-rich layered oxide cathode and sulfide electrolyte. J. Energy Chem. 2020, 48, 195–202.

[40]

Zhang, C. F.; Wan, J. J.; Li, Y. X.; Zheng, S. Y.; Zhou, K.; Wang, D. H.; Wang, D. F.; Hong, C. Y.; Gong, Z. L.; Yang, Y. Restraining the polarization increase of Ni-rich and low-Co cathodes upon cycling by Al-doping. J. Mater. Chem. A 2020, 8, 6893–6901.

[41]

Park, N. Y.; Park, G. T.; Kim, S. B.; Jung, W.; Park, B. C.; Sun, Y. K. Degradation mechanism of Ni-rich cathode materials: Focusing on particle interior. ACS Energy Lett. 2022, 7, 2362–2369.

[42]

Ryu, H. H.; Namkoong, B.; Kim, J. H.; Belharouak, I.; Yoon, C. S.; Sun, Y. K. Capacity fading mechanisms in Ni-rich single-crystal NCM cathodes. ACS Energy Lett. 2021, 6, 2726–2734.

[43]

Fan, X. M.; Hu, G. R.; Zhang, B.; Ou, X.; Zhang, J. F.; Zhao, W. G.; Jia, H. P.; Zou, L. F.; Li, P.; Yang, Y. Crack-free single-crystalline Ni-rich layered NCM cathode enable superior cycling performance of lithium-ion batteries. Nano Energy 2020, 70, 104450.

[44]

Jo, C. H.; Cho, D. H.; Noh, H. J.; Yashiro, H.; Sun, Y. K.; Myung, S. T. An effective method to reduce residual lithium compounds on Ni-rich Li[Ni0.6Co0.2Mn0.2]O2 active material using a phosphoric acid derived Li3PO4 nanolayer. Nano Res. 2015, 8, 1464–1479.

[45]

Manthiram, A.; Knight, J. C.; Myung, S. T.; Oh, S. M.; Sun, Y. K. Nickel-rich and lithium-rich layered oxide cathodes: Progress and perspectives. Adv. Energy Mater. 2016, 6, 1501010.

[46]

Wu, F.; Tian, J.; Su, Y. F.; Wang, J.; Zhang, C. Z.; Bao, L. Y.; He, T.; Li, J. H.; Chen, S. Effect of Ni2+ content on lithium/nickel disorder for Ni-rich cathode materials. ACS Appl. Mater. Interfaces 2015, 7, 7702–7708.

Nano Research
Pages 4950-4960
Cite this article:
Tan Z, Li Y, Xi X, et al. Structural self-reconstruction strategy empowering Ni-rich layered cathodes with low-strain for superior cyclabilities. Nano Research, 2023, 16(4): 4950-4960. https://doi.org/10.1007/s12274-022-5161-1
Topics:

3367

Views

14

Crossref

10

Web of Science

13

Scopus

0

CSCD

Altmetrics

Received: 27 August 2022
Revised: 21 September 2022
Accepted: 06 October 2022
Published: 29 November 2022
© Tsinghua University Press 2022
Return