AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

An active bacterial anti-adhesion strategy based on directional transportation of bacterial droplets driven by triboelectric nanogenerators

Jing Lin1( )Jialin Li1Shichang Feng1Caiqin Gu1( )Huajian Li1Hanqing Lu1Fei Hu1Duo Pan2Ben Bin Xu3Zhanhu Guo2( )
School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
Integrated Composites Laboratory (ICL), Department of Chemical & Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996, USA
Mechanical and Construction Engineering, Faculty of Engineering and Environment, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK
Show Author Information

Graphical Abstract

An active bacterial anti-adhesion strategy based on directional transportation of bacterial droplets driven by a triboelectric nanogenerator has been reported.

Abstract

An active bacterial anti-adhesion strategy based on directional transportation of bacterial droplets driven by a triboelectric nanogenerator (TENG) has not been reported to date, although passive defense approaches can prevent bacterial adhesion by regulating superwetting surfaces combined with incorporated antibacterial substances. Here a triboelectric nanogenerator driving droplet system (TNDDS) was built to drive directional transportation of bacterial droplets to be eliminated, which comprises TENG with periodical frictional Kapton film and aluminum foils and a superhydrophobic driving platform (SDP) with paralleled driving electrodes. The current generated by the TENG triboelectricity is transmitted to the paralleled driving electrodes to form an electric field driving the directional transportation of charged droplets. The critical value of the driven droplet volume on SDP is closely related to the distributed electrodes’ distance and width, and the driving distance of droplets is related to the number of electrodes. More crucially, TNDDS can actively drive the charged droplets of prepared triangular silver nanoprisms (Ag NPs) forward and back to mix with and remove a tiny bacterial droplet on an open SDP or in a tiny semi-enclosed channel. Bacteria could be killed by releasing Ag+ and effectively removed by TNDDS by regulating the motion direction. Generally, this approach offers a promising application for removing bacteria from material surfaces driven by TENG and opens a new avenue for bacterial anti-adhesion.

Electronic Supplementary Material

Video
12274_2022_5177_MOESM2_ESM.mp4
12274_2022_5177_MOESM3_ESM.mp4
Download File(s)
12274_2022_5177_MOESM1_ESM.pdf (364.3 KB)

References

[1]

Costerton, J. W.; Stewart, P. S.; Greenberg, E. P. Bacterial biofilms: A common cause of persistent infections. Science 1999, 284, 1318–1322.

[2]

Yang, X. M.; Hou, J. W.; Tian, Y.; Zhao, J. Y.; Sun, Q. Q.; Zhou, S. B. Antibacterial surfaces: Strategies and applications. Sci. China Technol. Sci. 2022, 65, 1000–1010.

[3]

Rajasekar, A.; Anandkumar, B.; Maruthamuthu, S.; Ting, Y. P.; Rahman, P. K. S. M. Characterization of corrosive bacterial consortia isolated from petroleum-product-transporting pipelines. Appl. Microbiol. Biotechnol. 2010, 85, 1175–1188.

[4]

Khan, M. M. T.; Ista, L. K.; Lopez, G. P.; Schuler, A. J. Experimental and theoretical examination of surface energy and adhesion of nitrifying and heterotrophic bacteria using self-assembled monolayers. Environ. Sci. Technol. 2011, 45, 1055–1060.

[5]

Tyers, M.; Wright, G. D. Drug combinations: A strategy to extend the life of antibiotics in the 21st century. Nat. Rev. Microbiol. 2019, 17, 141–155.

[6]

Lin, J.; Chen, X. Y.; Chen, C. Y.; Hu, J. T.; Zhou, C. L.; Cai, X. F.; Wang, W.; Zheng, C.; Zhang, P. P.; Cheng, J. et al. Durably antibacterial and bacterially antiadhesive cotton fabrics coated by cationic fluorinated polymers. ACS Appl. Mater. Interfaces 2018, 10, 6124–6136.

[7]

Wang, Y. F.; Liu, Z. L.; Wei, X. C.; Liu, K. L.; Wang, J. H.; Hu, J. T.; Lin, J. An integrated strategy for achieving oil-in-water separation, removal, and anti-oil/dye/bacteria-fouling. Chem. Eng. J. 2021, 413, 127493.

[8]

Fatima, A.; Yasir, S.; Ul-Islam, M.; Kamal, T.; Ahmad, W.; Abbas, Y.; Manan, S.; Ullah, M. W.; Yang, G. Ex situ development and characterization of green antibacterial bacterial cellulose-based composites for potential biomedical applications. Adv. Compos. Hybrid Mater. 2021, 5, 307–321.

[9]

Zhou, K. C.; Wang, M. L.; Zhou, Y. Q.; Sun, M. J.; Xie, Y. F.; Yu, D. G. Comparisons of antibacterial performances between electrospun polymer@drug nanohybrids with drug-polymer nanocomposites. Adv. Compos. Hybrid Mater. 2022, 5, 907–919.

[10]

Feng, L.; Li, S.; Li, Y.; Li, H.; Zhang, L.; Zhai, J.; Song, Y.; Liu, B.; Jiang, L.; Zhu, D. Super-hydrophobic surfaces: From natural to artificial. Adv. Mater. 2002, 14, 1857–1860.

[11]

Barthlott, W.; Neinhuis, C. Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta 1997, 202, 1–8.

[12]

Geyer, F.; D’Acunzi, M.; Yang, C. Y.; Müller, M.; Baumli, P.; Kaltbeitzel, A.; Mailänder, V.; Encinas, N.; Vollmer, D.; Butt, H. J. How to coat the inside of narrow and long tubes with a super-liquid-repellent layer—A promising candidate for antibacterial catheters. Adv. Mater. 2019, 31, 1801324.

[13]

Jiang, R. J.; Hao, L. W.; Song, L. J.; Tian, L. M.; Fan, Y.; Zhao, J.; Liu, C. Z.; Ming, W. H.; Ren, L. Q. Lotus-leaf-inspired hierarchical structured surface with non-fouling and mechanical bactericidal performances. Chem. Eng. J. 2020, 398, 125609.

[14]

Lin, J.; Cai, X. F.; Liu, Z. L.; Liu, N.; Xie, M.; Zhou, B. P.; Wang, H. Q.; Guo, Z. H. Anti-liquid-interfering and bacterially antiadhesive strategy for highly stretchable and ultrasensitive strain sensors based on Cassie–Baxter wetting state. Adv. Funct. Mater. 2020, 30, 2000398.

[15]

Lin, J.; Hu, J. T.; Wang, W.; Liu, K. L.; Zhou, C. L.; Liu, Z. L.; Kong, S. F.; Lin, S. D.; Deng, Y. C.; Guo, Z. H. Thermo and light-responsive strategies of smart titanium-containing composite material surface for enhancing bacterially anti-adhesive property. Chem. Eng. J. 2021, 407, 125783.

[16]

Lin, J.; Wang, Y. F.; Wei, X. C.; Kong, S. F.; Liu, Z. L.; Liu, J. J.; Zhang, F. M.; Lin, S. D.; Ji, B.; Zhou, Z. Z. et al. Controllable antibacterial and bacterially anti-adhesive surface fabricated by a bio-inspired beetle-like macromolecule. Int. J. Biol. Macromol. 2020, 157, 553–560.

[17]

Gui, L. S.; Lin, J.; Liu, J. J.; Zuo, J. L.; Wang, Q. Y.; Jiang, W. F.; Feng, T. Y.; Li, S. L.; Wang, S. T.; Liu, Z. L. Difference and association of antibacterial and bacterial anti-adhesive performances between smart Ag/AgCl/TiO2 composite surfaces with switchable wettability. Chem. Eng. J. 2022, 431, 134103.

[18]

Hu, J. T.; Lin, J.; Zhang, Y. Y.; Lin, Z. K.; Qiao, Z. W.; Liu, Z. L.; Yang, W.; Liu, X. G.; Dong, M. Y.; Guo, Z. H. A new anti-biofilm strategy of enabling arbitrary surfaces of materials and devices with robust bacterial anti-adhesion via a spraying modified microsphere method. J. Mater. Chem. A 2019, 7, 26039–26052.

[19]

Wang, J. H.; Wu, H.; Yang, Y. M.; Yan, R.; Zhao, Y.; Wang, Y. H.; Chen, A. H.; Shao, S. L.; Jiang, P. J.; Li, Y. Q. Bacterial species-identifiable magnetic nanosystems for early sepsis diagnosis and extracorporeal photodynamic blood disinfection. Nanoscale 2018, 10, 132–141.

[20]

Jiang, S. Y.; Cao, Z. Q. Ultralow-fouling, functionalizable, and hydrolyzable zwitterionic materials and their derivatives for biological applications. Adv. Mater. 2010, 22, 920–932.

[21]

Zhao, W. Q.; Yang, J.; Guo, H. S.; Xu, T.; Li, Q. S.; Wen, C. Y.; Sui, X. J.; Lin, C. G.; Zhang, J. W.; Zhang, L. Slime-resistant marine anti-biofouling coating with PVP-based copolymer in PDMS matrix. Chem. Eng. Sci. 2019, 207, 790–798.

[22]

Mei, Y.; Yu, K.; Lo, J. C. Y.; Takeuchi, L. E.; Hadjesfandiari, N.; Yazdani-Ahmadabadi, H.; Brooks, D. E.; Lange, D.; Kizhakkedathu, J. N. Polymer–nanoparticle interaction as a design principle in the development of a durable ultrathin universal binary antibiofilm coating with long-term activity. ACS Nano 2018, 12, 11881–11891.

[23]

Zhang, D. W.; Wang, L. T.; Qian, H. C.; Li, X. G. Superhydrophobic surfaces for corrosion protection: A review of recent progresses and future directions. J. Coat. Technol. Res. 2016, 13, 11–29.

[24]

Fan, F. R.; Tian, Z. Q.; Wang, Z. L. Flexible triboelectric generator. Nano Energy 2012, 1, 328–334.

[25]

Wang, S. H.; Mu, X. J.; Wang, X.; Gu, A. Y.; Wang, Z. L.; Yang, Y. Elasto-aerodynamics-driven triboelectric nanogenerator for scavenging air-flow energy. ACS Nano 2015, 9, 9554–9563.

[26]

Zhang, Y.; Zeng, Q. X.; Wu, Y.; Wu, J.; Yuan, S. L.; Tan, D. J.; Hu, C. G.; Wang, X. An ultra-durable windmill-like hybrid nanogenerator for steady and efficient harvesting of low-speed wind energy. Nano-Micro Lett. 2020, 12, 175.

[27]

Chen, J.; Zhu, G.; Yang, W. Q.; Jing, Q. S.; Bai, P.; Yang, Y.; Hou, T. C.; Wang, Z. L. Harmonic-resonator-based triboelectric nanogenerator as a sustainable power source and a self-powered active vibration sensor. Adv. Mater. 2013, 25, 6094–6099.

[28]

Yang, W. Q.; Chen, J.; Zhu, G.; Wen, X. N.; Bai, P.; Su, Y. J.; Lin, Y.; Wang, Z. L. Harvesting vibration energy by a triple-cantilever based triboelectric nanogenerator. Nano Res. 2013, 6, 880–886.

[29]

Xu, M. Y.; Zhao, T. C.; Wang, C.; Zhang, S. L.; Li, Z.; Pan, X. X.; Wang, Z. L. High power density tower-like triboelectric nanogenerator for harvesting arbitrary directional water wave energy. ACS Nano 2019, 13, 1932–1939.

[30]

Wang, Y. Q.; Huang, T.; Gao, Q.; Li, J. P.; Wen, J. M.; Wang, Z. L.; Cheng, T. H. High-voltage output triboelectric nanogenerator with DC/AC optimal combination method. Nano Res. 2022, 15, 3239–3245.

[31]

Yang, W. Q.; Chen, J.; Jing, Q. S.; Yang, J.; Wen, X. N.; Su, Y. J.; Zhu, G.; Bai, P.; Wang, Z. L. 3D stack integrated triboelectric nanogenerator for harvesting vibration energy. Adv. Funct. Mater. 2014, 24, 4090–4096.

[32]

Wang, S. H.; Lin, L.; Wang, Z. L. Triboelectric nanogenerators as self-powered active sensors. Nano Energy 2015, 11, 436–462.

[33]

Tan, D. J.; Zeng, Q. X.; Wang, X.; Yuan, S. L.; Luo, Y. L.; Zhang, X. F.; Tan, L. M.; Hu, C. G.; Liu, G. L. Anti-overturning fully symmetrical triboelectric nanogenerator based on an elliptic cylindrical structure for all-weather blue energy harvesting. Nano-Micro Lett. 2022, 14, 124.

[34]

Wang, D. Y.; Zhang, D. Z.; Li, P.; Yang, Z. M.; Mi, Q.; Yu, L. D. Electrospinning of flexible poly(vinyl alcohol)/MXene nanofiber-based humidity sensor self-powered by monolayer molybdenum diselenide piezoelectric nanogenerator. Nano-Micro Lett. 2021, 13, 57.

[35]

Yang, X. D.; Xu, L.; Lin, P.; Zhong, W.; Bai, Y.; Luo, J. J.; Chen, J.; Wang, Z. L. Macroscopic self-assembly network of encapsulated high-performance triboelectric nanogenerators for water wave energy harvesting. Nano Energy 2019, 60, 404–412.

[36]

Chen, X. Y.; Wu, Y. L.; Yu, A. F.; Xu, L.; Zheng, L.; Liu, Y. S.; Li, H. X.; Wang, Z. L. Self-powered modulation of elastomeric optical grating by using triboelectric nanogenerator. Nano Energy 2017, 38, 91–100.

[37]

Chen, X. Y.; Pu, X.; Jiang, T.; Yu, A. F.; Xu, L.; Wang, Z. L. Tunable optical modulator by coupling a triboelectric nanogenerator and a dielectric elastomer. Adv. Funct. Mater. 2017, 27, 1603788.

[38]

Wen, Z.; Shen, Q. Q.; Sun, X. H. Nanogenerators for self-powered gas sensing. Nano-Micro Lett. 2017, 9, 45.

[39]

Zhang, K. W.; Yang, Y. Linear-grating hybridized electromagnetic-triboelectric nanogenerator for sustainably powering portable electronics. Nano Res. 2016, 9, 974–984.

[40]

Gao, Y. Y.; Liu, G. X.; Bu, T. Z.; Liu, Y. Y.; Qi, Y. C.; Xie, Y. T.; Xu, S. H.; Deng, W. L.; Yang, W. Q.; Zhang, C. MXene based mechanically and electrically enhanced film for triboelectric nanogenerator. Nano Res. 2021, 14, 4833–4840.

[41]

Ma, M. Y.; Kang, Z.; Liao, Q. L.; Zhang, Q.; Gao, F. F.; Zhao, X.; Zhang, Z.; Zhang, Y. Development, applications, and future directions of triboelectric nanogenerators. Nano Res. 2018, 11, 2951–2969.

[42]

Chen, X. Y.; Jiang, T.; Yao, Y. Y.; Xu, L.; Zhao, Z. F.; Wang, Z. L. Stimulating acrylic elastomers by a triboelectric nanogenerator—Toward self-powered electronic skin and artificial muscle. Adv. Funct. Mater. 2016, 26, 4906–4913.

[43]

Zhang, Q.; Li, N.; Goebl, J.; Lu, Z. D.; Yin, Y. D. A systematic study of the synthesis of silver nanoplates: Is citrate a “magic” reagent? J. Am. Chem. Soc. 2011, 133, 18931–18939.

[44]

Nie, J. H.; Ren, Z. W.; Shao, J. J.; Deng, C. R.; Xu, L.; Chen, X. Y.; Li, M. C.; Wang, Z. L. Self-powered microfluidic transport system based on triboelectric nanogenerator and electrowetting technique. ACS Nano 2018, 12, 1491–1499.

[45]

Li, X.; Zhao, L. L.; Yu, J. Y.; Liu, X. Y.; Zhang, X. L.; Liu, H.; Zhou, W. J. Water splitting: From electrode to green energy system. Nano-Micro Lett. 2020, 12, 131.

[46]

Chen, Y.; Lin, J.; Mersal, G. A. M.; Zuo, J. L.; Li, J. L.; Wang, Q. Y.; Feng, Y. H.; Liu, J. W.; Liu, Z. L.; Wang, B. et al. “Several birds with one stone” strategy of pH/thermoresponsive flame-retardant/photothermal bactericidal oil-absorbing material for recovering complex spilled oil. J. Mater. Sci. Technol. 2022, 128, 82–97.

[47]

Hu, J. T.; Gui, L. S.; Zhu, M. N.; Liu, K. L.; Chen, Y.; Wang, X. P.; Lin, J. Smart Janus membrane for on-demand separation of oil, bacteria, dye, and metal ions from complex wastewater. Chem. Eng. Sci. 2022, 253, 117586.

[48]

Liu, J.; Zheng, N.; Li, Z. L.; Liu, Z.; Wang, G. Q.; Gui, L. S.; Lin, J. Fast self-healing and antifouling polyurethane/fluorinated polysiloxane-microcapsules-silica composite material. Adv. Compos. Hybrid Mater. 2022, 5, 1899–1909.

[49]

Yu, J. J.; Wei, X. X.; Guo, Y. C.; Zhang, Z. W.; Rui, P. S.; Zhao, Y.; Zhang, W.; Shi, S. W.; Wang, P. H. Self-powered droplet manipulation system for microfluidics based on triboelectric nanogenerator harvesting rotary energy. Lab Chip 2021, 21, 284–295.

[50]

Nauruzbayeva, J.; Sun, Z. H.; Gallo, A. Jr.; Ibrahim, M. ; Santamarina, J. C. ; Mishra, H. Electrification at water-hydrophobe interfaces. Nat. Commun. 2020, 11, 5285.

[51]

Nie, J. H.; Ren, Z. W.; Xu, L.; Lin, S. Q.; Zhan, F.; Chen, X. Y.; Wang, Z. L. Probing contact-electrification-induced electron and ion transfers at a liquid–solid interface. Adv. Mater. 2020, 32, 1905696.

[52]

Choi, D.; Lee, H.; Im, D. J.; Kang, I. S.; Lim, G.; Kim, D. S.; Kang, K. H. Spontaneous electrical charging of droplets by conventional pipetting. Sci. Rep. 2013, 3, 2037.

[53]

Zheng, L.; Wu, Y. L.; Chen, X. Y.; Yu, A. F.; Xu, L.; Liu, Y. S.; Li, H. X.; Wang, Z. L. Self-powered electrostatic actuation systems for manipulating the movement of both microfluid and solid objects by using triboelectric nanogenerator. Adv. Funct. Mater. 2017, 27, 1606408.

[54]

Wang, Z. L. Triboelectric nanogenerators as new energy technology and self-powered sensors—Principles, problems and perspectives. Faraday Discuss. 2014, 176, 447–458.

[55]

Njagi, J.; Chernov, M. M.; Leiter, J. C.; Andreescu, S. Amperometric detection of dopamine in vivo with an enzyme based carbon fiber microbiosensor. Anal. Chem. 2010, 82, 989–996.

[56]

Fortunati, E.; Mattioli, S.; Visai, L.; Imbriani, M.; Fierro, J. L. G.; Kenny, J. M.; Armentano, I. Combined effects of Ag nanoparticles and oxygen plasma treatment on PLGA morphological, chemical, and antibacterial properties. Biomacromolecules 2013, 14, 626–636.

[57]

Panthi, G.; Ranjit, R.; Khadka, S.; Gyawali, K. R.; Kim, H. Y.; Park, M. Characterization and antibacterial activity of rice grain-shaped ZnS nanoparticles immobilized inside the polymer electrospun nanofibers. Adv. Compos. Hybrid Mater. 2020, 3, 8–15.

[58]

Singh, M.; Bajaj, N. K.; Bhardwaj, A.; Singh, P.; Kumar, P.; Sharma, J. Study of photocatalytic and antibacterial activities of graphene oxide nanosheets. Adv. Compos. Hybrid Mater. 2018, 1, 759–765.

[59]

Li, W. R.; Xie, X. B.; Shi, Q. S.; Zeng, H. Y.; Ou-Yang, Y. S.; Chen, Y. B. Antibacterial activity and mechanism of silver nanoparticles on Escherichia coli. Appl. Microbiol. Biotechnol. 2010, 85, 1115–1122.

[60]

Sondi, I.; Salopek-Sondi, B. Silver nanoparticles as antimicrobial agent: A case study on E. coli as a model for Gram-negative bacteria. J. Colloid Interface Sci. 2004, 275, 177–182.

[61]

Marmur, A. Super-hydrophobicity fundamentals: Implications to biofouling prevention. Biofouling 2006, 22, 107–115.

Nano Research
Pages 1052-1063
Cite this article:
Lin J, Li J, Feng S, et al. An active bacterial anti-adhesion strategy based on directional transportation of bacterial droplets driven by triboelectric nanogenerators. Nano Research, 2023, 16(1): 1052-1063. https://doi.org/10.1007/s12274-022-5177-6
Topics:

4754

Views

31

Crossref

28

Web of Science

27

Scopus

2

CSCD

Altmetrics

Received: 08 August 2022
Revised: 08 October 2022
Accepted: 10 October 2022
Published: 09 November 2022
© Tsinghua University Press 2022
Return