AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Piezoelectric soft robot driven by mechanical energy

Jiangfeng Lu1,§Zicong Miao2,§Zihan Wang1,§Ying Liu1Dekuan Zhu2Jihong Yin1Fei Tang3Xiaohao Wang1,2( )Wenbo Ding1( )Min Zhang2( )
Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen 518055, China
Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments, Tsinghua University, Beijing100084, China

§ Jiangfeng Lu, Zicong Miao, and Zihan Wang contributed equally to this work.

Show Author Information

Graphical Abstract

In this work, for the first time, we reported a triboelectric effect-driven piezoelectric soft robot (TEPSR) system, further expanding the applicability of triboelectric nanogenerators (TENGs) as well as providing energy-harvesting schemes for piezoelectric soft robots.

Abstract

Power sources and energy-harvesting schemes are still grand challenges for soft robots. Notably, compared with other power sources, triboelectric nanogenerators (TENGs) have shown great potential because of their low manufacturing and fabrication costs, outstanding resilience, remarkable stability, and environmental friendliness. Herein, a triboelectric effect-driven piezoelectric soft robot (TEPSR) system is proposed, which integrates a rotary freestanding triboelectric nanogenerator (RF-TENG) to drive a soft robot comprising a piezoelectric unimorph and electrostatic footpads. Based on the natural triboelectrification, through converting mechanical energy into electricity, TENG provides a unique approach for actuation and manipulation of the soft robot. The perfect combination provides the most straightforward way for creating a self-powered system. Experimentally, under the power of RF-TENG, the soft robot reaches a maximum moving speed of 10 cm per second and a turning rate of 89.7° per second, respectively. The actuation and manipulation demonstration are intuitively accomplished by maneuvering the robot around a maze with a 71 cm track within 28 s. For autonomous feedback controls, one practical application is carrying two infrared sensors on board to realize obstacle avoidance in an unstructured environment. Moreover, a micro-camera was equipped with the soft robot to provide real-time “first-person” video streaming, enhancing its detection capability.

Electronic Supplementary Material

Video
12274_2022_5180_MOESM1_ESM.mp4
12274_2022_5180_MOESM2_ESM.mp4
12274_2022_5180_MOESM3_ESM.mp4
12274_2022_5180_MOESM4_ESM.mp4
12274_2022_5180_MOESM5_ESM.mp4
Download File(s)
12274_2022_5180_MOESM1_ESM.pdf (3.1 MB)

References

[1]

Rus, D.; Tolley, M. T. Design, fabrication and control of soft robots. Nature 2015, 521, 467–475.

[2]

Deimel, R.; Brock, O. A novel type of compliant and underactuated robotic hand for dexterous grasping. Int. J. Robot. Res. 2015, 35, 161–185.

[3]

Lai, Y. C.; Deng, J. N.; Liu, R. Y.; Hsiao, Y. C.; Zhang, S. L.; Peng, W. B.; Wu, H. M.; Wang, X. F.; Wang, Z. L. Actively perceiving and responsive soft robots enabled by self-powered, highly extensible, and highly sensitive triboelectric proximity- and pressure-sensing skins. Adv. Mater. 2018, 30, 1801114.

[4]

Ren, Z. Y.; Hu, W. Q.; Dong, X. G.; Sitti, M. Multi-functional soft-bodied jellyfish-like swimming. Nat. Commun. 2019, 10, 2703.

[5]
Kornbluh, R. D.; Pelrine, R.; Pei, Q. B.; Heydt, R.; Stanford, S.; Oh, S.; Eckerle, J. Electroelastomers: Applications of dielectric elastomer transducers for actuation, generation, and smart structures. In Proceedings of SPIE 4698, Smart Structures and Materials 2002: Industrial and Commercial Applications of Smart Structures Technologies, San Diego, USA, 2002, pp 254–270.
[6]

Chen, S. H.; Tan, M. W. M.; Gong, X. F.; Lee, P. S. Low-voltage soft actuators for interactive human–machine interfaces. Adv. Intellig. Syst. 2022, 4, 2100075.

[7]

Wu, Y. C.; Yim, J. K.; Liang, J. M.; Shao, Z. C.; Qi, M. J.; Zhong, J. W.; Luo, Z. H.; Yan, X. J.; Zhang, M.; Wang, X. H. et al. Insect-scale fast moving and ultrarobust soft robot. Sci. Robot. 2019, 4, eaax1594.

[8]

Liang, J. M.; Wu, Y. C.; Yim, J. K.; Chen, H. M.; Miao, Z. C.; Liu, H. X.; Liu, Y.; Liu, Y. X.; Wang, D. K.; Qiu, W. Y. et al. Electrostatic footpads enable agile insect-scale soft robots with trajectory control. Sci. Robot. 2021, 6, eabe7906.

[9]

Wang, W.; Lee, J. Y.; Rodrigue, H.; Song, S. H.; Chu, W. S.; Ahn, S. H. Locomotion of inchworm-inspired robot made of smart soft composite (SSC). Bioinspir. Biomim. 2014, 9, 046006.

[10]

Felton, S. M.; Tolley, M. T.; Shin, B.; Onal, C. D.; Demaine, E. D.; Rus, D.; Wood, R. J. Self-folding with shape memory composites. Soft Matter 2013, 9, 7688–7694.

[11]

Chen, T.; Bilal, O. R.; Shea, K.; Daraio, C. Harnessing bistability for directional propulsion of soft, untethered robots. Proc. Natl. Acad. Sci. USA 2018, 115, 5698–5702.

[12]

Qian, X. J.; Chen, Q. M.; Yang, Y.; Xu, Y. S.; Li, Z.; Wang, Z. H.; Wu, Y. H.; Wei, Y.; Ji, Y. Untethered recyclable tubular actuators with versatile locomotion for soft continuum robots. Adv. Mater. 2018, 30, 1801103.

[13]

Yang, Y.; Pei, Z. Q.; Li, Z.; Wei, Y.; Ji, Y. Making and remaking dynamic 3D structures by shining light on flat liquid crystalline vitrimer films without a mold. J. Am. Chem. Soc. 2016, 138, 2118–2121.

[14]

Wang, E.; Desai, M. S.; Lee, S. W. Light-controlled graphene-elastin composite hydrogel actuators. Nano Lett. 2013, 13, 2826–2830.

[15]

Breger, J. C.; Yoon, C.; Xiao, R.; Kwag, H. R.; Wang, M. O.; Fisher, J. P.; Nguyen, T. D.; Gracias, D. H. Self-folding thermo-magnetically responsive soft microgrippers. ACS Appl. Mater. Interfaces 2015, 7, 3398–3405.

[16]

Tian, S. D.; Li, S. J.; Hu, Y. J.; Wang, W.; Yu, A. F.; Wan, L. Y.; Zhai, J. Y. A polymeric bilayer multi-legged soft millirobot with dual actuation and humidity sensing. Sensors 2021, 21, 1972.

[17]
Peng, Y. D.; He, P. S.; Guo, R. Q.; Lin, L. W. Bioinspired light-driven soft robots by a facile two-mode laser engraving and cutting process. In 2021 21st International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers), Orlando, USA, 2021, pp 10–13.
[18]

El-Atab, N.; Mishra, R. B.; Al-Modaf, F.; Joharji, L.; Alsharif, A. A.; Alamoudi, H.; Diaz, M.; Qaiser, N.; Hussain, M. M. Soft actuators for soft robotic applications: A review. Adv. Intellig. Syst. 2020, 2, 2000128.

[19]

Hines, L.; Petersen, K.; Lum, G. Z.; Sitti, M. Soft actuators for small-scale robotics. Adv. Mater. 2017, 29, 1603483.

[20]

Ji, X. B.; Liu, X. C.; Cacucciolo, V.; Imboden, M.; Civet, Y.; El Haitami, A.; Cantin, S.; Perriard, Y.; Shea, H. An autonomous untethered fast soft robotic insect driven by low-voltage dielectric elastomer actuators. Sci. Robot. 2019, 4, eaaz6451.

[21]

Yang, G. Z.; Bellingham, J.; Dupont, P. E.; Fischer, P.; Floridi, L.; Full, R.; Jacobstein, N.; Kumar, V.; McNutt, M.; Merrifield, R. et al. The grand challenges of Science Robotics. Sci. Robot. 2018, 3, eaar7650.

[22]

Xu, S.; Zhang, Y. H.; Cho, J.; Lee, J.; Huang, X.; Jia, L.; Fan, J. A.; Su, Y. W.; Su, J.; Zhang, H. G. et al. Stretchable batteries with self-similar serpentine interconnects and integrated wireless recharging systems. Nat. Commun. 2013, 4, 1543.

[23]

Fan, F. R.; Tian, Z. Q.; Wang, Z. L. Flexible triboelectric generator. Nano Energy 2012, 1, 328–334.

[24]

Bai, P.; Zhu, G.; Lin, Z. H.; Jing, Q. S.; Chen, J.; Zhang, G.; Ma, J. S.; Wang, Z. L. Integrated multilayered triboelectric nanogenerator for harvesting biomechanical energy from human motions. ACS Nano 2013, 7, 3713–3719.

[25]

Chen, B.; Yang, Y.; Wang, Z. L. Scavenging wind energy by triboelectric nanogenerators. Adv. Energy Mater. 2018, 8, 1702649.

[26]

Jiang, T.; Yao, Y. Y.; Xu, L.; Zhang, L. M.; Xiao, T. X.; Wang, Z. L. Spring-assisted triboelectric nanogenerator for efficiently harvesting water wave energy. Nano Energy 2017, 31, 560–567.

[27]

Jia, M. M.; Guo, P. W.; Wang, W.; Yu, A. F.; Zhang, Y. F.; Wang, Z. L.; Zhai, J. Y. Tactile tribotronic reconfigurable p-n junctions for artificial synapses. Sci. Bull. 2022, 67, 803–812.

[28]

Nie, J. H.; Chen, X. Y.; Wang, Z. L. Electrically responsive materials and devices directly driven by the high voltage of triboelectric nanogenerators. Adv. Funct. Mater. 2019, 29, 1806351.

[29]

Wang, Z. L. On Maxwell’s displacement current for energy and sensors: The origin of nanogenerators. Mater. Today 2017, 20, 74–82.

[30]

Chen, X. Y.; Jiang, T.; Yao, Y. Y.; Xu, L.; Zhao, Z. F.; Wang, Z. L. Stimulating acrylic elastomers by a triboelectric nanogenerator-toward self-powered electronic skin and artificial muscle. Adv. Funct. Mater. 2016, 26, 4906–4913.

[31]

Chen, X. Y.; Pu, X.; Jiang, T.; Yu, A. F.; Xu, L.; Wang, Z. L. Tunable optical modulator by coupling a triboelectric nanogenerator and a dielectric elastomer. Adv. Funct. Mater. 2017, 27, 1603788.

[32]

Zhang, C.; Tang, W.; Pang, Y. K.; Han, C. B.; Wang, Z. L. Active micro-actuators for optical modulation based on a planar sliding triboelectric nanogenerator. Adv. Mater. 2015, 27, 719–726.

[33]

Chen, X. Y.; Iwamoto, M.; Shi, Z. M.; Zhang, L. M.; Wang, Z. L. Self-powered trace memorization by conjunction of contact-electrification and ferroelectricity. Adv. Funct. Mater. 2015, 25, 739–747.

[34]

Lee, J. H.; Hinchet, R.; Kim, T. Y.; Ryu, H.; Seung, W.; Yoon, H. J.; Kim, S. W. Control of skin potential by triboelectrification with ferroelectric polymers. Adv. Mater. 2015, 27, 5553–5558.

[35]

Bu, T. Z.; Yang, H.; Liu, W. B.; Pang, Y. K.; Zhang, C.; Wang, Z. L. Triboelectric effect-driven liquid metal actuators. Soft Robot. 2019, 6, 664–670.

[36]

Sun, W. J.; Li, B.; Zhang, F.; Fang, C. L.; Lu, Y. J.; Gao, X.; Cao, C. J.; Chen, G. M.; Zhang, C.; Wang, Z. L. TENG-bot: Triboelectric nanogenerator powered soft robot made of uni-directional dielectric elastomer. Nano Energy 2021, 85, 106012.

[37]

Liu, Y.; Chen, B. D.; Li, W.; Zu, L. L.; Tang, W.; Wang, Z. L. Bioinspired triboelectric soft robot driven by mechanical energy. Adv. Funct. Mater. 2021, 31, 2104770.

[38]

Jung, K.; Koo, J. C.; Nam, J. D.; Lee, Y. K.; Choi, H. R. Artificial annelid robot driven by soft actuators. Bioinspir. Biomim. 2007, 2, S42–S49.

[39]

Shintake, J.; Rosset, S.; Schubert, B.; Floreano, D.; Shea, H. Versatile soft grippers with intrinsic electroadhesion based on multifunctional polymer actuators. Adv. Mater. 2016, 28, 231–238.

[40]

Xu, P.; Wang, X. Y.; Wang, S. Y.; Chen, T. Y.; Liu, J. H.; Zheng, J. X.; Li, W. X.; Xu, M. Y.; Tao, J.; Xie, G. M. A triboelectric-based artificial whisker for reactive obstacle avoidance and local mapping. Research (Wash. D. C. ) 2021, 2021, 9864967.

[41]

Ma, K. Y.; Chirarattananon, P.; Fuller, S. B.; Wood, R. J. Controlled flight of a biologically inspired, insect-scale robot. Science 2013, 340, 603–607.

[42]

Liu, S. Y.; Li, Y. Y.; Guo, W.; Huang, X.; Xu, L.; Lai, Y. C.; Zhang, C.; Wu, H. Triboelectric nanogenerators enabled sensing and actuation for robotics. Nano Energy 2019, 65, 104005.

[43]

Wang, Z. L.; Chen, J.; Lin, L. Progress in triboelectric nanogenerators as a new energy technology and self-powered sensors. Energy Environ. Sci. 2015, 8, 2250–2282.

[44]

Han, C. B.; Zhang, C.; Tang, W.; Li, X. H.; Wang, Z. L. High power triboelectric nanogenerator based on printed circuit board (PCB) technology. Nano Res. 2015, 8, 722–730.

[45]

Zou, H. Y.; Zhang, Y.; Guo, L. T.; Wang, P. H.; He, X.; Dai, G. Z.; Zheng, H. W.; Chen, C. Y.; Wang, A. C.; Xu, C. et al. Quantifying the triboelectric series. Nat. Commun. 2019, 10, 1427.

[46]

Fan, F. R.; Lin, L.; Zhu, G.; Wu, W. Z.; Zhang, R.; Wang, Z. L. Transparent triboelectric nanogenerators and self-powered pressure sensors based on micropatterned plastic films. Nano Lett. 2012, 12, 3109–3114.

[47]
Du, Y. H.; Peng, B.; Zhou, W.; Wu, Y. C. A piezoelectric water skating microrobot steers through ripple interference. In 2022 IEEE 35th International Conference on Micro Electro Mechanical Systems Conference (MEMS), Tokyo, Japan, 2022, pp 644–647.
[48]

Zhu, G.; Chen, J.; Zhang, T. J.; Jing, Q. S.; Wang, Z. L. Radial-arrayed rotary electrification for high performance triboelectric generator. Nat. Commun. 2014, 5, 3426.

[49]

Niu, S. M.; Wang, Z. L. Theoretical systems of triboelectric nanogenerators. Nano Energy 2015, 14, 161–192.

[50]

Hsueh, C. H. Modeling of elastic deformation of multilayers due to residual stresses and external bending. J. Appl. Phys. 2002, 91, 9652–9656.

[51]

Ghaderiaram, A.; Bazrafshan, A.; Firouzi, K.; Kolahdouz, M. A multi-mode R-TENG for self-powered anemometer under IoT network. Nano Energy 2021, 87, 106170.

[52]

Zi, Y. L.; Niu, S. M.; Wang, J.; Wen, Z.; Tang, W.; Wang, Z. L. Standards and figure-of-merits for quantifying the performance of triboelectric nanogenerators. Nat. Commun. 2015, 6, 8376.

[53]
Dudley, R. The Biomechanics of Insect Flight: Form, Function, Evolution; Princeton University Press: Princeton, 2002.
[54]

Chen, Y. F.; Zhao, H. C.; Mao, J.; Chirarattananon, P.; Helbling, E. F.; Hyun, N. S. P.; Clarke, D. R.; Wood, R. J. Controlled flight of a microrobot powered by soft artificial muscles. Nature 2019, 575, 324–329.

[55]

Kim, S.; Wensing, P. M. Design of dynamic legged robots. Foundat. Trends® Robot. 2017, 5, 117–190.

[56]
Jayaram, K.; Shum, J.; Castellanos, S.; Helbling, E. F.; Wood, R. J. Scaling down an insect-size microrobot, HAMR-VI into HAMR-Jr. In 2020 IEEE International Conference on Robotics and Automation (ICRA), Paris, France, 2020, pp 10305–10311.
[57]
Chen, A. S.; Bergbreiter, S. Electroadhesive feet for turning control in legged robots. In 2016 IEEE International Conference on Robotics and Automation (ICRA), Stockholm, Sweden, 2016, pp 3806–3812.
[58]
Koh, K. H.; Chetty, R. M. K.; Ponnambalam, S. Modeling and simulation of electrostatic adhesion for wall climbing robot. In 2011 IEEE International Conference on Robotics and Biomimetics, Karon Beach, Thailand, 2011, pp 2031–2036.
[59]

Iyer, V.; Najafi, A.; James, J.; Fuller, S.; Gollakota, S. Wireless steerable vision for live insects and insect-scale robots. Sci. Robot. 2020, 5, eabb0839.

Nano Research
Pages 4970-4979
Cite this article:
Lu J, Miao Z, Wang Z, et al. Piezoelectric soft robot driven by mechanical energy. Nano Research, 2023, 16(4): 4970-4979. https://doi.org/10.1007/s12274-022-5180-y
Topics:

11387

Views

6

Crossref

7

Web of Science

6

Scopus

0

CSCD

Altmetrics

Received: 07 September 2022
Revised: 01 October 2022
Accepted: 10 October 2022
Published: 15 December 2022
© Tsinghua University Press 2022
Return