AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (18.2 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

High current limits in chemical vapor deposited graphene spintronic devices

Daria Belotcerkovtceva1,§J. Panda1,§M. Ramu2Tapati Sarkar2Ulrich Noumbe1M. Venkata Kamalakar1( )
Department of Physics and Astronomy, Uppsala University, Box 516, Uppsala SE-751 20, Sweden
Department of Materials Science and Engineering, Uppsala University, Box 35, Uppsala SE-751 03, Sweden

§ Daria Belotcerkovtceva and J. Panda contributed equally to this work.

Show Author Information

Graphical Abstract

In this work, we observe the highest current carrying capacity in large-scale chemical vapor deposited (CVD) graphene, and demonstrate spin transport at highest current densities.

Abstract

Understanding the stability and current-carrying capacity of graphene spintronic devices is key to their applications in graphene channel-based spin current sensors, spin-torque oscillators, and potential spin-integrated circuits. However, despite the demonstrated high current densities in exfoliated graphene, the current-carrying capacity of large-scale chemical vapor deposited (CVD) graphene is not established. Particularly, the grainy nature of chemical vapor deposited graphene and the presence of a tunnel barrier in CVD graphene spin devices pose questions about the stability of high current electrical spin injection. In this work, we observe that despite structural imperfections, CVD graphene sustains remarkably highest currents of 5.2 × 108 A/cm2, up to two orders higher than previously reported values in multilayer CVD graphene, with the capacity primarily dependent upon the sheet resistance of graphene. Furthermore, we notice a reversible regime, up to which CVD graphene can be operated without degradation with operating currents as high as 108 A/cm2, significantly high and durable over long time of operation with spin valve signals observed up to such high current densities. At the same time, the tunnel barrier resistance can be modified by the application of high currents. Our results demonstrate the robustness of large-scale CVD graphene and bring fresh insights for engineering and harnessing pure spin currents for innovative device applications.

Electronic Supplementary Material

Download File(s)
12274_2022_5174_MOESM1_ESM.pdf (417.3 KB)

References

[1]

Avsar, A.; Ochoa, H.; Guinea, F.; Özyilmaz, B.; van Wees, B. J.; Vera-Marun, I. J. Colloquium: Spintronics in graphene and other two-dimensional materials. Rev. Mod. Phys. 2020, 92, 021003.

[2]

Wang, P. C.; Filippi, R. G. Electromigration threshold in copper interconnects. Appl. Phys. Lett. 2001, 78, 3598–3600.

[3]

Muñoz, R.; Gómez-Aleixandre, C. Review of CVD synthesis of graphene. Chem. Vap. Depos. 2013, 19, 297–322.

[4]

Kim, K. S.; Zhao, Y.; Jang, H.; Lee, S. Y.; Kim, J. M.; Kim, K. S.; Ahn, J. H.; Kim, P.; Choi, J. Y.; Hong, B. H. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 2009, 457, 706–710.

[5]

Mishra, H.; Panda, J.; Maddu, R.; Sarkar, T.; Dayen, J. F.; Belotcerkovtceva, D.; Kamalakar, M. V. Experimental advances in charge and spin transport in chemical vapor deposited graphene. J. Phys. Mater. 2021, 4, 042007.

[6]

Kamalakar, M. V.; Groenveld, C.; Dankert, A.; Dash, S. P. Long distance spin communication in chemical vapour deposited graphene. Nat. Commun. 2015, 6, 6766.

[7]

Gebeyehu, Z. M.; Parui, S.; Sierra, J. F.; Timmermans, M.; Esplandiu, M. J.; Brems, S.; Huyghebaert, C.; Garello, K.; Costache, M. V.; Valenzuela, S. O. Spin communication over 30 μm long channels of chemical vapor deposited graphene on SiO2. 2D Mater. 2019, 6, 034003.

[8]

Serrano, I. G.; Panda, J.; Denoel, F.; Vallin, Ö.; Phuyal, D.; Karis, O.; Kamalakar, M. V. Two-dimensional flexible high diffusive spin circuits. Nano Lett. 2019, 19, 666–673.

[9]

Panda, J.; Ramu, M.; Karis, O.; Sarkar, T.; Kamalakar, M. V. Ultimate spin currents in commercial chemical vapor deposited graphene. ACS Nano 2020, 14, 12771–12780.

[10]

Moser, J.; Barreiro, A.; Bachtold, A. Current-induced cleaning of graphene. Appl. Phys. Lett. 2007, 91, 163513.

[11]

Murali, R.; Yang, Y. X.; Brenner, K.; Beck, T.; Meindl, J. D. Breakdown current density of graphene nanoribbons. Appl. Phys. Lett. 2009, 94, 243114.

[12]

Novoselov, K. S.; McCann, E.; Morozov, S. V.; Fal’ko, V. I.; Katsnelson, M. I.; Zeitler, U.; Jiang, D.; Schedin, F.; Geim, A. K. Unconventional quantum hall effect and Berry’s phase of 2π in bilayer graphene. Nat. Phys. 2006, 2, 177–180.

[13]

Lee, K. J.; Chandrakasan, A. P.; Kong, J. Breakdown current density of CVD-grown multilayer graphene interconnects. IEEE Electron Device Lett. 2011, 32, 557–559.

[14]

Debroy, S.; Sivasubramani, S.; Vaidya, G.; Acharyya, S. G.; Acharyya, A. Temperature and size effect on the electrical properties of monolayer graphene based interconnects for next generation MQCA based nanoelectronics. Sci. Rep. 2020, 10, 6240.

[15]

Kim, K.; Lee, Z.; Regan, W.; Kisielowski, C.; Crommie, M. F.; Zettl, A. Grain boundary mapping in polycrystalline graphene. ACS Nano 2011, 5, 2142–2146.

[16]

Fan, X.; Wagner, S.; Schädlich, P.; Speck, F.; Kataria, S.; Haraldsson, T.; Seyller, T.; Lemme, M. C.; Niklaus, F. Direct observation of grain boundaries in graphene through vapor hydrofluoric acid (VHF) exposure. Sci. Adv. 2018, 4, eaar5170.

[17]

Grosse, K. L.; Dorgan, V. E.; Estrada, D.; Wood, J. D.; Vlassiouk, I.; Eres, G.; Lyding, J. W.; King, W. P.; Pop, E. Direct observation of resistive heating at graphene wrinkles and grain boundaries. Appl. Phys. Lett. 2014, 105, 143109.

[18]

Belotcerkovtceva, D.; Maciel, R. P.; Berggren, E.; Maddu, R.; Sarkar, T.; Kvashnin, Y. O.; Thonig, D.; Lindblad, A.; Eriksson, O.; Kamalakar, M. V. Insights and implications of intricate surface charge transfer and sp3-defects in graphene/metal oxide interfaces. ACS Appl. Mater. Interfaces 2022, 14, 36209–36216.

[19]

Yu, T. H.; Lee, E. K.; Briggs, B.; Nagabhirava, B.; Yu, B. Bilayer graphene system: Current-induced reliability limit. IEEE Electron Device Lett. 2010, 31, 1155–1157.

[20]

Banszerus, L.; Schmitz, M.; Engels, S.; Goldsche, M.; Watanabe, K.; Taniguchi, T.; Beschoten, B.; Stampfer, C. Ballistic transport exceeding 28 μm in CVD grown graphene. Nano Lett. 2016, 16, 1387–1391.

[21]

Verguts, K.; Defossez, Y.; Leonhardt, A.; De Messemaeker, J.; Schouteden, K.; Van Haesendonck, C.; Huyghebaert, C.; De Gendt, S.; Brems, S. Growth of millimeter-sized graphene single crystals on Al2O3 (0001)/Pt (111) template wafers using chemical vapor deposition. ECS J. Solid State Sci. Technol. 2018, 7, M195–M200.

[22]

Vera-Marun, I. J.; van den Berg, J. J.; Dejene, F. K.; van Wees, B. J. Direct electronic measurement of Peltier cooling and heating in graphene. Nat. Commun. 2016, 7, 11525.

[23]
Breitenstein, O.; Warta, W.; Langenkamp, M. Lock-in Thermography; Springer Berlin, Heidelberg, 2005.
[24]

Harzheim, A.; Spiece, J.; Evangeli, C.; McCann, E.; Falko, V.; Sheng, Y. W.; Warner, J. H.; Briggs, G. A. D.; Mol, J. A.; Gehring, P. et al. Geometrically enhanced thermoelectric effects in graphene nanoconstrictions. Nano Lett. 2018, 18, 7719–7725.

[25]

Sierra, J. F.; Neumann, I.; Costache, M. V.; Valenzuela, S. O. Hot-carrier seebeck effect: Diffusion and remote detection of hot carriers in graphene. Nano Lett. 2015, 15, 4000–4005.

[26]

Bakker, F. L.; Slachter, A.; Adam, J. P.; van Wees, B. J. Interplay of peltier and seebeck effects in nanoscale nonlocal spin valves. Phys. Rev. Lett. 2010, 105, 136601.

[27]

Sierra, J. F.; Neumann, I.; Cuppens, J.; Raes, B.; Costache, M. V.; Valenzuela, S. O. Thermoelectric spin voltage in graphene. Nat. Nanotechnol. 2018, 13, 107–111.

[28]

Parkin, S. S. P.; Kaiser, C.; Panchula, A.; Rice, P. M.; Hughes, B.; Samant, M.; Yang, S. H. Giant tunnelling magnetoresistance at room temperature with MgO (100) tunnel barriers. Nat. Mater. 2004, 3, 862–867.

[29]

Zhang, S.; Levy, P. M.; Marley, A. C.; Parkin, S. S. P. Quenching of magnetoresistance by hot electrons in magnetic tunnel junctions. Phys. Rev. Lett. 1997, 79, 3744–3747.

[30]

Levy, P. M.; Fert, A. Spin transfer in magnetic tunnel junctions with hot electrons. Phys. Rev. Lett. 2006, 97, 097205.

[31]

Fert, A.; Jaffrès, H. J. Conditions for efficient spin injection from a ferromagnetic metal into a semiconductor. Phys. Rev. B 2001, 64, 184420.

[32]

Durkan, C.; Xiao, Z. C. On the failure of graphene devices by joule heating under current stressing conditions. Appl. Phys. Lett. 2015, 107, 243505.

[33]

Neumann, I.; Costache, M. V.; Bridoux, G.; Sierra, J. F.; Valenzuela, S. O. Enhanced spin accumulation at room temperature in graphene spin valves with amorphous carbon interfacial layers. Appl. Phys. Lett. 2013, 103, 112401.

[34]

Kamalakar, M. V.; Dankert, A.; Bergsten, J.; Ive, T.; Dash, S. P. Enhanced tunnel spin injection into graphene using chemical vapor deposited hexagonal boron nitride. Sci. Rep. 2014, 4, 6146.

[35]

Kamalakar, M. V.; Dankert, A.; Kelly, P. J.; Dash, S. P. Inversion of spin signal and spin filtering in ferromagnet|hexagonal boron nitride-graphene van der Waals heterostructures. Sci. Rep. 2016, 6, 21168.

[36]

Gurram, M.; Omar, S.; van Wees, B. J. Electrical spin injection, transport, and detection in graphene-hexagonal boron nitride van der Waals heterostructures: Progress and perspectives. 2D Mater. 2018, 5, 032004.

[37]

Friedman, A. L.; van ’t Erve, O. M. J.; Li, C. H.; Robinson, J. T.; Jonker, B. T. Homoepitaxial tunnel barriers with functionalized graphene-on-graphene for charge and spin transport. Nat. Commun. 2014, 5, 3161.

[38]

Dayen, J. F.; Ray, S. J.; Karis, O.; Vera-Marun, I. J.; Kamalakar, M. V. Two-dimensional van der Waals spinterfaces and magnetic-interfaces. Appl. Phys. Rev. 2020, 7, 011303.

Nano Research
Pages 4233-4239
Cite this article:
Belotcerkovtceva D, Panda J, Ramu M, et al. High current limits in chemical vapor deposited graphene spintronic devices. Nano Research, 2023, 16(4): 4233-4239. https://doi.org/10.1007/s12274-022-5174-9
Topics:

8992

Views

66

Downloads

9

Crossref

8

Web of Science

6

Scopus

0

CSCD

Altmetrics

Received: 29 May 2022
Revised: 20 September 2022
Accepted: 07 October 2022
Published: 30 November 2022
© The Author(s) 2022

Copyright: © 2022 by the author(s). This article is an open access article distributed under Creative Commons Attribution License (CC BY 4.0), visit https://creativecommons.org/licenses/by/4.0/.

Return