AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Three-dimensional MXene-encapsulated porous Ni-NDC nanosheets as anodes for enhanced lithium-ion batteries

Yuxin Shi1,§Guoyin Zhu2,§Xiaotian Guo1Qingling Jing1Huan Pang1( )Yizhou Zhang2( )
School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science and Technology (NUIST), Nanjing 210044, China

§ Yuxin Shi and Guoyin Zhu contributed equally to this work.

Show Author Information

Graphical Abstract

The MXene-encapsulated porous Ni-naphthalene dicarboxylic acid (Ni-NDC) nanosheets exhibit reversible discharge capacity and good long-term cycling performance, owing to the synergistic effects between Ni-NDC and MXene. The strategy of fabricating metal–organic framework (MOF)-based composites offers an idea to prepare low-cost as well as efficient anode materials in lithium-ion batteries (LIBs).

Abstract

Although metal–organic frameworks have been heavily tested as the anode materials for lithium-ion batteries (LIBs), the poorer conductivity, easy collapse of frameworks, and serious volume expansion limit their further application in LIBs. Herein, we report a facile approach to obtain MXene-encapsulated porous Ni-naphthalene dicarboxylic acid (Ni-NDC) nanosheets by hybridizing ultrathin Ti3C2 MXene and three-dimensional (3D) Ni-NDC nanosheet aggregates. In the structure of Ni-NDC/MXene hybrids, the interlayer hydrogen-bond interaction between Ni-NDC and MXene can effectively increase the interlayer spacing and further inhibit the oxidation of pure MXene. Hence, the introduction of MXene (a conductive matrix) could further improve the conductivity of Ni-NDC, avoid self-agglomeration, and buffer the volume expansion of Ni-NDC nanosheets. Benefiting from the synergistic effects between Ni-NDC and MXene, Ni-NDC/MXene hybrid electrode exhibits a reversible discharge capacity (579.8 mA∙h∙g−1 at 100 mA∙g−1 after 100 cycles) and good long-term cycling performance (310 mA∙h∙g−1 at 1 A∙g−1 after 500 cycles).

Electronic Supplementary Material

Download File(s)
12274_2022_5168_MOESM1_ESM.pdf (6.1 MB)

References

[1]

Cai, W.; Wang, J. Q.; Chu, C. C.; Chen, W.; Wu, C. S.; Liu, G. Metal–organic framework-based stimuli-responsive systems for drug delivery. Adv. Sci. 2019, 6, 1801526.

[2]

Peng, S.; Bie, B. B.; Sun, Y. Z. S.; Liu, M.; Cong, H. J.; Zhou, W. T.; Xia, Y. C.; Tang, H.; Deng, H. X.; Zhou, X. Metal–organic frameworks for precise inclusion of single-stranded DNA and transfection in immune cells. Nat. Commun. 2018, 9, 1293.

[3]

Li, Y.; Ling, W.; Liu, X. Y.; Shang, X.; Zhou, P.; Chen, Z. R.; Xu, H.; Huang, X. Metal–organic frameworks as functional materials for implantable flexible biochemical sensors. Nano Res. 2021, 14, 2981–3009.

[4]

Pei, J. Y.; Wen, H. M.; Gu, X. F.; Qian, Q. S.; Yang, Y.; Cui, Y. J.; Li, B.; Chen, B. L.; Qian, G. D. Dense packing of acetylene in a stable and low-cost metal–organic framework for efficient C2H2/CO2 separation. Angew. Chem., Int. Ed. 2021, 60, 25068–25074.

[5]

Zhuang, Z. C.; Huang, J. Z.; Li, Y.; Zhou, L.; Mai, L. Q. The holy grail in platinum-free electrocatalytic hydrogen evolution: Molybdenum-based catalysts and recent advances. ChemElectroChem 2019, 6, 3570–3589.

[6]

Zhuang, Z. C.; Li, Y.; Huang, J. Z.; Li, Z. L.; Zhao, K. N.; Zhao, Y. L.; Xu, L.; Zhou, L.; Moskaleva, L. V.; Mai, L. Q. Sisyphus effects in hydrogen electrochemistry on metal silicides enabled by silicene subunit edge. Sci. Bull. 2019, 64, 617–624.

[7]

Zhu, P.; Xiong, X.; Wang, D. S. Regulations of active moiety in single atom catalysts for electrochemical hydrogen evolution reaction. Nano Res. 2022, 15, 5792–5815.

[8]

Chen, Y. J.; Gao, R.; Ji, S. F.; Li, H. J.; Tang, K.; Jiang, P.; Hu, H. B.; Zhang, Z. D.; Hao, H. G.; Qu, Q. Y. et al. Atomic-level modulation of electronic density at cobalt single-atom sites derived from metal–organic frameworks: Enhanced oxygen reduction performance. Angew. Chem., Int. Ed. 2021, 60, 3212–3221.

[9]

Zhang, H.; Li, H. Y.; Akram, B.; Wang, X. Fabrication of NiFe layered double hydroxide with well-defined laminar superstructure as highly efficient oxygen evolution electrocatalysts. Nano Res. 2019, 12, 1327–1331.

[10]

Zheng, S. S.; Zhou, H. J.; Xue, H. G.; Braunstein, P.; Pang, H. Pillared-layer Ni-MOF nanosheets anchored on Ti3C2 MXene for enhanced electrochemical energy storage. J. Colloid Interface Sci. 2022, 614, 130–137.

[11]

Liu, C. L.; Bai, Y.; Li, W. T.; Yang, F. Y.; Zhang, G. X.; Pang, H. In situ growth of three-dimensional MXene/metal–organic framework composites for high-performance supercapacitors. Angew. Chem., Int. Ed. 2022, 61, e202116282.

[12]

Zhang, G. H.; Hu, J.; Nie, Y.; Zhao, Y. L.; Wang, L.; Li, Y. Z.; Liu, H. Z.; Tang, L. Z.; Zhang, X. N.; Li, D. et al. Integrating flexible ultralight 3D Ni micromesh current collector with NiCo bimetallic hydroxide for smart hybrid supercapacitors. Adv. Funct. Mater. 2021, 31, 2100290.

[13]

Zhuang, Z. C.; Li, Y. H.; Yu, R. H.; Xia, L. X.; Yang, J. R.; Lang, Z. Q.; Zhu, J. X.; Huang, J. Z.; Wang, J. O.; Wang, Y. et al. Reversely trapping atoms from a perovskite surface for high-performance and durable fuel cell cathodes. Nat. Catal. 2022, 5, 300–310.

[14]

Ma, L. B.; Lv, Y. H.; Wu, J. X.; Xia, C.; Kang, Q.; Zhang, Y. Z.; Liang, H. F.; Jin, Z. Recent advances in anode materials for potassium-ion batteries: A review. Nano Res. 2021, 14, 4442–4470.

[15]

Wang, Y.; Qu, Q. T.; Liu, G.; Battaglia, V. S.; Zheng, H. H. Aluminum fumarate-based metal–organic frameworks with tremella-like structure as ultrafast and stable anode for lithium-ion batteries. Nano Energy 2017, 39, 200–210.

[16]

Chen, S. H.; Li, W. H.; Jiang, W. J.; Yang, J. R.; Zhu, J. X.; Wang, L. Q.; Ou, H. H.; Zhuang, Z. C.; Chen, M. Z.; Sun, X. H. et al. MOF encapsulating N-heterocyclic carbene-ligated copper single-atom site catalyst towards efficient methane electrosynthesis. Angew. Chem., Int. Ed. 2022, 61, e202114450.

[17]

Liu, Y. W.; Wang, B. X.; Fu, Q.; Liu, W.; Wang, Y.; Gu, L.; Wang, D. S.; Li, Y. D. Polyoxometalate-based metal–organic framework as molecular sieve for highly selective semi-hydrogenation of acetylene on isolated single Pd atom sites. Angew. Chem., Int. Ed. 2021, 60, 22522–22528.

[18]

Zhang, E. H.; Tao, L.; An, J. K.; Zhang, J. W.; Meng, L. Z.; Zheng, X. B.; Wang, Y.; Li, N.; Du, S. X.; Zhang, J. T. et al. Engineering the local atomic environments of indium single-atom catalysts for efficient electrochemical production of hydrogen peroxide. Angew. Chem., Int. Ed. 2022, 61, e202117347.

[19]

Zhou, D.; Ni, J. F.; Li, L. Self-supported multicomponent CPO-27 MOF nanoarrays as high-performance anode for lithium storage. Nano Energy 2019, 57, 711–717.

[20]

Gao, C. W.; Jiang, Z. J.; Wang, P. X.; Jensen, L. R.; Zhang, Y. F.; Yue, Y. Z. Optimized assembling of MOF/SnO2/graphene leads to superior anode for lithium ion batteries. Nano Energy 2020, 74, 104868.

[21]

Gao, C. W.; Jiang, Z. J.; Qi, S. B.; Wang, P. X.; Jensen, L. R.; Johansen, M.; Christensen, C. K.; Zhang, Y. F.; Ravnsbaek, D. B.; Yue, Y. Z. Metal–organic framework glass anode with an exceptional cycling-induced capacity enhancement for lithium-ion batteries. Adv. Mater. 2022, 34, 2110048.

[22]

Zheng, S. S.; Li, X. R.; Yan, B. Y.; Hu, Q.; Xu, Y. X.; Xiao, X.; Xue, H. G.; Pang, H. Transition-metal (Fe, Co, Ni) based metal–organic frameworks for electrochemical energy storage. Adv. Energy Mater. 2017, 7, 1602733.

[23]

Kong, L. J.; Liu, M.; Huang, H.; Xu, Y. H.; Bu, X. H. Metal/Covalent–organic framework based cathodes for metal-ion batteries. Adv. Energy Mater. 2022, 12, 2100172.

[24]

Hao, J. C.; Zhuang, Z. C.; Cao, K. C.; Gao, G. H.; Wang, C.; Lai, F. L.; Lu, S. L.; Ma, P. M.; Dong, W. F.; Liu, T. X. et al. Unraveling the electronegativity-dominated intermediate adsorption on high-entropy alloy electrocatalysts. Nat. Commun. 2022, 13, 2662.

[25]

Zheng, X. B.; Li, B. B.; Wang, Q. S.; Wang, D. S.; Li, Y. D. Emerging low-nuclearity supported metal catalysts with atomic level precision for efficient heterogeneous catalysis. Nano Res. 2022, 15, 7806–7839.

[26]

Cui, T. T.; Wang, Y. P.; Ye, T.; Wu, J.; Chen, Z. Q.; Li, J.; Lei, Y. P.; Wang, D. S.; Li, Y. D. Engineering dual single-atom sites on 2D ultrathin N-doped carbon nanosheets attaining ultra-low-temperature zinc-air battery. Angew. Chem., Int. Ed. 2022, 61, e202115219.

[27]

Han, A. L.; Wang, X. J.; Tang, K.; Zhang, Z. D.; Ye, C. L.; Kong, K. J.; Hu, H. B.; Zheng, L. R.; Jiang, P.; Zhao, C. X. et al. An adjacent atomic platinum site enables single-atom iron with high oxygen reduction reaction performance. Angew. Chem., Int. Ed. 2021, 60, 19262–19271.

[28]

Xu, G. Y.; Nie, P.; Dou, H.; Ding, B.; Li, L. Y.; Zhang, X. G. Exploring metal–organic frameworks for energy storage in batteries and supercapacitors. Mater. Today 2017, 20, 191–209.

[29]

Jiang, Q.; Xiong, P. X.; Liu, J. J.; Xie, Z.; Wang, Q. C.; Yang, X. Q.; Hu, E. Y.; Cao, Y.; Sun, J.; Xu, Y. H. et al. A redox-active 2D metal–organic framework for efficient lithium storage with extraordinary high capacity. Angew. Chem., Int. Ed. 2020, 59, 5273–5277.

[30]

Wu, Z. Z.; Adekoya, D.; Huang, X.; Kiefel, M. J.; Xie, J.; Xu, W.; Zhang, Q. C.; Zhu, D. B.; Zhang, S. Q. Highly conductive two-dimensional metal–organic frameworks for resilient lithium storage with superb rate capability. ACS Nano 2020, 14, 12016–12026.

[31]

Liang, J.; Zhu, G. Y.; Zhang, Y. Z.; Liang, H. F.; Huang, W. Conversion of hydroxide into carbon-coated phosphide using plasma for sodium-ion batteries. Nano Res. 2022, 15, 2023–2029.

[32]

Li, R. Z.; Wang, D. S. Understanding the structure-performance relationship of active sites at atomic scale. Nano Res. 2022, 15, 6888–6923.

[33]

Liu, Z. H.; Du, Y.; Zhang, P. F.; Zhuang, Z. C.; Wang, D. S. Bringing catalytic order out of chaos with nitrogen-doped ordered mesoporous carbon. Matter 2021, 4, 3161–3194.

[34]

Zhao, C. W.; Xu, Y.; Xiao, F.; Ma, J.; Zou, Y. B.; Tang, W. J. Perfluorooctane sulfonate removal by metal–organic frameworks (MOFs): Insights into the effect and mechanism of metal nodes and organic ligands. Chem. Eng. J. 2021, 406, 126852.

[35]

Guo, J.; Yin, Z. H.; Zang, X. X.; Dai, Z. Y.; Zhang, Y. Z.; Huang, W.; Dong, X. C. Facile one-pot synthesis of NiCo2O4 hollow spheres with controllable number of shells for high-performance supercapacitors. Nano Res. 2017, 10, 405–414.

[36]

Hao, S. Y.; Han, H. C.; Yang, Z. Y.; Chen, M. T.; Jiang, Y. Y.; Lu, G. X.; Dong, L.; Wen, H. L.; Li, H.; Liu, J. R. et al. Recent advancements on photothermal conversion and antibacterial applications over MXenes-based materials. Nano-Micro Lett. 2022, 14, 178.

[37]
WeiT.ZhangM.WuP.TangY. J.LiS. L.ShenF. C.WangX. L.ZhouX. P.LanY. Q. POM-based metal–organic framework/reduced graphene oxide nanocomposites with hybrid behavior of battery-supercapacitor for superior lithium storage Nano Energy20173420521410.1016/j.nanoen.2017.02.028

Wei, T.; Zhang, M.; Wu, P.; Tang, Y. J.; Li, S. L.; Shen, F. C.; Wang, X. L.; Zhou, X. P.; Lan, Y. Q. POM-based metal–organic framework/reduced graphene oxide nanocomposites with hybrid behavior of battery-supercapacitor for superior lithium storage. Nano Energy 2017, 34, 205–214.

[38]

Fang, R. P.; Chen, K.; Yin, L. C.; Sun, Z. H.; Li, F.; Cheng, H. M. Lithium batteries: The regulating role of carbon nanotubes and graphene in lithium-ion and lithium-sulfur batteries (Adv. Mater. 9/2019). Adv. Mater. 2019, 31, 1970066.

[39]

Jiang, Q.; Lei, Y. J.; Liang, H. F.; Xi, K.; Xia, C.; Alshareef, H. N. Review of MXene electrochemical microsupercapacitors. Energy Storage Mater. 2020, 27, 78–95.

[40]

Ming, F. W.; Liang, H. F.; Huang, G.; Bayhan, Z.; Alshareef, H. N. MXenes for rechargeable batteries beyond the lithium-ion. Adv. Mater. 2021, 33, 2004039.

[41]

Jiang, J. Z.; Bai, S. S.; Zou, J.; Liu, S.; Hsu, J. P.; Li, N.; Zhu, G. Y.; Zhuang, Z. C.; Kang, Q.; Zhang, Y. Z. Improving stability of MXenes. Nano Res. 2022, 15, 6551–6567.

[42]

Zhao, D.; Chen, Z.; Yang, W. J.; Liu, S. J.; Zhang, X.; Yu, Y.; Cheong, W. C.; Zheng, L. R.; Ren, F. Q.; Ying, G. B. et al. MXene (Ti3C2) vacancy-confined single-atom catalyst for efficient functionalization of CO2. J. Am. Chem. Soc. 2019, 141, 4086–4093.

[43]

Zuo, G. C.; Wang, Y. T.; Teo, W. L.; Xie, A. M.; Guo, Y.; Dai, Y. X.; Zhou, W. Q.; Jana, D.; Xian, Q. M.; Dong, W. et al. Ultrathin ZnIn2S4 nanosheets anchored on Ti3C2Tx MXene for photocatalytic H2 evolution. Angew. Chem., Int. Ed. 2020, 59, 11287–11292.

[44]

Zhang, Y. Z.; El-Demellawi, J. K.; Jiang, Q.; Ge, G.; Liang, H. F.; Lee, K.; Dong, X. C.; Alshareef, H. N. MXene hydrogels: Fundamentals and applications. Chem. Soc. Rev. 2020, 49, 7229–7251.

[45]

Zhang, Y. Z.; Wang, Y.; Jiang, Q.; El-Demellawi, J. K.; Kim, H.; Alshareef, H. N. MXene printing and patterned coating for device applications. Adv. Mater. 2020, 32, 1908486.

[46]

Wu, H.; Almalki, M.; Xu, X. M.; Lei, Y. J.; Ming, F. W.; Mallick, A.; Roddatis, V.; Lopatin, S.; Shekhah, O.; Eddaoudi, M. et al. MXene derived metal–organic frameworks. J. Am. Chem. Soc. 2019, 141, 20037–20042.

[47]

Gund, G. S.; Park, J. H.; Harpalsinh, R.; Kota, M.; Shin, J. H.; Kim, T. I.; Gogotsi, Y.; Park, H. S. MXene/polymer hybrid materials for flexible AC-filtering electrochemical capacitors. Joule 2019, 3, 164–176.

[48]

Wang, X.; Luo, D.; Wang, J. Y.; Sun, Z. H.; Cui, G. L.; Chen, Y. X.; Wang, T.; Zheng, L. R.; Zhao, Y.; Shui, L. L. et al. Strain engineering of a MXene/CNT hierarchical porous hollow microsphere electrocatalyst for a high-efficiency lithium polysulfide conversion process. Angew. Chem., Int. Ed. 2021, 60, 2371–2378.

[49]

Yao, L.; Gu, Q. F.; Yu, X. B. Three-dimensional MOFs@MXene aerogel composite derived MXene threaded hollow carbon confined CoS nanoparticles toward advanced alkali-ion batteries. ACS Nano 2021, 15, 3228–3240.

[50]

Deng, Y. Q.; Shang, T. X.; Wu, Z. T.; Tao, Y.; Luo, C.; Liang, J. C.; Han, D. L.; Lyu, R. Y.; Qi, C.; Lv, W. et al. Fast gelation of Ti3C2Tx MXene initiated by metal ions. Adv. Mater. 2019, 31, 1902432.

[51]

Gu, J. W.; Peng, Y.; Zhou, T.; Ma, J.; Pang, H.; Yamauchi. Y. Porphyrin-based framework materials for energy conversion. Nano Res Energy 2022, 1, e9120009.

[52]

Slot, T. K.; Natu, V.; Ramos-Fernandez, E. V.; Sepúlveda-Escribano, A.; Barsoum, M.; Rothenberg, G.; Shiju, N. R. Enhancing catalytic epoxide ring-opening selectivity using surface-modified Ti3C2Tx MXenes. 2D Mater. 2021, 8, 035003.

[53]

Gan, Q. M.; He, H. N.; Zhao, K. M.; He, Z.; Liu, S. Q. Morphology-dependent electrochemical performance of Ni-1,3,5-benzenetricarboxylate metal–organic frameworks as an anode material for Li-ion batteries. J. Colloid Interface Sci. 2018, 530, 127–136.

[54]

Armand, M.; Grugeon, S.; Vezin, H.; aruelle, S.; Ribière, P.; Poizot, P.; Tarascon, J. M. Conjugated dicarboxylate anodes for Li-ion batteries. Nat. Mater. 2009, 8, 120–125.

[55]

Yin, X. J.; Chen, X. D.; Sun, W. W.; Lv, L. P.; Wang, Y. Revealing the effect of cobalt-doping on Ni/Mn-based coordination polymers towards boosted Li-storage performances. Energy Storage Mater. 2020, 25, 846–857.

[56]

Jin, J.; Zheng, Y.; Huang, S. Z.; Sun, P. P.; Srikanth, N.; Kong, L. B.; Yan, Q. Y.; Zhou, K. Directly anchoring 2D NiCo metal–organic frameworks on few-layer black phosphorus for advanced lithium-ion batteries. J. Mater. Chem. A 2019, 7, 783–790.

[57]

Lin, X. M.; Niu, J. L.; Lin, J.; Wei, L. M.; Hu, L.; Zhang, G.; Cai, Y. P. Lithium-ion-battery anode materials with improved capacity from a metal–organic framework. Inorg. Chem. 2016, 55, 8244–8247.

[58]

Dong, C. F.; Xu, L. Q. Cobalt-and cadmium-based metal–organic frameworks as high-performance anodes for sodium-ion batteries and lithium-ion batteries. ACS Appl. Mater. Interfaces 2017, 9, 7160–7168.

[59]

Gong, T.; Lou, X. B.; Gao, E. Q.; Hu, B. W. Pillared-layer metal–organic frameworks for improved lithium-ion storage performance. ACS Appl. Mater. Interfaces 2017, 9, 21839–21847.

[60]

Bai, L. Y.; Tu, B. B.; Qi, Y.; Gao, Q.; Liu, D.; Liu, Z. Z.; Zhao, L. Z.; Li, Q. W.; Zhao, Y. L. Enhanced performance in gas adsorption and Li ion batteries by docking Li+ in a crown ether-based metal–organic framework. Chem. Commun. 2016, 52, 3003–3006.

[61]

Ge, D. H.; Peng, J.; Qu, G. L.; Geng, H. B.; Deng, Y. Y.; Wu, J. J.; Cao, X. Q.; Zheng, J. W.; Gu, H. W. Nanostructured Co(II)-based MOFs as promising anodes for advanced lithium storage. New J. Chem. 2016, 40, 9238–9244.

[62]

Senthil Kumar, R.; Nithya, C.; Gopukumar, S.; Anbu Kulandainathan, M. Diamondoid-structured Cu-dicarboxylate-based metal–organic frameworks as high-capacity anodes for lithium-ion storage. Energy Technol. 2014, 2, 921–927.

[63]

Maiti, S.; Pramanik, A.; Manju, U.; Mahanty, S. Cu3(1,3,5-benzenetricarboxylate)2 metal–organic framework: A promising anode material for lithium-ion battery. Micropor. Mesopor. Mater. 2016, 226, 353–359.

[64]

Maiti, S.; Pramanik, A.; Manju, U.; Mahanty, S. Reversible lithium storage in manganese 1,3,5-benzenetricarboxylate metal–organic framework with high capacity and rate performance. ACS Appl. Mater. Interfaces 2015, 7, 16357–16363.

[65]

Wu, N.; Yang, Y. J.; Jia, T.; Li, T. H.; Li, F.; Wang, Z. Sodium-tin metal–organic framework anode material with advanced lithium storage properties for lithium-ion batteries. J. Mater. Sci. 2020, 55, 6030–6036.

[66]

Lu, P.; Sun, Y.; Xiang, H. F.; Liang, X.; Yu, Y. 3D amorphous carbon with controlled porous and disordered structures as a high-rate anode material for sodium-ion batteries. Adv. Energy Mater. 2018, 8, 1702434.

[67]

Chen, M. H.; Chao, D. L.; Liu, J. L.; Yan, J. X.; Zhang, B. W.; Huang, Y. Z.; Lin, J. Y.; Shen, Z. X. Rapid pseudocapacitive sodium-ion response induced by 2D ultrathin tin monoxide nanoarrays. Adv. Funct. Mater. 2017, 27, 1606232.

Nano Research
Pages 2528-2535
Cite this article:
Shi Y, Zhu G, Guo X, et al. Three-dimensional MXene-encapsulated porous Ni-NDC nanosheets as anodes for enhanced lithium-ion batteries. Nano Research, 2023, 16(2): 2528-2535. https://doi.org/10.1007/s12274-022-5168-7
Topics:

3017

Views

29

Crossref

27

Web of Science

29

Scopus

0

CSCD

Altmetrics

Received: 07 September 2022
Revised: 05 October 2022
Accepted: 07 October 2022
Published: 15 December 2022
© Tsinghua University Press 2022
Return