AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Nanopore-rich NiFe LDH targets the formation of the high-valent nickel for enhanced oxygen evolution reaction

Qunlei Wen1,§Shuzhe Wang1,§Ruiwen Wang1Danji Huang2Jiakun Fang2Youwen Liu1( )Tianyou Zhai1
State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
State Key Lab of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China

§ Qunlei Wen and Shuzhe Wang contributed equally to this work.

Show Author Information

Graphical Abstract

The nanopore-rich nickel-iron layered double hydroxide (NiFe LDH) nanosheets were proposed to enhance the oxygen evolution reaction (OER) activity and stability. In the designed electrocatalyst, the confined nanopores create abundant unsaturated Ni sites at edges and decrease the migration distance of protons down to the scale of their mean free path, thus promoting the formation of high-valent Ni3+/4+ active sites for high OER activity.

Abstract

Nickel-iron layered double hydroxides (NiFe LDHs) represent a promising candidate for oxygen evolution reaction (OER), however, are still confronted with insufficient activity, due to the slow kinetics of electrooxidation of Ni2+ cations for the high-valent active sites. Herein, nanopore-rich NiFe LDH (PR-NiFe LDH) nanosheets were proposed for enhancing the OER activity together with stability. In the designed catalyst, the confined nanopores create abundant unsaturated Ni sites at edges, and decrease the migration distance of protons down to the scale of their mean free path, thus promoting the formation of high-valent Ni3+/4+ active sites. The unique configuration further improves the OER stability by releasing the lattice stress and accelerating the neutralization of the local acidity during the phase transformation. Thus, the optimized PR-NiFe LDH catalysts exhibit an ultralow overpotential of 278 mV at 10 mA∙cm−2 and a small Tafel slope of 75 mV∙dec−1, which are competitive among the advanced LDHs based catalysts. Moreover, the RP-NiFe LDH catalyst was implemented in anion exchange membrane (AEM) water electrolyzer devices and operated steadily at a high catalytic current of 2 A over 80 h. These results demonstrated that PR-NiFe LDH could be a viable candidate for the practical electrolyzer. This concept also provides valuable insights into the design of other catalysts for OER and beyond.

Electronic Supplementary Material

Download File(s)
12274_2022_5163_MOESM1_ESM.pdf (2 MB)

References

[1]

Oener, S. Z.; Foster, M. J.; Boettcher, S. W. Accelerating water dissociation in bipolar membranes and for electrocatalysis. Science 2020, 369, 1099–1103.

[2]

Seh, Z. W.; Kibsgaard, J.; Dickens, C. F.; Chorkendorff, I.; Nørskov, J. K.; Jaramillo, T. F. Combining theory and experiment in electrocatalysis: Insights into materials design. Science 2017, 355, eaad4998.

[3]

Zhang, B.; Zheng, X. L.; Voznyy, O.; Comin, R.; Bajdich, M.; García-Melchor, M.; Han, L. L.; Xu, J. X.; Liu, M.; Zheng, L. R. et al. Homogeneously dispersed multimetal oxygen-evolving catalysts. Science, 2016, 352, 333–337.

[4]

Wang, W. B.; Yang, Y.; Zhao, Y.; Wang, S. Z.; Ai, X. M.; Fang, J. K.; Liu, Y. W. Multi-scale regulation in S, N co-incorporated carbon encapsulated Fe-doped Co9S8 achieving efficient water oxidation with low overpotential. Nano Res. 2022, 15, 872–880.

[5]

Liu, Y. W.; Xiao, C.; Huang, P. C.; Cheng, M.; Xie, Y. Regulating the charge and spin ordering of two-dimensional ultrathin solids for electrocatalytic water splitting. Chem 2018, 4, 1263–1283.

[6]

Yu, J.; Zhao, C. X.; Liu, J. N.; Li, B. Q.; Tang, C.; Zhang, Q. Seawater-based electrolyte for zinc-air batteries. Green Chem. Eng. 2020, 1, 117–123.

[7]

Wang, W. B.; Wang, Z. T.; Yang, R. O.; Duan, J. Y.; Liu, Y. W.; Nie, A. M.; Li, H. Q.; Xia, B. Y.; Zhai, T. Y. In situ phase separation into coupled interfaces for promoting CO2 electroreduction to formate over a wide potential window. Angew. Chem., Int. Ed. 2021, 60, 22940–22947.

[8]

Duan, J. Y.; Liu, T. Y.; Zhao, Y. H.; Yang, R. O.; Zhao, Y.; Wang, W. B.; Liu, Y. W.; Li, H. Q.; Li, Y. F.; Zhai, T. Y. Active and conductive layer stacked superlattices for highly selective CO2 electroreduction. Nat. Commun. 2022, 13, 2039.

[9]

Qing, G.; Ghazfar, R.; Jackowski, S. T.; Habibzadeh, F.; Ashtiani, M. M.; Chen, C. P.; Smith III, M. R.; Hamann, T. W. Recent advances and challenges of electrocatalytic N2 reduction to ammonia. Chem. Rev. 2020, 120, 5437–5516.

[10]

Liu, Y. P.; Liang, X.; Gu, L.; Zhang, Y.; Li, G. D.; Zou, X. X.; Chen, J. S. Corrosion engineering towards efficient oxygen evolution electrodes with stable catalytic activity for over 6,000 hours. Nat. Commun. 2018, 9, 2609.

[11]

Yang, S.; Zhu, J. Y.; Chen, X. N.; Huang, M. J.; Cai, S. H.; Han, J. Y.; Li, J. S. Self-supported bimetallic phosphides with artificial heterointerfaces for enhanced electrochemical water splitting. Appl. Catal. B: Environ. 2022, 304, 120914.

[12]

Zhang, B.; Wang, L.; Cao, Z.; Kozlov, S. M.; García De Arquer, F. P.; Dinh, C. T.; Li, J.; Wang, Z. Y.; Zheng, X. L.; Zhang, L. S. et al. High-valence metals improve oxygen evolution reaction performance by modulating 3d metal oxidation cycle energetics. Nat. Catal. 2020, 3, 985–992.

[13]

Yu, J.; Wang, J.; Long, X.; Chen, L.; Cao, Q.; Wang, J.; Qiu, C.; Lim, J.; Yang, S. H. Formation of FeOOH nanosheets induces substitutional doping of CeO2−x with high-valence Ni for efficient water oxidation. Adv. Energy Mater. 2021, 11, 2002731.

[14]

Cai, S. H.; Chen, X. N.; Huang, M. J.; Han, J. Y.; Zhou, Y. W.; Li, J. S. Interfacial engineering of nickel/iron/ruthenium phosphides for efficient overall water splitting powered by solar energy. J. Mater. Chem. A 2022, 10, 772–778.

[15]

Han, M.; Wang, N.; Zhang, B.; Xia, Y. J.; Li, J.; Han, J. R.; Yao, K. L.; Gao, C. C.; He, C. N.; Liu, Y. C. et al. High-valent nickel promoted by atomically embedded copper for efficient water oxidation. ACS Catal. 2020, 10, 9725–9734.

[16]

Cheng, W. R.; Zhao, X.; Su, H.; Tang, F. M.; Che, W.; Zhang, H.; Liu, Q. H. Lattice-strained metal–organic-framework arrays for bifunctional oxygen electrocatalysis. Nat. Energy 2019, 4, 115–122.

[17]

Wang, W. B.; Zhu, Y. B.; Wen, Q. L.; Wang, Y. T.; Xia, J.; Li, C. C.; Chen, M. W.; Liu, Y. W.; Li, H. Q.; Wu, H. A. et al. Modulation of molecular spatial distribution and chemisorption with perforated nanosheets for ethanol electro-oxidation. Adv. Mater. 2019, 31, 1900528.

[18]

Yang, H.; He, Q. Y.; Liu, Y. W.; Li, H. Q.; Zhang, H.; Zhai, T. Y. On-chip electrocatalytic microdevice: An emerging platform for expanding the insight into electrochemical processes. Chem. Soc. Rev. 2020, 49, 2916–2936.

[19]

Luo, Z. Y.; Zhang, H.; Yang, Y. Q.; Wang, X.; Li, Y.; Jin, Z.; Jiang, Z.; Liu, C. P.; Xing, W.; Ge, J. J. Reactant friendly hydrogen evolution interface based on di-anionic MoS2 surface. Nat. Commun. 2020, 11, 1116.

[20]

Kuai, C. G.; Xi, C.; Hu, A. Y.; Zhang, Y.; Xu, Z. R.; Nordlund, D.; Sun, C. J.; Cadigan, C. A.; Richards, R. M.; Li, L. X. et al. Revealing the dynamics and roles of iron incorporation in nickel hydroxide water oxidation catalysts. J. Am. Chem. Soc. 2021, 143, 18519–18526.

[21]

Trotochaud, L.; Young, S. L.; Ranney, J. K.; Boettcher, S. W. Nickel-iron oxyhydroxide oxygen-evolution electrocatalysts: The role of intentional and incidental iron incorporation. J. Am. Chem. Soc. 2014, 136, 6744–6753.

[22]

Chung, D. Y.; Lopes, P. P.; Farinazzo Bergamo Dias Martins, P.; He, H. Y.; Kawaguchi, T.; Zapol, P.; You, H.; Tripkovic, D.; Strmcnik, D.; Zhu, Y. S. et al. Dynamic stability of active sites in hydr(oxy)oxides for the oxygen evolution reaction. Nat. Energy 2020, 5, 222–230.

[23]

Yuan, S.; Peng, J. Y.; Cai, B.; Huang, Z. H.; Garcia-Esparza, A. T.; Sokaras, D.; Zhang, Y. R.; Giordano, L.; Akkiraju, K.; Zhu, Y. G. et al. Tunable metal hydroxide-organic frameworks for catalysing oxygen evolution. Nat. Mater. 2022, 21, 673–680.

[24]

Li, Y. X.; Chen, R.; Yan, D. F.; Wang, S. Y. Regulation of morphology and electronic structure of NiSe2 by Fe for high effective oxygen evolution reaction. Chem. Asian J. 2020, 15, 3845–3852.

[25]

Zhou, D. J.; Li, P. S.; Lin, X.; McKinley, A.; Kuang, Y.; Liu, W.; Lin, W. F.; Sun, X. M.; Duan, X. Layered double hydroxide-based electrocatalysts for the oxygen evolution reaction: Identification and tailoring of active sites, and superaerophobic nanoarray electrode assembly. Chem. Soc. Rev. 2021, 50, 8790–8817.

[26]

Kang, J. X.; Qiu, X. Y.; Hu, Q.; Zhong, J.; Gao, X.; Huang, R.; Wan, C. Z.; Liu, L. M.; Duan, X. F.; Guo, L. Valence oscillation and dynamic active sites in monolayer NiCo hydroxides for water oxidation. Nat. Catal. 2021, 4, 1050–1058.

[27]

Wen, Q. L.; Zhao, Y.; Liu, Y. W.; Li, H. Q.; Zhai, T. Y. Ultrahigh-current-density and long-term-durability electrocatalysts for water splitting. Small 2022, 18, 2104513.

[28]

Wen, Q. L.; Yang, K.; Huang, D. J.; Cheng, G.; Ai, X. M.; Liu, Y. W.; Fang, J. K.; Li, H. Q.; Yu, L.; Zhai, T. Y. Schottky heterojunction nanosheet array achieving high-current-density oxygen evolution for industrial water splitting electrolyzers. Adv. Energy Mater. 2021, 11, 2102353.

[29]

Lin, Y. P.; Wang, H.; Peng, C. K.; Bu, L. M.; Chiang, C. L.; Tian, K.; Zhao, Y.; Zhao, J. Q.; Lin, Y. G.; Lee, J. M. et al. Co-induced electronic optimization of hierarchical NiFe LDH for oxygen evolution. Small 2020, 16, 2002426.

[30]

Lu, X. Y.; Zhao, C. Electrodeposition of hierarchically structured three-dimensional nickel-iron electrodes for efficient oxygen evolution at high current densities. Nat. Commun. 2015, 6, 6616.

[31]

Wen, Q. L.; Lin, Y.; Yang, Y.; Gao, R. J.; Ouyang, N. Q.; Ding, D. F.; Liu, Y. W.; Zhai, T. Y. In situ chalcogen leaching manipulates reactant interface toward efficient amine electrooxidation. ACS Nano 2022, 16, 9572–9582.

[32]

Jiang, H. L.; He, Q.; Li, X. Y.; Su, X. Z.; Zhang, Y. K.; Chen, S. M.; Zhang, S.; Zhang, G. Z.; Jiang, J.; Luo, Y. et al. Tracking structural self-reconstruction and identifying true active sites toward cobalt oxychloride precatalyst of oxygen evolution reaction. Adv. Mater. 2019, 31, 1805127.

[33]

Wang, B. Q.; Han, X.; Guo, C.; Jing, J.; Yang, C.; Li, Y. P.; Han, A. J.; Wang, D. S.; Liu, J. F. Structure inheritance strategy from MOF to edge-enriched NiFe-LDH array for enhanced oxygen evolution reaction. Appl. Catal. B: Environ. 2021, 298, 120580.

[34]

Li, W.; Wang, D. D.; Zhang, Y. Q.; Tao, L.; Wang, T. H.; Zou, Y. Q.; Wang, Y. Y.; Chen, R.; Wang, S. Y. Defect engineering for fuel-cell electrocatalysts. Adv. Mater. 2020, 32, 1907879.

[35]

Chen, H.; Liang, X.; Liu, Y. P.; Ai, X.; Asefa, T.; Zou, X. X. Active site engineering in porous electrocatalysts. Adv. Mater. 2020, 32, 2002435.

[36]

Yang, W. L.; Yang, X. P.; Hou, C. M.; Li, B. J.; Gao, H. T.; Lin, J. H.; Luo, X. L. Rapid room-temperature fabrication of ultrathin Ni(OH)2 nanoflakes with abundant edge sites for efficient urea oxidation. Appl. Catal. B: Environ. 2019, 259, 118020.

[37]

Wen, Q. L.; Duan, J. Y.; Wang, W. B.; Huang, D. J.; Liu, Y. W.; Shi, Y. L.; Fang, J. K.; Nie, A. M.; Li, H. Q.; Zhai, T. Y. Engineering a local free water enriched microenvironment for surpassing platinum hydrogen evolution activity. Angew. Chem., Int. Ed. 2022, 61, e202206077.

[38]

Jiang, J.; Sun, F. F.; Zhou, S.; Hu, W.; Zhang, H.; Dong, J. C.; Jiang, Z.; Zhao, J. J.; Li, J. F.; Yan, W. S. et al. Atomic-level insight into super-efficient electrocatalytic oxygen evolution on iron and vanadium co-doped nickel (oxy)hydroxide. Nat. Commun. 2018, 9, 2885.

[39]

Wang, W. B.; Wang, Y. T.; Yang, R. O.; Wen, Q. L.; Liu, Y. W.; Jiang, Z.; Li, H. Q.; Zhai, T. Y. Vacancy-rich Ni(OH)2 drives the electrooxidation of amino C–N bonds to nitrile C≡N Bonds. Angew. Chem., Int. Ed. 2020, 59, 16974–16981.

[40]

Peng, L. S.; Yang, N.; Yang, Y. Q.; Wang, Q.; Xie, X. Y.; Sun-Waterhouse, D. X.; Shang, L.; Zhang, T. R.; Waterhouse, G. I. N. Atomic cation-vacancy engineering of NiFe-layered double hydroxides for improved activity and stability towards the oxygen evolution reaction. Angew. Chem., Int. Ed. 2021, 60, 24612–24619.

[41]

Wordsworth, J.; Benedetti, T. M.; Somerville, S. V.; Schuhmann, W.; Tilley, R. D.; Gooding, J. J. The influence of nanoconfinement on electrocatalysis. Angew. Chem., Int. Ed. 2022, 61, e202200755.

[42]

Li, H.; Tan, Y. W.; Liu, P.; Guo, C. G.; Luo, M.; Han, J. H.; Lin, T. Q.; Huang, F. Q.; Chen, M. W. Atomic-sized pores enhanced electrocatalysis of TaS2 nanosheets for hydrogen evolution. Adv. Mater. 2016, 28, 8945–8949.

[43]

Niu, S.; Jiang, W. J.; Tang, T.; Yuan, L. P.; Luo, H.; Hu, J. S. Autogenous growth of hierarchical NiFe(OH)x/FeS nanosheet-on-microsheet arrays for synergistically enhanced high-output water oxidation. Adv. Funct. Mater. 2019, 29, 1902180.

[44]

Li, C. C.; Liu, Y. W.; Zhuo, Z. W.; Ju, H. X.; Li, D.; Guo, Y. P.; Wu, X. J.; Li, H. Q.; Zhai, T. Y. Local charge distribution engineered by Schottky heterojunctions toward urea electrolysis. Adv. Energy Mater. 2018, 8, 1801775.

[45]

Zhou, B.; Li, Y. Y.; Zou, Y. Q.; Chen, W.; Zhou, W.; Song, M. L.; Wu, Y. J.; Lu, Y. X.; Liu, J. L.; Wang, Y. Y. et al. Platinum modulates redox properties and 5-hydroxymethylfurfural adsorption kinetics of Ni(OH)2 for biomass upgrading. Angew. Chem., Int. Ed. 2021, 60, 22908–22914.

[46]

Gu, K. Z.; Wang, D. D.; Xie, C.; Wang, T. H.; Huang, G.; Liu, Y. B.; Zou, Y. Q.; Tao, L.; Wang, S. Y. Defect-rich high-entropy oxide nanosheets for efficient 5-hydroxymethylfurfural electrooxidation. Angew. Chem., Int. Ed. 2021, 60, 20253–20258.

[47]

Tong, X. P.; Zhao, Y.; Zhuo, Z. W.; Yang, Z. H.; Wang, S. Z.; Liu, Y. W.; Lu, N.; Li, H. Q.; Zhai, T. Y. Dual-regulation of defect sites and vertical conduction by spiral domain for electrocatalytic hydrogen evolution. Angew. Chem., Int. Ed. 2022, 61, e202112953.

[48]

Yang, H.; Zhao, Y. H.; Wen, Q. L.; Yang, R. O.; Liu, Y. W.; Li, H. Q.; Zhai, T. Y. Single WTe2 sheet-based electrocatalytic microdevice for directly detecting enhanced activity of doped electronegative anions. ACS Appl. Mater. Interfaces 2021, 13, 14302–14311.

[49]

Yang, H.; Zhao, Y. H.; Wen, Q. L.; Mi, Y.; Liu, Y. W.; Li, H. Q.; Zhai, T. Y. Single MoTe2 sheet electrocatalytic microdevice for in situ revealing the activated basal plane sites by vacancies engineering. Nano. Res. 2021, 14, 4814–4821.

[50]
ZuoS. W.WuZ. P.ZhangH. B.LouX. W. Operando monitoring and deciphering the structural evolution in oxygen evolution electrocatalysisAdv. Energy Mater.202212210338310.1002/aenm.202103383

Zuo, S. W.; Wu, Z. P.; Zhang, H. B.; Lou, X. W. Operando monitoring and deciphering the structural evolution in oxygen evolution electrocatalysis. Adv. Energy Mater. 2022, 12, 2103383.

[51]

Wan, K.; Luo, J. S.; Zhou, C.; Zhang, T.; Arbiol, J.; Lu, X. H.; Mao, B. W.; Zhang, X.; Fransaer, J. Hierarchical porous Ni3S4 with enriched high-valence Ni sites as a robust electrocatalyst for efficient oxygen evolution reaction. Adv. Funct. Mater. 2019, 29, 1900315.

[52]

Kwon, J.; Han, H.; Jo, S.; Choi, S.; Chung, K. Y.; Ali, G.; Park, K.; Paik, U.; Song, T. Amorphous nickel-iron borophosphate for a robust and efficient oxygen evolution reaction. Adv. Energy Mater. 2021, 11, 2100624.

Nano Research
Pages 2286-2293
Cite this article:
Wen Q, Wang S, Wang R, et al. Nanopore-rich NiFe LDH targets the formation of the high-valent nickel for enhanced oxygen evolution reaction. Nano Research, 2023, 16(2): 2286-2293. https://doi.org/10.1007/s12274-022-5163-z
Topics:

2836

Views

18

Crossref

18

Web of Science

19

Scopus

1

CSCD

Altmetrics

Received: 30 August 2022
Revised: 22 September 2022
Accepted: 04 October 2022
Published: 15 December 2022
© Tsinghua University Press 2022
Return