AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Communication

Modulate the electronic structure of Cu7S4 nanosheet on TiO2 for enhanced photocatalytic hydrogen evolution

Wenqiang Liu1Huiping Peng1Leigang Li1Mingmin Wang1Hongbo Geng2Xiaoqing Huang1( )
State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
School of Materials Engineering, Changshu Institute of Technology, Changshu 215500, China
Show Author Information

Graphical Abstract

This significance of combing heterojunction construction with electronic structure regulation has been revealed by decorating Cu7S4 nanosheet on TiO2, where the TiO2 has faster electron transfer rate and wider light response range after forming hererostructure with Cu7S4 nanosheet, and the increasing content of Cu2+ after calcination could further promote the transfer of electrons.

Abstract

TiO2 is a promising photocatalyst due to its high thermodynamic stability and non-toxicity. However, its applications have been still limited because of the high recombination rate of electron–hole pairs. Herein, we show that by combining heterojunction construction and electronic structure regulation, the electron–hole pairs in TiO2 can be effectively separated for enhanced photocatalytic hydrogen evolution. The optimized Cu7S4 nanosheet decorated TiO2 achieves much enhanced H2 evolution rate (11.5 mmol·g−1·h−1), which is 13.8 and 4.2 times of that of TiO2 and Cu7S4/TiO2, respectively. The results of photoluminescence spectroscopy, transient photocurrent spectra, ultraviolet–visible diffuse reflectance spectra, and electrochemical impedance spectroscopy collectively demonstrate that the enhanced photocatalytic performance of Air-Cu7S4/TiO2 is attributed to the effective separation of charge carriers and widened photoresponse range. The electron paramagnetic resonance and X-ray photoelectron spectroscopy results indicate that the increase of Cu2+ in the Cu7S4 nanosheet after calcination can promote the charge transfer. This work provides an effective method to improve the electron migration rate and charge separation of TiO2, which holds great significance for being extended to other material systems and beyond.

Electronic Supplementary Material

Download File(s)
12274_2022_5169_MOESM1_ESM.pdf (919.1 KB)

References

[1]

Hisatomi, T.; Domen, K. Reaction systems for solar hydrogen production via water splitting with particulate semiconductor photocatalysts. Nat. Catal. 2019, 2, 387–399.

[2]

Yang, J. L.; He, Y. L.; Ren, H.; Zhong, H. L.; Lin, J. S.; Yang, W. M.; Li, M. D.; Yang, Z. L.; Zhang, H.; Tian, Z. Q. et al. Boosting photocatalytic hydrogen evolution reaction using dual plasmonic antennas. ACS Catal. 2021, 11, 5047–5053.

[3]

Kosco, J.; Bidwell, M.; Cha, H.; Martin, T.; Howells, C. T.; Sachs, M.; Anjum, D. H.; Gonzalez Lopez, S.; Zou, L. Y.; Wadsworth, A. et al. Enhanced photocatalytic hydrogen evolution from organic semiconductor heterojunction nanoparticles. Nat. Mater. 2020, 19, 559–565.

[4]

Wang, Z.; Inoue, Y.; Hisatomi, T.; Ishikawa, R.; Wang, Q.; Takata, T.; Chen, S. S.; Shibata, N.; Ikuhara, Y.; Domen, K. Overall water splitting by Ta3N5 nanorod single crystals grown on the edges of KTaO3 particles. Nat. Catal. 2018, 1, 756–763.

[5]

Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972, 238, 37–38.

[6]

Gao, C. M.; Wei, T.; Zhang, Y. Y.; Song, X. H.; Huan, Y.; Liu, H.; Zhao, M. W.; Yu, J. H.; Chen, X. D. A photoresponsive rutile TiO2 heterojunction with enhanced electron-hole separation for high-performance hydrogen evolution. Adv. Mater. 2019, 31, 1806596.

[7]

Han, X.; An, L.; Hu, Y.; Li, Y. G.; Hou, C. Y.; Wang, H. Z.; Zhang, Q. H. Ti3C2 MXene-derived carbon-doped TiO2 coupled with g-C3N4 as the visible-light photocatalysts for photocatalytic H2 generation. Appl. Catal. B Environ. 2020, 265, 118539.

[8]

Hu, X.; Hu, X. J.; Peng, Q. Q.; Zhou, L.; Tan, X. F.; Jiang L. H.; Tang, C. F.; Wang, H.; Liu, S. H.; Wang, Y. Q. et al. Mechanisms underlying the photocatalytic degradation pathway of ciprofloxacin with heterogeneous TiO2. Chem. Eng. J. 2020, 380, 122366.

[9]

Zhang, J. N.; Lei, Y. F.; Cao, S.; Hu, W. P.; Piao, L. Y.; Chen, X. B. Photocatalytic hydrogen production from seawater under full solar spectrum without sacrificial reagents using TiO2 nanoparticles. Nano Res. 2022, 15, 2013–2022.

[10]

Low, J.; Yu, J. G.; Jaroniec, M.; Wageh, C.; Al-Ghamdi, A. A. Heterojunction photocatalysts. Adv. Mater. 2017, 29, 1601694.

[11]

Selopal, G. S.; Mohammadnezhad, M.; Besteiro, L. V.; Cavuslar, O.; Liu, J. B.; Zhang, H.; Navarro-Pardo, F.; Liu G. J.; Wang, M. R.; Durmusoglu, E. G. et al. Synergistic effect of plasmonic gold nanoparticles decorated carbon nanotubes in quantum dots/TiO2 for optoelectronic devices. Adv. Sci. 2020, 7, 2001864.

[12]

Li, S. W.; Miao, P.; Zhang, Y. Y.; Wu, J.; Zhang, B.; Du, Y. C.; Han, X. J.; Sun, J. M.; Xu, P. Recent advances in plasmonic nanostructures for enhanced photocatalysis and electrocatalysis. Adv. Mater. 2021, 33, 2000086.

[13]

Chen, F.; Huang, H. W.; Ye, L. Q.; Zhang, T. R.; Zhang, Y. H.; Han, X. P.; Ma, T. Y. Thickness-dependent facet junction control of layered BiOIO3 single crystals for highly efficient CO2 photoreduction. Adv. Funct. Mater. 2018, 28, 1804284.

[14]

Katal, R.; Masudy-Panah, S.; Tanhaei, M.; Farahani, M. H. D. A.; Hu, J. Y. A review on the synthesis of the various types of anatase TiO2 facets and their applications for photocatalysis. Chem. Eng. J. 2020, 384, 123384.

[15]

Wang, A.; Wu, S. J.; Dong, J. L.; Wang, R. X.; Wang, J. W.; Zhang, J. L.; Zhong, S. X.; Bai, S. Interfacial facet engineering on the Schottky barrier between plasmonic Au and TiO2 in boosting the photocatalytic CO2 reduction under ultraviolet and visible light irradiation. Chem. Eng. J. 2021, 404, 127145.

[16]

Ji, X. Y.; Wang, Y. Y.; Li, Y.; Sun, K.; Yu, M.; Tao, J. Enhancing photocatalytic hydrogen peroxide production of Ti-based metal–organic frameworks: The leading role of facet engineering. Nano Res. 2022, 15, 6045–6053.

[17]

Guo, J. Q.; Liao, X.; Lee, M. H.; Hyett, G.; Huang, C. C.; Hewak, D. W.; Mailis, S.; Zhou, W.; Jiang, Z. Experimental and DFT insights of the Zn-doping effects on the visible-light photocatalytic water splitting and dye decomposition over Zn-doped BiOBr photocatalysts. Appl. Catal. B Environ. 2019, 243, 502–512.

[18]

Huang, J. X.; Li, D. G.; Li, R. B.; Zhang, Q. X.; Chen, T. S.; Liu, H. J.; Liu, Y.; Lv, W. Y.; Liu, G. G. An efficient metal-free phosphorus and oxygen co-doped g-C3N4 photocatalyst with enhanced visible light photocatalytic activity for the degradation of fluoroquinolone antibiotics. Chem. Eng. J. 2019, 374, 242–253.

[19]

Xu, F. Y.; Meng, K.; Cheng, B.; Wang, S. Y.; Xu, J. S.; Yu, J. G. Unique S-scheme heterojunctions in self-assembled TiO2/CsPbBr3 hybrids for CO2 photoreduction. Nat. Commun. 2020, 11, 4613.

[20]

Chao, Y. G.; Zhou, P.; Li, N.; Lai, J. P.; Yang, Y.; Zhang, Y. L.; Tang, Y. H.; Yang, W. X.; Du, Y. P.; Su, D. et al. Ultrathin visible-light-driven Mo incorporating In2O3-ZnIn2Se4 Z-scheme nanosheet photocatalysts. Adv. Mater. 2019, 31, 1807226.

[21]

Zhao, D. M.; Wang, Y. Q.; Dong, C. L.; Huang, Y. C.; Chen, J.; Xue, F.; Shen, S. H.; Guo, L. J. Boron-doped nitrogen-deficient carbon nitride-based Z-scheme heterostructures for photocatalytic overall water splitting. Nat. Energy 2021, 6, 388–397.

[22]

Liu, X. L.; Hersam, M. C. Interface characterization and control of 2D materials and heterostructures. Adv. Mater. 2018, 30, 1801586.

[23]

Li, X. D.; Sun, Y. F.; Xu, J. Q.; Shao, Y. J.; Wu, J.; Xu, X. L.; Pan, Y.; Ju, H. X.; Zhu, J. F.; Xie, Y. Selective visible-light-driven photocatalytic CO2 reduction to CH4 mediated by atomically thin CuIn5S8 layers. Nat. Energy 2019, 4, 690–699.

[24]

Wu, L.; Wang, Q.; Zhuang, T. T.; Li, Y.; Zhang, G. Z.; Liu, G. Q.; Fan, F. J.; Shi, L.; Yu S. H. Single crystalline quaternary sulfide nanobelts for efficient solar-to-hydrogen conversion. Nat. Commun. 2020, 11, 5194.

[25]

Lee, B. H.; Park, S.; Kim, M.; Sinha, A. K.; Lee, S. C.; Jung, E.; Chang, W. J.; Lee, K. S.; Kim, J. H.; Cho, S. P. et al. Reversible and cooperative photoactivation of single-atom Cu/TiO2 photocatalysts. Nat. Mater. 2019, 18, 620–626.

[26]

Wang, X. H.; Wang, X. H.; Huang, J. F.; Li, S. X.; Meng, A.; Li, Z. J. Interfacial chemical bond and internal electric field modulated Z-scheme Sv-ZnIn2S4/MoSe2 photocatalyst for efficient hydrogen evolution. Nat. Commun. 2021, 12, 4112.

[27]

Chandra, M.; Bhunia, K.; Pradhan, D. Controlled synthesis of CuS/TiO2 heterostructured nanocomposites for enhanced photocatalytic hydrogen generation through water splitting. Inorg. Chem. 2018, 57, 4524–4533.

[28]

Chen, Y. F.; Huang, W. X.; He, D. L.; Situ, Y.; Huang, H. Construction of heterostructured g-C3N4/Ag/TiO2 microspheres with enhanced photocatalysis performance under visible-light irradiation. ACS Appl. Mater. Interfaces 2014, 6, 14405–14414.

Nano Research
Pages 4488-4493
Cite this article:
Liu W, Peng H, Li L, et al. Modulate the electronic structure of Cu7S4 nanosheet on TiO2 for enhanced photocatalytic hydrogen evolution. Nano Research, 2023, 16(4): 4488-4493. https://doi.org/10.1007/s12274-022-5169-6
Topics:

6648

Views

8

Crossref

9

Web of Science

8

Scopus

0

CSCD

Altmetrics

Received: 08 September 2022
Revised: 28 September 2022
Accepted: 07 October 2022
Published: 23 November 2022
© Tsinghua University Press 2022
Return