Graphical Abstract

Electromagnetic wave absorption materials are widely used in electronic equipment and military fields. However, high cost and complex preparation processes become a major obstacle in promoting popularization in the civil field. To solve the problems above, researchers have made great efforts to develop Fe-based carbon composites. However, most of the typical composites require a high filling ratio while achieving excellent properties. Therefore, in this study, carbon nanofibers (CNFs) combined with the hollow rice-grained α-Fe2O3 nanoparticles were prepared by the in-situ transformation method. The rational microstructure design provided a solution for reducing the filling ratio, optimizing impedance matching, and improving electromagnetic wave absorption performance. The strong reflection loss value (−38.1 dB) and broad effective absorption bandwidth (4.6 GHz) for Fe2O3/CNFs composites were achieved with a low filling ratio (20 wt.%), and the analysis of electromagnetic parameters validated that the microstructure of Fe2O3/CNFs plays a crucial role in the performance improvement. With the optimized impedance matching and simple preparation method, Fe2O3/CNFs have broad application prospects in electromagnetic wave absorption.
Aerts, S.; Vermeeren, G.; Van Den Bossche, M.; Aminzadeh, R.; Verloock, L.; Thielens, A.; Leroux, P.; Bergs, J.; Braem, B.; Philippron, A. et al. Lessons learned from a distributed RF-EMF sensor network. Sensors 2022, 22, 1715.
Romeo, S.; Zeni, O.; Scarfi, M. R.; Poeta, L.; Lioi, M. B.; Sannino, A. Radiofrequency electromagnetic field exposure and apoptosis: A scoping review of in vitro studies on mammalian cells. Int. J. Mol. Sci. 2022, 23, 2322.
Yang, H. H.; Zhang, Y. Y.; Wu, X. W.; Gan, P.; Luo, X. L.; Zhong, S. X.; Zuo, W. Q. Effects of acute exposure to 3500 MHz (5G) radiofrequency electromagnetic radiation on anxiety-like behavior and the auditory cortex in guinea pigs. Bioelectromagnetics 2022, 43, 106–118.
Cao, M. S.; Han, C.; Wang, X. X.; Zhang, M.; Zhang, Y. L.; Shu, J. C.; Yang, H. J.; Fang, X. Y.; Yuan, J. Graphene nanohybrids: Excellent electromagnetic properties for the absorbing and shielding of electromagnetic waves. J. Mater. Chem. C 2018, 6, 4586–4602.
Song, Q.; Ye, F.; Kong, L.; Shen, Q. L.; Han, L. Y.; Feng, L.; Yu, G. J.; Pan, Y. A.; Li, H. J. Graphene and MXene nanomaterials: Toward high-performance electromagnetic wave absorption in gigahertz band range. Adv. Funct. Mater. 2020, 30, 2000475.
Wang, Z.; Cheng, Z.; Fang, C. Q.; Hou, X. L.; Xie, L. Recent advances in MXenes composites for electromagnetic interference shielding and microwave absorption. Compos. Part A Appl. Sci. Manuf. 2020, 136, 105956.
Zhang, Z. W.; Cai, Z. H.; Zhang, Y.; Peng, Y. L.; Wang, Z. Y.; Xia, L.; Ma, S. P.; Yin, Z. Z.; Wang, R. F.; Cao, Y. S. et al. The recent progress of MXene-based microwave absorption materials. Carbon 2021, 174, 484–499.
Cheng, J.; Cai, L.; Shi, Y. Y.; Pan, F.; Dong, Y. Y.; Zhu, X. J.; Jiang, H. J.; Zhang, X.; Xiang, Z.; Lu, W. Polarization loss-enhanced honeycomb-like MoS2 nanoflowers/undaria pinnatifida-derived porous carbon composites with high-efficient electromagnetic wave absorption. Chem. Eng. J. 2022, 431, 134284.
Jin, C.; Chen, J. H.; Zhang, B. C.; Kong, L. W.; An, S. N.; He, Z. S.; Liu, J. L. Low-cost mmwave metallic waveguide based on multilayer integrated vertical-EBG structure and its application to slot array antenna design. IEEE Trans. Antennas Propag. 2022, 70, 2205–2213.
Li, W.; Chen, X. Q.; Zhang, Z. L.; Wu, Z.; Yang, L.; Zou, Y. H. Ultralight and low-cost structural absorbers with enhanced microwave absorption performance based on sustainable waste biomass. IEEE Trans. Antennas Propag. 2022, 70, 401–409.
Liu, Q. C.; Zi, Z. F.; Zhang, M.; Pang, A. B.; Dai, J. M.; Sun, Y. P. Enhanced microwave absorption properties of urchin-like Fe/α-Fe2O3 composite synthesized by a simple thermal oxidation. Integr. Ferroelectr. 2014, 152, 137–143.
Xie, G. X.; Cheng, G. T.; Lv, T. Y.; Ma, J. Q.; Zhang, T. T.; Zhang, Y. R.; Yu, Y.; Jiang, L. L.; Wang, X. X.; Long, Y. Z. Electromagnetic properties and microwave absorption of electrospun Fe2O3-carbon composite nanofibers with particle-nanorod structure. Nano 2021, 16, 2150143.
Zhang, H.; Xu, J.; Wang, S.; Liu, Q.; Kong, X. Constructing holey γ-Fe2O3 nanosheets with enhanced capability for microwave absorption. Mater. Today Chem. 2022, 23, 100690.
Cheng, Y.; Chen, P.; Dong, S. T.; Zhang, Z. Y.; Guo, Y. H. Development of a porous iron-based magnetic absorber with enhanced electromagnetic absorption performance. J. Mater. Sci. Mater. Electron. 2021, 32, 6799–6809.
Fang, Y.; Wang, W. J.; Wang, S.; Hou, X. W.; Xue, W. D.; Zhao, R. A quantitative permittivity model for designing electromagnetic wave absorption materials with conduction loss: A case study with microwave-reduced graphene oxide. Chem. Eng. J. 2022, 439, 135672.
Li, S. S.; Tang, X. W.; Zhang, Y. W.; Lan, Q. Q.; Hu, Z. W.; Li, L.; Zhang, N.; Ma, P. M.; Dong, W. F.; Tjiu, W. et al. Corrosion-resistant graphene-based magnetic composite foams for efficient electromagnetic absorption. ACS Appl. Mater. Interfaces 2022, 14, 8297–8310.
Tian, K. H.; Huang, Y. N.; Zhang, C.; Shu, R. W.; Zhu, J. B.; Liu, Y.; Chen, Z. H.; Li, C.; Liu, X. W. In-situ synthesis of graphite carbon nitride nanotubes/cobalt@carbon with castor-fruit-like structure as high-efficiency electromagnetic wave absorbers. J. Colloid Interface Sci. 2022, 620, 454–464.
Zhang, X. C.; Liu, M. J.; Xu, J.; Ouyang, Q. Y.; Zhu, C. L.; Zhang, X. L.; Zhang, X. T.; Chen, Y. J. Flexible and waterproof nitrogen-doped carbon nanotube arrays on cotton-derived carbon fiber for electromagnetic wave absorption and electric-thermal conversion. Chem. Eng. J. 2022, 433, 133794.
Liu, X. D.; Huang, Y.; Zhao, X. X.; Yan, J.; Zong, M. Flexible N-doped carbon fibers decorated with Cu/Cu2O particles for excellent electromagnetic wave absorption. J. Colloid Interf Sci. 2022, 616, 347–359.
Ma, M. L.; Liao, Z. J.; Su, X. W.; Zheng, Q. X.; Liu, Y. Y.; Wang, Y.; Ma, Y.; Wan, F. Magnetic CoNi alloy particles embedded N-doped carbon fibers with polypyrrole for excellent electromagnetic wave absorption. J. Colloid Interface Sci. 2022, 608, 2203–2212.
Zhao, K.; Ye, F.; Cheng, L. F.; Liu, R. Z.; Liang, J.; Li, X. Synthesis of embedded ZrC-SiC-C microspheres via carbothermal reduction for thermal stability and electromagnetic wave absorption. Appl. Surf. Sci. 2022, 591, 153105.
Wang, R.; Sun, Q. L.; Gu, H.; Ye, W.; Yuan, G. Q.; Yang, Z. T.; Long, X. Y. Preparation and electromagnetic-wave-absorption properties of a nitrogen-doped carbon-supported iron(II, III) oxide composite. J. Mater. Sci. Mater. Electron. 2022, 33, 1383–1394.
Shu, Y.; Zhao, T. K.; Li, X. H.; Yang, L.; Cao, S. Q.; Ahmad, A.; Jiang, T.; Luo, H. J.; Jing, Z. M.; Ui Ain, N. Surface plasmon resonance-enhanced dielectric polarization endows coral-like Co@CoO nanostructures with good electromagnetic wave absorption performance. Appl. Surf. Sci. 2022, 585, 152704.
Guo, R.; Zheng, Q.; Wang, L. J.; Fan, Y. C.; Jiang, W. Porous N-doped Ni@SiO2/graphene network: Three-dimensional hierarchical architecture for strong and broad electromagnetic wave absorption. J. Mater. Sci. Technol. 2022, 106, 108–117.
Li, N.; Cao, M. H.; Hu, C. W. A simple approach to spherical nickel-carbon monoliths as light-weight microwave absorbers. J. Mater. Chem. 2012, 22, 18426–18432.
Li, N.; Hu, C. W.; Cao, M. H. Enhanced microwave absorbing performance of CoNi alloy nanoparticles anchored on a spherical carbon monolith. Phys. Chem. Chem. Phys. 2013, 15, 7685–7689.
Kong, B.; Liu, R.; Guo, J. H.; Lu, L.; Zhou, Q.; Zhao, Y. J. Tailoring micro/nano-fibers for biomedical applications. Bioact. Mater. 2023, 19, 328–347.
Al-Dhahebi, A. M.; Ling, J.; Krishnan, S. G.; Yousefzadeh, M.; Elumalai, N. K.; Saheed, M. S. M.; Ramakrishna, S.; Jose, R. Electrospinning research and products: The road and the way forward. Appl. Phys. Rev. 2022, 9, 011319.
Luo, H. L.; Zhang, Y.; Yang, Z. W.; Xiong, G. Y.; Wan, Y. Z. Constructing superior carbon-nanofiber-based composite microwave absorbers by engineering dispersion and loading of Fe3O4 nanoparticles on three-dimensional carbon nanofibers derived from bacterial cellulose. Mater. Chem. Phys. 2017, 201, 130–138.
Liu, H.; Li, Y. J.; Yuan, M. W.; Sun, G. B.; Liao, Q. L.; Zhang, Y. Solid and macroporous Fe3C/N-C nanofibers with enhanced electromagnetic wave absorbability. Sci. Rep. 2018, 8, 16832.
Li, Y. J.; Yuan, M. W.; Liu, H. H.; Sun, G. B. In situ synthesis of CoFe2O4 nanocrystals decorated in mesoporous carbon nanofibers with enhanced electromagnetic performance. J. Alloys Compd. 2020, 826, 154147.
Basavaraja, S.; Vijayanand, H.; Venkataraman, A.; Deshpande, U. P.; Shripathi, T. Characterization of γ-Fe2O3 nanoparticles synthesized through self-propagating combustion route. Synth. React. Inorg. Metal-Org. Nano-Metal Chem. 2007, 37, 409–412.
Jia, C. J.; Sun, L. D.; Luo, F.; Han, X. D.; Heyderman, L. J.; Yan, Z. G.; Yan, C. H.; Zheng, K.; Zhang, Z.; Takano, M. et al. Large-scale synthesis of single-crystalline iron oxide magnetic nanorings. J. Am. Chem. Soc. 2008, 130, 16968–16977.
Zhang, S. S.; Deng, P.; Yu, L. L.; Ni, Y.; Ling, C.; Zhu, Z. Y.; Liu, R. J. Fabrication and formation mechanism of hollow-structure supermagnetic α-Fe2O3/Fe3O4 heterogeneous nanospindles. J. Inorg. Organomet. Polym. Mater. 2022, 32, 2492–2501.
Uhm, Y. R.; Kim, W. W.; Rhee, C. K. A study of synthesis and phase transition of nanofibrous Fe2O3 derived from hydrolysis of Fe nanopowders. Scr. Mater. 2004, 50, 561–564.
Liu, H. H.; Li, Y. J.; Yuan, M. W.; Sun, G. B.; Li, H. F.; Ma, S. L.; Liao, Q. L.; Zhang, Y. In situ preparation of cobalt nanoparticles decorated in N-doped carbon nanofibers as excellent electromagnetic wave absorbers. ACS Appl. Mater. Interfaces 2018, 10, 22591–22601.
Min, W. X.; Xu, D. W.; Chen, P.; Chen, G. Z.; Yu, Q.; Qiu, H. F.; Zhu, X. Y. Synthesis of novel hierarchical CoNi@NC hollow microspheres with enhanced microwave absorption performance. J. Mater. Sci. Mater. Electron. 2021, 32, 8000–8016.
Xu, C.; Jin, D. Discussion on heat treatment of FeOOH. Inf. Rec. Mater. 1987, 3, 10–13,17.
Han, Y. H.; Yuan, J.; Zhu, Y. H.; Wang, Q. Q.; Li, L.; Cao, M. S. Implantation of WSe2 nanosheets into multi-walled carbon nanotubes for enhanced microwave absorption. J. Colloid Interface Sci. 2022, 609, 746–754.
Ji, J. D.; Huang, Y.; Yin, J. H.; Zhao, X. C.; Cheng, X. W.; He, S. L.; Li, X.; He, J.; Liu, J. P. Synthesis and electromagnetic and microwave absorption properties of monodispersive Fe3O4/α-Fe2O3 composites. ACS Appl. Nano Mater. 2018, 1, 3935–3944.
Wang, X. Y.; Huang, J. G.; Feng, H.; Li, J. F.; Pu, Z. D.; Yin, X. C. Facile preparation of the dendritic Fe3O4 with a core–shell microstructure in SiO2-B2O3-Al2O3-CaO-Fe2O3 glass-ceramic system for enhanced microwave absorbing performance. J. Alloys Compd. 2021, 877, 160147.
Zhang, H.; Xie, A. J.; Wang, C. P.; Wang, H. S.; Shen, Y. H.; Tian, X. Y. Novel rGO/α-Fe2O3 composite hydrogel: Synthesis, characterization and high performance of electromagnetic wave absorption. J. Mater. Chem. A 2013, 1, 8547–8552.
Guo, C. Y.; Xia, F. Y.; Wang, Z.; Zhang, L.; Xi, L.; Zuo, Y. L. Flowerlike iron oxide nanostructures and their application in microwave absorption. J. Alloys Compd. 2015, 631, 183–191.
Quan, B.; Xu, G. Y.; Li, D. R.; Liu, W.; Ji, G. B.; Du, Y. W. Incorporation of dielectric constituents to construct ternary heterojunction structures for high-efficiency electromagnetic response. J. Colloid Interface Sci. 2017, 498, 161–169.
Ma, W. J.; Tang, C. H.; He, P.; Wu, X. H.; Cui, Z. K.; Lin, S.; Liu, X. Y.; Zhuang, Q. X. Morphology-controlled fabrication strategy of hollow mesoporous carbon spheres@f-Fe2O3 for microwave absorption and infrared stealth. ACS Appl. Mater. Interfaces 2022, 14, 34985–34996.
Lv, H. L.; Liang, X. H.; Cheng, Y.; Zhang, H. Q.; Tang, D. M.; Zhang, B. S.; Ji, G. B.; Du, Y. W. Coin-like α-Fe2O3@CoFe2O4 core-shell composites with excellent electromagnetic absorption performance. ACS Appl. Mater. Interfaces 2015, 7, 4744–4750.
Hu, H. H.; Zheng, Y.; Ren, K.; Wang, J. Y.; Zhang, Y. H.; Zhang, X. F.; Che, R. C.; Qin, G. W.; Jiang, Y. Position selective dielectric polarization enhancement in CNT based heterostructures for highly efficient microwave absorption. Nanoscale 2021, 13, 2324–2332.
Jia, Z. R.; Wang, B. B.; Feng, A. L.; Liu, J. J.; Zhang, M.; Huang, Z. Y.; Wu, G. L. Development of spindle-cone shaped of Fe/α-Fe2O3 hybrids and their superior wideband electromagnetic absorption performance. J. Alloys Compd. 2019, 799, 216–223.
Wang, L.; Yu, X. F.; Li, X.; Zhang, J.; Wang, M.; Che, R. C. Conductive-network enhanced microwave absorption performance from carbon coated defect-rich Fe2O3 anchored on multi-wall carbon nanotubes. Carbon 2019, 155, 298–308.
Chen, W. J.; Zhao, H.; Xu, B. B.; Jiang, Q. R.; Bao, S. S.; Jiang, Z. Y. Rational construction and microwave absorption properties of porous FeOx/Fe/C composites. J. Alloys Compd. 2020, 829, 154519.
Zhou, J. H.; He, J. P.; Wang, T.; Li, G. X.; Guo, Y. X.; Zhao, J. Q.; Ma, Y. O. Design of mesostructured gamma-Fe2O3/carbon nanocomposites for electromagnetic wave absorption applications. J. Alloys Compd. 2011, 509, 8211–8214.
Fu, H. H.; Guo, Y.; Yu, J.; Shen, Z.; Zhao, J.; Xie, Y.; Ling, Y.; Ouyang, S.; Li, S. Q.; Zhang, W. Tuning the shell thickness of core–shell α-Fe2O3@SiO2 nanoparticles to promote microwave absorption. Chin. Chem. Lett. 2022, 33, 957–962.
Wang, L.; Zhang, J.; Wang, M.; Che, R. C. Hollow porous Fe2O3 microspheres wrapped by reduced graphene oxides with high-performance microwave absorption. J. Mater. Chem. C 2019, 7, 11167–11176.
Chen, Y.; Liu, X.; Mao, X.; Zhuang, Q.; Xie, Z.; Han, Z. γ-Fe2O3-MWNT/poly(p-phenylenebenzobisoxazole) composites with excellent microwave absorption performance and thermal stability. Nanoscale 2014, 6, 6440–6447.
Saeed, M. S.; Seyed-Yazdi, J.; Hekmatara, H. Fe2O3/Fe3O4/PANI/MWCNT nanocomposite with the optimum amount and uniform orientation of Fe2O3/Fe3O4 NPs in polyaniline for high microwave absorbing performance. J. Alloys Compd. 2020, 843, 156052.
Zhong, B.; Wang, C. J.; Yu, Y. L.; Xia, L.; Wen, G. W. Facile fabrication of carbon microspheres decorated with B(OH)3 and α-Fe2O3 nanoparticles: Superior microwave absorption. J. Colloid Interface Sci. 2017, 505, 402–409.
Zhong, B.; Wang, C. J.; Wen, G. W.; Yu, Y. L.; Xia, L. Facile fabrication of boron and nitrogen co-doped carbon@Fe2O3/Fe3C/Fe nanoparticle decorated carbon nanotubes three-dimensional structure with excellent microwave absorption properties. Compos. Part B Eng. 2018, 132, 141–150.
Kou, X.; Zhao, Y. P.; Xu, L. J.; Kang, Z. L.; Wang, Y. C.; Zou, Z. Y.; Huang, P.; Wang, Q. F.; Su, G. H.; Yang, Y. et al. Controlled fabrication of core–shell γ-Fe2O3@C-reduced graphene oxide composites with tunable interfacial structure for highly efficient microwave absorption. J. Colloid Interface Sci. 2022, 615, 685–696.
Wang, S.; Jiao, Q.; Liu, X.; Xu, Y.; Shi, Q.; Yue, S.; Zhao, Y.; Liu, H.; Feng, C.; Shi, D. Controllable synthesis of γ-Fe2O3 nanotube/porous rGO composites and their enhanced microwave absorption properties. ACS Sustainable Chem. Eng. 2019, 7, 7004–7013.
Yu, X. F.; Zhang, Y.; Wang, L.; Xing, L. S.; You, W. B.; Liu, J. W.; Chen, G. Y.; Ding, G. Z.; Ding, J. Z.; Liu, X. H. et al. Improved microwave absorption performance of a multi-dimensional Fe2O3/CNTCM@CN assembly achieved by enhanced dielectric relaxation. J. Mater. Chem. C 2020, 8, 5715–5726.
Qiao, J.; Zhang, X.; Xu, D. M.; Kong, L. X.; Lv, L. F.; Yang, F.; Wang, F. L.; Liu, W.; Liu, J. R. Design and synthesis of TiO2/Co/carbon nanofibers with tunable and efficient electromagnetic absorption. Chem. Eng. J. 2020, 380, 122591.
Qin, M.; Zhang, L. M.; Wu, H. J. Dielectric loss mechanism in electromagnetic wave absorbing materials. Adv. Sci. 2022, 9, 2105553.
Sun, X. X.; Li, Y. B.; Huang, Y. X.; Cheng, Y. J.; Wang, S. S.; Yin, W. L. Achieving super broadband electromagnetic absorption by optimizing impedance match of rGO sponge metamaterials. Adv. Funct. Mater. 2022, 32, 2107508.
Wang, Y. Q.; Zhao, H. B.; Cheng, J. B.; Liu, B. W.; Fu, Q.; Wang, Y. Z. Hierarchical Ti3C2Tx@ZnO hollow spheres with excellent microwave absorption inspired by the visual phenomenon of eyeless urchins. Nano-Micro Lett. 2022, 14, 76.
Wang, Y. Q.; Wang, H. G.; Ye, J. H.; Shi, L. Y.; Feng, X. Magnetic CoFe alloy@C nanocomposites derived from ZnCo-MOF for electromagnetic wave absorption. Chem. Eng. J. 2020, 383, 123096.