AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Ultra-sensitive and wide applicable strain sensor enabled by carbon nanofibers with dual alignment for human machine interfaces

Peng Bi1,2Mingchao Zhang1Shuo Li1Haojie Lu1Haomin Wang1Xiaoping Liang1Huarun Liang1Yingying Zhang1,2( )
Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China
Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing 100084, China
Show Author Information

Graphical Abstract

A flexible strain sensor with both high sensitivity and wide strain detection range is prepared based on the design of an integrated membrane containing both of parallel aligned and randomly aligned carbon nanofibers (CNF). The parallel aligned CNF membrane exhibits a low strain detection limit and high sensitivity, while the random aligned CNF membrane exhibits a large strain detection range.

Abstract

Flexible strain sensors with high sensitivity, wide detection range, and low detection limit have continuously attracted great interest due to their tremendous application potential in areas such as health/medical-care, human–machine interface, as well as safety and security. While both of a high sensitivity and a wide working range are desired key parameters for a strain sensor, they are usually contrary to each other to be achieved on the same sensor due to the tightly structure dependence of both of them. Here, a flexible strain sensor with both high sensitivity and wide strain detection range is prepared based on the design of an integrated membrane containing both of parallel aligned and randomly aligned carbon nanofibers (CNFs). The parallel aligned CNF membrane (p-CNF) exhibits a low strain detection limit and high sensitivity, while the random aligned CNF membrane (r-CNF) exhibits a large strain detection range. Taking the advantages of both p-CNF and r-CNF, the strain sensor with stacked p-CNF and r-CNF (p/r-CNF) exhibits both high sensitivity and wide working range. Its gauge factor (GF) is 1,272 for strains under 0.5% and 2,266 for strain from 70% to 100%. At the same time, it can work in a wide strain range of 0.005% to 100%, fulfilling the requirements for accurately detecting full-range human motions. We demonstrated its applications in the recognition of facial expressions and joint movements. Furtherly, we constructed an intelligent lip-language recognition system, which can accurately track phonetic symbols and may help people with language disabilities, proving the potential of this strain sensor in health management and medical assistance. Besides, we foresee that the dual-alignment structure design of the p/r-CNF strain sensor may also be applied in the design of other high performance sensors.

Electronic Supplementary Material

Video
12274_2022_5162_MOESM1_ESM.mp4
12274_2022_5162_MOESM2_ESM.mp4
Download File(s)
12274_2022_5162_MOESM1_ESM.pdf (869.7 KB)

References

[1]

Wang, S. H.; Xu, J.; Wang, W. C.; Wang, G. J. N.; Rastak, R.; Molina-Lopez, F.; Chung, J. W.; Niu, S. M.; Feig, V. R.; Lopez, J. et al. Skin electronics from scalable fabrication of an intrinsically stretchable transistor array. Nature 2018, 555, 83–88.

[2]

Liu, S. Q.; Zhang, J. C.; Zhang, Y. Z.; Zhu, R. A wearable motion capture device able to detect dynamic motion of human limbs. Nat. Commun. 2020, 11, 5615.

[3]

Wu, Q.; Qiao, Y. C.; Guo, R.; Naveed, S.; Hirtz, T.; Li, X. S.; Fu, Y. X.; Wei, Y. H.; Deng, G.; Yang, Y. et al. Triode-mimicking graphene pressure sensor with positive resistance variation for physiology and motion monitoring. ACS Nano 2020, 14, 10104–10114.

[4]

Wang, Z. Y.; Shin, J.; Park, J. H.; Lee, H.; Kim, D. H.; Liu, H. F. Engineering materials for electrochemical sweat sensing. Adv. Funct. Mater. 2021, 31, 2008130.

[5]

Lin, Y. J.; Bariya, M.; Nyein, H. Y. Y.; Kivimäki, L.; Uusitalo, S.; Jansson, E.; Ji, W. B.; Yuan, Z.; Happonen, T.; Liedert, C. et al. Porous enzymatic membrane for nanotextured glucose sweat sensors with high stability toward reliable noninvasive health monitoring. Adv. Funct. Mater. 2019, 29, 1902521.

[6]

Yeon, H.; Lee, H.; Kim, Y.; Lee, D.; Lee, Y.; Lee, J. S.; Shin, J.; Choi, C.; Kang, J. H.; Suh, J. M. et al. Long-term reliable physical health monitoring by sweat pore-inspired perforated electronic skins. Sci. Adv. 2021, 7, eabg8459.

[7]

Jung, Y. H.; Hong, S. K.; Wang, H. S.; Han, J. H.; Pham, T. X.; Park, H.; Kim, J.; Kang, S.; Yoo, C. D.; Lee, K. J. Flexible piezoelectric acoustic sensors and machine learning for speech processing. Adv. Mater. 2020, 32, 1904020.

[8]

Lim, S.; Son, D.; Kim, J.; Lee, Y. B.; Song, J. K.; Choi, S.; Lee, D. J.; Kim, J. H.; Lee, M.; Hyeon, T. et al. Transparent and stretchable interactive human machine interface based on patterned graphene heterostructures. Adv. Funct. Mater. 2015, 25, 375–383.

[9]

Zhu, M. L.; Sun, Z. D.; Zhang, Z. X.; Shi, Q. F.; He, T. Y. Y.; Liu, H. C.; Chen, T.; Lee, C. Haptic-feedback smart glove as a creative human–machine interface (HMI) for virtual/augmented reality applications. Sci. Adv. 2020, 6, eaaz8693.

[10]

Dinh, T.; Nguyen, T.; Phan, H. P.; Nguyen, T. K.; Dau, V. T.; Nguyen, N. T.; Dao, D. V. Advances in rational design and materials of high-performance stretchable electromechanical sensors. Small 2020, 16, 1905707.

[11]

Guo, Y. J.; Wei, X.; Gao, S.; Yue, W. J.; Li, Y.; Shen, G. Z. Recent advances in carbon material-based multifunctional sensors and their applications in electronic skin systems. Adv. Funct. Mater. 2021, 31, 2104288.

[12]

Liu, Z.; Xu, J.; Chen, D.; Shen, G. Z. Flexible electronics based on inorganic nanowires. Chem. Soc. Rev. 2015, 44, 161–192.

[13]

Lee, S.; Reuveny, A.; Reeder, J.; Lee, S.; Jin, H.; Liu, Q. H.; Yokota, T.; Sekitani, T.; Isoyama, T.; Abe, Y. et al. A transparent bending-insensitive pressure sensor. Nat. Nanotechnol. 2016, 11, 472–478.

[14]

Zhang, J. L.; Wang, M.; Yang, Z. H.; Zhang, X. H. Highly flexible and stretchable strain sensors based on conductive whisker carbon nanotube films. Carbon 2021, 176, 139–147.

[15]

Zhou, X. Z.; Zhang, X.; Zhao, H. X.; Krishnan, B. P.; Cui, J. X. Self-healable and recyclable tactile force sensors with post-tunable sensitivity. Adv. Funct. Mater. 2020, 30, 2003533.

[16]

Bi, P.; Liu, X. W.; Yang, Y.; Wang, Z. Y.; Shi, J.; Liu, G. M.; Kong, F. F.; Zhu, B. P.; Xiong, R. Silver-nanoparticle-modified polyimide for multiple artificial skin-sensing applications. Adv. Mater. Technol. 2019, 4, 1900426.

[17]

Guan, F. Y.; Xie, Y.; Wu, H. X.; Meng, Y.; Shi, Y.; Gao, M.; Zhang, Z. Y.; Chen, S. Y.; Chen, Y.; Wang, H. P. et al. Silver nanowire-bacterial cellulose composite fiber-based sensor for highly sensitive detection of pressure and proximity. ACS Nano 2020, 14, 15428–15439.

[18]

Zhang, H. Y.; Lowe, A.; Kalra, A.; Yu, Y. A flexible strain sensor based on embedded ionic liquid. Sensors 2021, 21, 5760.

[19]

Wang, X. P.; Liu, X.; Bi, P.; Zhang, Y. Y.; Li, L. T.; Guo, J. R.; Zhang, Y.; Niu, X. F.; Wang, Y.; Hu, L. et al. Electrochemically enabled embedded three-dimensional printing of freestanding gallium wire-like structures. ACS Appl. Mater. Interfaces 2020, 12, 53966–53972.

[20]

Yang, L.; Wang, R. Y.; Song, Q. T.; Liu, Y.; Zhao, Q. Q.; Shen, Y. F. One-pot preparation of porous piezoresistive sensor with high strain sensitivity via emulsion-templated polymerization. Compos. Part A: Appl. Sci. Manuf. 2017, 101, 195–198.

[21]

Araromi, O. A.; Graule, M. A.; Dorsey, K. L.; Castellanos, S.; Foster, J. R.; Hsu, W. H.; Passy, A. E.; Vlassak, J. J.; Weaver, J. C.; Walsh, C. J. et al. Ultra-sensitive and resilient compliant strain gauges for soft machines. Nature 2020, 587, 219–224.

[22]

Xu, W. J. H.; Hu, S. Y.; Zhao, Y.; Zhai, W.; Chen, Y. H.; Zheng, G. Q.; Dai, K.; Liu, C. T.; Shen, C. Y. Nacre-inspired tunable strain sensor with synergistic interfacial interaction for sign language interpretation. Nano Energy 2021, 90, 106606.

[23]

Zhang, M. C.; Wang, C. Y.; Wang, H. M.; Jian, M. Q.; Hao, X. Y.; Zhang, Y. Y. Carbonized cotton fabric for high-performance wearable strain sensors. Adv. Funct. Mater. 2017, 27, 1604795.

[24]

Yu, Y.; Luo, Y. F.; Guo, A.; Yan, L. J.; Wu, Y.; Jiang, K. L.; Li, Q. Q.; Fan, S. S.; Wang, J. P. Flexible and transparent strain sensors based on super-aligned carbon nanotube films. Nanoscale 2017, 9, 6716–6723.

[25]

Cheng, Y.; Wang, R. R.; Sun, J.; Gao, L. A stretchable and highly sensitive graphene-based fiber for sensing tensile strain, bending, and torsion. Adv. Mater. 2015, 27, 7365–7371.

[26]

Tang, N.; Zhou, C.; Qu, D. Y.; Fang, Y.; Zheng, Y. B.; Hu, W. W.; Jin, K.; Wu, W. W.; Duan, X. X.; Haick, H. A highly aligned nanowire-based strain sensor for ultrasensitive monitoring of subtle human motion. Small 2020, 16, 2001363.

[27]

Wang, Z. Y.; Bi, P.; Yang, Y.; Ma, H. Y.; Lan, Y. C.; Sun, X. L.; Hou, Y.; Yu, H. Y.; Lu, G. X.; Jiang, L. M. et al. Star-nose-inspired multi-mode sensor for anisotropic motion monitoring. Nano Energy 2021, 80, 105559.

[28]

Zhang, B. C.; Wang, H.; Zhao, Y.; Li, F.; Ou, X. M.; Sun, B. Q.; Zhang, X. H. Large-scale assembly of highly sensitive Si-based flexible strain sensors for human motion monitoring. Nanoscale 2016, 8, 2123–2128.

[29]

Xu, W.; Yang, T. T.; Qin, F.; Gong, D. D.; Du, Y. J.; Dai, G. A sprayed graphene pattern-based flexible strain sensor with high sensitivity and fast response. Sensors 2019, 19, 1077.

[30]

Luo, C. Z.; Jia, J. J.; Gong, Y. N.; Wang, Z. C.; Fu, Q.; Pan, C. X. Highly sensitive, durable, and multifunctional sensor inspired by a spider. ACS Appl. Mater. Interfaces 2017, 9, 19955–19962.

[31]

Amjadi, M.; Pichitpajongkit, A.; Lee, S.; Ryu, S.; Park, I. Highly stretchable and sensitive strain sensor based on silver nanowire-elastomer nanocomposite. ACS Nano 2014, 8, 5154–5163.

[32]

Ou, Y.; Zhao, T. T.; Zhang, Y.; Zhao, G. H.; Dong, L. J. Stretchable solvent-free ionic conductor with self-wrinkling microstructures for ultrasensitive strain sensor. Mater. Horiz. 2022, 9, 1679–1689.

[33]

Wang, Q.; Ling, S. J.; Liang, X. P.; Wang, H. M.; Lu, H. J.; Zhang, Y. Y. Self-healable multifunctional electronic tattoos based on silk and graphene. Adv. Funct. Mater. 2019, 29, 1808695.

[34]

Lu, N. S.; Lu, C.; Yang, S. X.; Rogers, J. Highly sensitive skin-mountable strain gauges based entirely on elastomers. Adv. Funct. Mater. 2012, 22, 4044–4050.

[35]

Hempel, M.; Nezich, D.; Kong, J.; Hofmann, M. A novel class of strain gauges based on layered percolative films of 2D materials. Nano Lett. 2012, 12, 5714–5718.

[36]

Chao, M. Y.; Wang, Y. G.; Ma, D.; Wu, X. X.; Zhang, W. X.; Zhang, L. Q.; Wan, P. B. Wearable MXene nanocomposites-based strain sensor with tile-like stacked hierarchical microstructure for broad-range ultrasensitive sensing. Nano Energy 2020, 78, 105187.

[37]

Yang, Y. N.; Cao, Z. R.; He, P.; Shi, L. J.; Ding, G. Q.; Wang, R. R.; Sun, J. Ti3C2Tx MXene-graphene composite films for wearable strain sensors featured with high sensitivity and large range of linear response. Nano Energy 2019, 66, 104134.

[38]

Chen, Y.; Zhang, Y. Y.; Song, F.; Zhang, H. Y.; Zhang, Q. K.; Xu, J.; Wang, H. P.; Ke, F. Y. Graphene decorated fiber for wearable strain sensor with high sensitivity at tiny strain. Adv. Mater. Technol. 2021, 6, 2100421.

[39]

Wang, C. Y.; Xia, K. L.; Jian, M. Q.; Wang, H. M.; Zhang, M. C.; Zhang, Y. Y. Carbonized silk georgette as an ultrasensitive wearable strain sensor for full-range human activity monitoring. J. Mater. Chem. C 2017, 5, 7604–7611.

[40]

Wang, C. Y.; Xia, K. L.; Zhang, M. C.; Jian, M. Q.; Zhang, Y. Y. An all-silk-derived dual-mode e-skin for simultaneous temperature-pressure detection. ACS Appl. Mater. Interfaces 2017, 9, 39484–39492.

[41]

Wang, Q.; Jian, M. Q.; Wang, C. Y.; Zhang, Y. Y. Carbonized silk nanofiber membrane for transparent and sensitive electronic skin. Adv. Funct. Mater. 2017, 27, 1605657.

Nano Research
Pages 4093-4099
Cite this article:
Bi P, Zhang M, Li S, et al. Ultra-sensitive and wide applicable strain sensor enabled by carbon nanofibers with dual alignment for human machine interfaces. Nano Research, 2023, 16(3): 4093-4099. https://doi.org/10.1007/s12274-022-5162-0
Topics:
Part of a topical collection:

7658

Views

24

Crossref

21

Web of Science

22

Scopus

0

CSCD

Altmetrics

Received: 29 August 2022
Revised: 30 September 2022
Accepted: 07 October 2022
Published: 21 November 2022
© Tsinghua University Press 2022
Return