Article Link
Collect
Submit Manuscript
Show Outline
Outline
Graphical Abstract
Abstract
Keywords
Electronic Supplementary Material
References
Show full outline
Hide outline
Research Article

Ethane dehydrogenation over the g-C3N4 supported metal single-atom catalysts to enhance reactivity and coking-resistance ability

Yuan Zhang1,2Baojun Wang1,2()Maohong Fan3,4,5Lixia Ling1,2Riguang Zhang2()
College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan 030024, China
State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan 030024, China
Departments of Chemical and Petroleum Engineering, University of Wyoming, Laramie, WY 82071, USA
School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
School of Energy Resources, University of Wyoming, Laramie, WY 82071, USA
Show Author Information

Graphical Abstract

View original image Download original image
Density functional theory (DFT) calculations and kinetic Monte Carlo (kMC) simulations were employed to predict the catalytic performance of ethane dehydrogenation over a series of metal single-atom anchored graphitic carbon nitride (g-C3N4) catalysts. Co/g-C3N4 catalyst is screened out to be the most potential with 100% C2H4(g) selectivity and the highest C2H4(g) formation activity at 673.15 K. The reaction free energy of C2H5* dehydrogenation to C2H4* is proposed as a simple descriptor to quantitatively and quickly evaluate C2H4(g) formation activity, and the catalyst with the reaction free energy approaching zero has higher C2H4(g) activity.

Abstract

Ethane dehydrogenation (EDH) to produce ethylene requires high operating temperature to achieve satisfactory ethylene yield, however, this process leads to coke formation and catalyst deactivation. Here, an active site isolation strategy was employed to inhibit side reaction and coke formation over fifteen types of metal single-atom metal/graphitic carbon nitride (M/g-C3N4) catalysts. Density functional theory (DFT) calculations completely describe reaction network of ethane dehydrogenation. On-lattice kinetic Monte Carlo simulations were carried out to evaluate catalytic performance under the realistic conditions. The Co/g-C3N4, Rh/g-C3N4, and Ni/g-C3N4 catalysts were screened out to exhibit higher C2H4(g) formation activity and C2H4(g) selectivity close to or equal to 100%. The low reactant partial pressure 0%–5% at atmospheric pressure facilitates ethane dehydrogenation, and the appropriate temperatures over Co/g-C3N4, Rh/g-C3N4, and Ni/g-C3N4 catalysts are 673.15, 723.15, and 723.15 K, respectively. Especially, Co/g-C3N4 catalyst presents the highest C2H4(g) formation activity, attributing to the appropriate anti-bonding strength between C atom and metal single-atom. Further, a simple descriptor, the reaction energy of C2H5* dehydrogenation to C2H4*, was proposed to quantitatively and quickly evaluate C2H4(g) formation activity. The present study laid a solid foundation for efficient design and development of single-atom catalysts with high-performance for selective dehydrogenation of alkanes.

Electronic Supplementary Material

Download File(s)
12274_2022_5187_MOESM1_ESM.pdf (16 MB)

References

[1]

Argyle, M. D.; Bartholomew, C. H. Heterogeneous catalyst deactivation and regeneration: A review. Catalysts 2015, 5, 145–269.

[2]

Qiao, B. T.; Wang, A. Q.; Yang, X. F.; Allard, L. F.; Jiang, Z.; Cui, Y. T.; Liu, J. Y.; Li, J.; Zhang, T. Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat. Chem. 2011, 3, 634–641.

[3]

Qin, R. X.; Liu, K. L.; Wu, Q. Y.; Zheng, N. F. Surface coordination chemistry of atomically dispersed metal catalysts. Chem. Rev. 2020, 120, 11810–11899.

[4]

Wang, Y.; Mao, J.; Meng, X. G.; Yu, L.; Deng, D. H.; Bao, X. H. Catalysis with two-dimensional materials confining single atoms: Concept, design, and applications. Chem. Rev. 2019, 119, 1806–1854.

[5]

Pham, H. N.; Sattler, J. J. H. B.; Weckhuysen, B. M.; Datye, A. K. Role of Sn in the regeneration of Pt/γ-Al2O3 light alkane dehydrogenation catalysts. ACS Catal. 2016, 6, 2257–2264.

[6]

Aly, M.; Fornero, E. L.; Leon-Garzon, A. R.; Galvita, V. V.; Saeys, M. Effect of boron promotion on coke formation during propane dehydrogenation over Pt/γ-Al2O3 catalysts. ACS Catal. 2020, 10, 5208–5216.

[7]

Dai, Y. H.; Gu, J. J.; Tian, S. Y.; Wu, Y.; Chen, J. C.; Li, F. X.; Du, Y. H.; Peng, L. M.; Ding, W. P.; Yang, Y. H. γ-Al2O3 sheet-stabilized isolate Co2+ for catalytic propane dehydrogenation. J. Catal. 2020, 381, 482–492.

[8]

Deng, L. D.; Miura, H.; Shishido, T.; Hosokawa, S.; Teramura, K.; Tanaka, T. Strong metal–support interaction between Pt and SiO2 following high-temperature reduction: A catalytic interface for propane dehydrogenation. Chem. Commun. 2017, 53, 6937–6940.

[9]

Schweitzer, N. M.; Hu, B.; Das, U.; Kim, H.; Greeley, J.; Curtiss, L. A.; Stair, P. C.; Miller, J. T.; Hock, A. S. Propylene hydrogenation and propane dehydrogenation by a single-site Zn2+ on silica catalyst. ACS Catal. 2014, 4, 1091–1098.

[10]

Estes, D. P.; Siddiqi, G.; Allouche, F.; Kovtunov, K. V.; Safonova, O. V.; Trigub, A. L.; Koptyug, I. V.; Copéret, C. C–H activation on Co, O sites: Isolated surface sites versus molecular analogs. J. Am. Chem. Soc. 2016, 138, 14987–14997.

[11]

Zhang, Y. Y.; Zhao, Y.; Otroshchenko, T.; Perechodjuk, A.; Kondratenko, V. A.; Bartling, S.; Rodemerck, U.; Linke, D.; Jiao, H. J.; Jiang, G. Y. et al. Structure–activity–selectivity relationships in propane dehydrogenation over Rh/ZrO2 catalysts. ACS Catal. 2020, 10, 6377–6388.

[12]

Chang, Q. Y.; Wang, K. Q.; Hu, P.; Sui, Z. J.; Zhou, X. G.; Chen, D.; Yuan, W. K.; Zhu, Y. A. Dual-function catalysis in propane dehydrogenation over Pt1-Ga2O3 catalyst: Insights from a microkinetic analysis. AIChE J. 2020, 66, e16232.

[13]

Hosono, Y.; Saito, H.; Higo, T.; Watanabe, K.; Ito, K.; Tsuneki, H.; Maeda, S.; Hashimoto, K.; Sekine, Y. Co–CeO2 interaction induces the Mars–van Krevelen mechanism in dehydrogenation of ethane. J. Phys. Chem. C 2021, 125, 11411–11418.

[14]

Wang, L. C.; Zhang, Y. Y.; Xu, J. Y.; Diao, W. J.; Karakalos, S.; Liu, B.; Song, X. Y.; Wu, W.; He, T.; Ding, D. Non-oxidative dehydrogenation of ethane to ethylene over ZSM-5 zeolite supported iron catalysts. Appl. Catal. B Environ. 2019, 256, 117816.

[15]

Maeno, Z.; Yasumura, S.; Wu, X. P.; Huang, M. W.; Liu, C.; Toyao, T.; Shimizu, K. I. Isolated indium hydrides in CHA zeolites: Speciation and catalysis for nonoxidative dehydrogenation of ethane. J. Am. Chem. Soc. 2020, 142, 4820–4832.

[16]

Yao, R.; Herrera, J. E.; Chen, L. H.; Chin, Y. H. C. Generalized mechanistic framework for ethane dehydrogenation and oxidative dehydrogenation on molybdenum oxide catalysts. ACS Catal. 2020, 10, 6952–6968.

[17]

Cavani, F.; Ballarini, N.; Cericola, A. Oxidative dehydrogenation of ethane and propane: How far from commercial implementation? Catal. Today 2007, 127, 113–131.

[18]

Sheng, J.; Yan, B.; Lu, W. D.; Qiu, B.; Gao, X. Q.; Wang, D. Q.; Lu, A. H. Oxidative dehydrogenation of light alkanes to olefins on metal-free catalysts. Chem. Soc. Rev. 2021, 50, 1438–1468.

[19]

Ong, W. J.; Tan, L. L.; Ng, Y. H.; Yong, S. T.; Chai, S. P. Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: Are we a step closer to achieving sustainability? Chem. Rev. 2016, 116, 7159–7329.

[20]

Borrome, M.; Gronert, S. Gas-phase dehydrogenation of alkanes: C–H activation by a graphene-supported nickel single-atom catalyst model. Angew. Chem., Int. Ed. 2019, 58, 14906–14910.

[21]

He, F.; Wang, Z. X.; Li, Y. X.; Peng, S. Q.; Liu, B. The nonmetal modulation of composition and morphology of g-C3N4-based photocatalysts. Appl. Catal. B Environ. 2020, 269, 118828.

[22]

Huang, X. H.; Xia, Y. J.; Cao, Y. J.; Zheng, X. S.; Pan, H. B.; Zhu, J. F.; Ma, C.; Wang, H. W.; Li, J. J.; You, R. et al. Enhancing both selectivity and coking-resistance of a single-atom Pd1/C3N4 catalyst for acetylene hydrogenation. Nano Res. 2017, 10, 1302–1312.

[23]

Vorobyeva, E.; Chen, Z.; Mitchell, S.; Leary, R. K.; Midgley, P.; Thomas, J. M.; Hauert, R.; Fako, E.; López, N.; Pérez-Ramírez, J. Tailoring the framework composition of carbon nitride to improve the catalytic efficiency of the stabilised palladium atoms. J. Mater. Chem. A 2017, 5, 16393–16403.

[24]

Inagaki, M.; Tsumura, T.; Kinumoto, T.; Toyoda, M. Graphitic carbon nitrides (g-C3N4) with comparative discussion to carbon materials. Carbon 2019, 141, 580–607.

[25]

Huang, X. H.; Yan, H.; Huang, L.; Zhang, X. H.; Lin, Y.; Li, J. J.; Xia, Y. J.; Ma, Y. F.; Sun, Z. H.; Wei, S. Q. et al. Toward understanding of the support effect on Pd1 single-atom-catalyzed hydrogenation reactions. J. Phys. Chem. C 2019, 123, 7922–7930.

[26]

Yang, T.; Mao, X. N.; Zhang, Y.; Wu, X. P.; Wang, L.; Chu, M. Y.; Pao, C. W.; Yang, S. Z.; Xu, Y.; Huang, X. Q. Coordination tailoring of Cu single sites on C3N4 realizes selective CO2 hydrogenation at low temperature. Nat. Commun. 2021, 12, 6022.

[27]

Li, J. Q.; Zhao, S. Y.; Yang, S. Z.; Wang, S. B.; Sun, H. Q.; Jiang, S. P.; Johannessen, B.; Liu, S. M. Atomically dispersed cobalt on graphitic carbon nitride as a robust catalyst for selective oxidation of ethylbenzene by peroxymonosulfate. J. Mater. Chem. A 2021, 9, 3029–3035.

[28]

Zhang, Y. X.; Guo, X. Y.; Liu, B.; Zhang, J. L.; Gao, X. H.; Ma, Q. X.; Fan, S. B.; Zhao, T. S. Surface modification of g-C3N4-supported iron catalysts for CO hydrogenation: Strategy for product distribution. Fuel 2021, 305, 121473.

[29]

Chen, Z.; Chen, Y. J.; Chao, S. L.; Dong, X. B.; Chen, W. X.; Luo, J.; Liu, C. G.; Wang, D. S.; Chen, C.; Li, W. et al. Single-atom AuI-N3 site for acetylene hydrochlorination reaction. ACS Catal. 2020, 10, 1865–1870.

[30]

Vilé, G.; Albani, D.; Nachtegaal, M.; Chen, Z. P.; Dontsova, D.; Antonietti, M.; López, N.; Pérez-Ramírez, J. A stable single-site palladium catalyst for hydrogenations. Angew. Chem., Int. Ed. 2015, 54, 11265–11269.

[31]

Zhang, L. W.; Long, R.; Zhang, Y. M.; Duan, D. L.; Xiong, Y. J.; Zhang, Y. J.; Bi, Y. P. Direct observation of dynamic bond evolution in single-atom Pt/C3N4 catalysts. Angew. Chem., Int. Ed. 2020, 59, 6224–6229.

[32]

Jin, X. X.; Wang, R. Y.; Zhang, L. X.; Si, R.; Shen, M.; Wang, M.; Tian, J. J.; Shi, J. L. Electron configuration modulation of nickel single atoms for elevated photocatalytic hydrogen evolution. Angew. Chem., Int. Ed. 2020, 59, 6827–6831.

[33]

Chen, Z. P.; Mitchell, S.; Vorobyeva, E.; Leary, R. K.; Hauert, R.; Furnival, T.; Ramasse, Q. M.; Thomas, J. M.; Midgley, P. A.; Dontsova, D. et al. Stabilization of single metal atoms on graphitic carbon nitride. Adv. Funct. Mater. 2017, 27, 1605785.

[34]

Jiang, W. S.; Zhao, Y. J.; Zong, X. P.; Nie, H. D.; Niu, L. J.; An, L.; Qu, D.; Wang, X. Y.; Kang, Z. H.; Sun, Z. C. Photocatalyst for high-performance H2 production: Ga-doped polymeric carbon nitride. Angew. Chem., Int. Ed. 2021, 60, 6124–6129.

[35]

Li, C. Y.; Wang, G. Dehydrogenation of light alkanes to mono-olefins. Chem. Soc. Rev. 2021, 50, 4359–4381.

[36]

Li, X. Y.; Pei, C. L.; Gong, J. L. Shale gas revolution: Catalytic conversion of C1-C3 light alkanes to value-added chemicals. Chem 2021, 7, 1755–1801.

[37]

Najari, S.; Saeidi, S.; Concepcion, P.; Dionysiou, D. D.; Bhargava, S. K.; Lee, A. F.; Wilson, K. Oxidative dehydrogenation of ethane: Catalytic and mechanistic aspects and future trends. Chem. Soc. Rev. 2021, 50, 4564–4605.

[38]

Tsyganok, A.; Harlick, P. J. E.; Sayari, A. Non-oxidative conversion of ethane to ethylene over transition metals supported on Mg-Al mixed oxide: Preliminary screening of catalytic activity and coking ability. Catal. Commun. 2007, 8, 850–854.

[39]

Lian, Z.; Si, C. W.; Jan, F.; Zhi, S. K.; Li, B. Coke deposition on Pt-based catalysts in propane direct dehydrogenation: Kinetics, suppression, and elimination. ACS Catal. 2021, 11, 9279–9292.

[40]

Wang, Z.; Chen, Y. Z.; Mao, S. J.; Wu, K. J.; Zhang, K. C.; Li, Q. C.; Wang, Y. Chemical insight into the structure and formation of coke on PtSn alloy during propane dehydrogenation. Adv. Sustain. Syst. 2020, 4, 2000092.

[41]

Galvita, V.; Siddiqi, G.; Sun, P. P.; Bell, A. T. Ethane dehydrogenation on Pt/Mg(Al)O and PtSn/Mg(Al)O catalysts. J. Catal. 2010, 271, 209–219.

[42]

Kong, N. N.; Fan, X.; Liu, F. F.; Wang, L.; Lin, H. P.; Li, Y. Y.; Lee, S. T. Single vanadium atoms anchored on graphitic carbon nitride as a high-performance catalyst for non-oxidative propane dehydrogenation. ACS Nano 2020, 14, 5772–5779.

[43]

Wang, Y. L.; Hu, P.; Yang, J.; Zhu, Y. A.; Chen, D. C–H bond activation in light alkanes:A theoretical perspective. Chem. Soc. Rev. 2021, 50, 4299–4358.

[44]

Matera, S.; Schneider, W. F.; Heyden, A.; Savara, A. Progress in accurate chemical kinetic modeling, simulations, and parameter estimation for heterogeneous catalysis. ACS Catal. 2019, 9, 6624–6647.

[45]

Batchu, S. P.; Wang, H. L.; Chen, W. Q.; Zheng, W. Q.; Caratzoulas, S.; Lobo, R. F.; Vlachos, D. G. Ethane dehydrogenation on single and dual centers of Ga-modified γ-Al2O3. ACS Catal. 2021, 11, 1380–1391.

[46]

Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50.

[47]

Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

[48]

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

[49]

Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.

[50]

Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.

[51]

Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem. Phys. 2010, 132, 154104.

[52]

Monkhorst, H. J.; Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188–5192.

[53]

Henkelman, G.; Uberuaga, B. P.; Jónsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J Chem. Phys. 2000, 113, 9901–9904.

[54]

Henkelman, G.; Jónsson, H. Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. J. Chem. Phys. 2000, 113, 9978–9985.

[55]

Henkelman, G.; Jónsson, H. A dimer method for finding saddle points on high dimensional potential surfaces using only first derivatives. J Chem. Phys. 1999, 111, 7010–7022.

[56]

Wang, V.; Xu, N.; Liu, J. C.; Tang, G.; Geng, W. T. VASPKIT:A user-friendly interface facilitating high-throughput computing and analysis using VASP code. Comput. Phys. Commun. 2021, 267, 108033.

[57]

Zhou, Y. L.; Wei, F. F.; Lin, J.; Li, L.; Li, X. Y.; Qi, H. F.; Pan, X. L.; Liu, X. Y.; Huang, C. D.; Lin, S. et al. Sulfate-modified NiAl mixed oxides as effective C–H bond-breaking agents for the sole production of ethylene from ethane. ACS Catal. 2020, 10, 7619–7629.

[58]

Collinge, G.; Yuk, S. F.; Nguyen, M. T.; Lee, M. S.; Glezakou, V. A.; Rousseau, R. Effect of collective dynamics and anharmonicity on entropy in heterogenous catalysis: Building the case for advanced molecular simulations. ACS Catal. 2020, 10, 9236–9260.

[59]

Wu, H. Z.; Liu, L. M.; Zhao, S. J. The effect of water on the structural, electronic and photocatalytic properties of graphitic carbon nitride. Phys. Chem. Chem. Phys. 2014, 16, 3299–3304.

[60]

Ji, Y. J.; Dong, H. L.; Lin, H. P.; Zhang, L. L.; Hou, T. J.; Li, Y. Y. Heptazine-based graphitic carbon nitride as an effective hydrogen purification membrane. RSC Adv. 2016, 6, 52377–52383.

[61]

Stamatakis, M.; Vlachos, D. G. A graph-theoretical kinetic Monte Carlo framework for on-lattice chemical kinetics. J. Chem. Phys. 2011, 134, 214115.

[62]

Nielsen, J.; d’Avezac, M.; Hetherington, J.; Stamatakis, M. Parallel kinetic Monte Carlo simulation framework incorporating accurate models of adsorbate lateral interactions. J. Chem. Phys. 2013, 139, 224706.

[63]

Pineda, M.; Stamatakis, M. Beyond mean-field approximations for accurate and computationally efficient models of on-lattice chemical kinetics. J. Chem. Phys. 2017, 147, 024105.

[64]

Vignola, E.; Steinmann, S. N.; Vandegehuchte, B. D.; Curulla, D.; Stamatakis, M.; Sautet, P. A machine learning approach to graph-theoretical cluster expansions of the energy of adsorbate layers. J. Chem. Phys. 2017, 147, 054106.

[65]

Stamatakis, M.; Vlachos, D. G. Equivalence of on-lattice stochastic chemical kinetics with the well-mixed chemical master equation in the limit of fast diffusion. Comput. Chem. Eng. 2011, 35, 2602–2610.

[66]

Piccinin, S.; Stamatakis, M. Co oxidation on Pd (111): A first-principles-based kinetic Monte Carlo study. ACS Catal. 2014, 4, 2143–2152.

[67]

Horiuti, I.; Polanyi, M. Exchange reactions of hydrogen on metallic catalysts. Trans. Faraday Soc. 1934, 30, 1164–1172.

[68]

Yang, B.; Gong, X. Q.; Wang, H. F.; Cao, X. M.; Rooney, J. J.; Hu, P. Evidence to challenge the universality of the horiuti-polanyi mechanism for hydrogenation in heterogeneous catalysis: Origin and trend of the preference of a non-horiuti-polanyi mechanism. J. Am. Chem. Soc. 2013, 135, 15244–15250.

[69]

Zhao, E. W.; Zheng, H. B.; Zhou, R. H.; Hagelin-Weaver, H. E.; Bowers, C. R. Shaped ceria nanocrystals catalyze efficient and selective para-hydrogen-enhanced polarization. Angew. Chem., Int. Ed. 2015, 54, 14270–14275.

[70]

Hook, A.; Celik, F. E. Predicting selectivity for ethane dehydrogenation and coke formation pathways over model Pt-M surface alloys with ab initio and scaling methods. J. Phys. Chem. C 2017, 121, 17882–17892.

[71]

Lian, Z.; Ali, S.; Liu, T. F.; Si, C. W.; Li, B.; Su, D. S. Revealing the Janus character of the coke precursor in the propane direct dehydrogenation on Pt catalysts from a kMC simulation. ACS Catal. 2018, 8, 4694–4704.

[72]

Nam, J.; Celik, F. E. Effect of tin in the bulk of platinum-tin alloys for ethane dehydrogenation. Top. Catal. 2020, 63, 700–713.

[73]

Zhao, Z. J.; Zhao, J. B.; Chang, X.; Zha, S. J.; Zeng, L.; Gong, J. L. Competition of C–C bond formation and C–H bond formation for acetylene hydrogenation on transition metals: A density functional theory study. AIChE J. 2019, 65, 1059–1066.

[74]

Hansen, M. H.; Nørskov, J. K.; Bligaard, T. First principles micro-kinetic model of catalytic non-oxidative dehydrogenation of ethane over close-packed metallic facets. J. Catal. 2019, 374, 161–170.

[75]

Huš, M.; Kopač, D.; Likozar, B. Kinetics of non-oxidative propane dehydrogenation on Cr2O3 and the nature of catalyst deactivation from first-principles simulations. J. Catal. 2020, 386, 126–138.

[76]

Kozuch, S.; Shaik, S. How to conceptualize catalytic cycles? The energetic span model. Acc. Chem. Res. 2011, 44, 101–110.

[77]

Zha, S. J.; Sun, G. D.; Wu, T. F.; Zhao, J. B.; Zhao, Z. J.; Gong, J. L. Identification of Pt-based catalysts for propane dehydrogenation via a probability analysis. Chem. Sci. 2018, 9, 3925–3931.

[78]

Yoon, B.; Häkkinen, H.; Landman, U.; Wörz, A. S.; Antonietti, J. M.; Abbet, S.; Judai, K.; Heiz, U. Charging effects on bonding and catalyzed oxidation of CO on Au8 clusters on MgO. Science 2005, 307, 403–407.

[79]

Oana, M.; Hoffmann, R.; Abruña, H. D.; DiSalvo, F. J. Adsorption of CO on PtBi2 and PtBi surfaces. Surf. Sci. 2005, 574, 1–16.

[80]

Poloni, R.; Lee, K.; Berger, R. F.; Smit, B.; Neaton, J. B. Understanding trends in CO2 adsorption in metal-organic frameworks with open-metal sites. J. Phys. Chem. Lett. 2014, 5, 861–865.

[81]

Greiner, M. T.; Jones, T. E.; Beeg, S.; Zwiener, L.; Scherzer, M.; Girgsdies, F.; Piccinin, S.; Armbrüster, M.; Knop-Gericke, A.; Schlögl, R. Free-atom-like d states in single-atom alloy catalysts. Nat. Chem. 2018, 10, 1008–1015.

[82]

Niu, H.; Zhang, Z. F.; Wang, X. T.; Wan, X. H.; Shao, C.; Guo, Y. Z. Theoretical insights into the mechanism of selective nitrate-to-ammonia electroreduction on single-atom catalysts. Adv. Funct. Mater. 2021, 31, 2008533.

[83]

Huang, Z. Q.; Chen, Y. T.; Chang, C. R.; Li, J. Theoretical insights into dual-metal-site catalysts for the nonoxidative coupling of methane. ACS Catal. 2021, 11, 13149–13159.

[84]

Liu, X.; Jiao, Y.; Zheng, Y.; Jaroniec, M.; Qiao, S. Z. Building up a picture of the electrocatalytic nitrogen reduction activity of transition metal single-atom catalysts. J. Am. Chem. Soc. 2019, 141, 9664–9672.

[85]

Su, G. M.; Wang, H.; Barnett, B. R.; Long, J. R.; Prendergast, D.; Drisdell, W. S. Backbonding contributions to small molecule chemisorption in a metal-organic framework with open copper(I) centers. Chem. Sci. 2021, 12, 2156–2164.

[86]

Medford, A. J.; Vojvodic, A.; Hummelshøj, J. S.; Voss, J.; Abild-Pedersen, F.; Studt, F.; Bligaard, T.; Nilsson, A.; Nørskov, J. K. From the Sabatier principle to a predictive theory of transition-metal heterogeneous catalysis. J. Catal. 2015, 328, 36–42.

[87]

Xu, J. Y.; Cao, X. M.; Hu, P. Perspective on computational reaction prediction using machine learning methods in heterogeneous catalysis. Phys. Chem. Chem. Phys. 2021, 23, 11155–11179.

[88]

Motagamwala, A. H.; Dumesic, J. A. Microkinetic modeling: A tool for rational catalyst design. Chem. Rev. 2021, 121, 1049–1076.

[89]

Pan, Y.; Bhowmick, A.; Wu, W.; Zhang, Y.; Diao, Y. X.; Zheng, A. G.; Zhang, C.; Xie, R. X.; Liu, Z. X.; Meng, J. Q. et al. Titanium silicalite-1 nanosheet-supported platinum for non-oxidative ethane dehydrogenation. ACS Catal. 2021, 11, 9970–9985.

[90]

Xu, Y. B.; Yu, W. D.; Zhang, H.; Xin, J.; He, X. H.; Liu, B.; Jiang, F.; Liu, X. H. Suppressing C–C bond dissociation for efficient ethane dehydrogenation over the isolated Co(II) sites in SAPO-34. ACS Catal. 2021, 11, 13001–13019.

[91]

Deng, Y. C.; Guo, Y.; Jia, Z. M.; Liu, J. C.; Guo, J. Q.; Cai, X. B.; Dong, C. Y.; Wang, M.; Li, C. Y.; Diao, J. Y. et al. Few-atom Pt ensembles enable efficient catalytic cyclohexane dehydrogenation for hydrogen production. J. Am. Chem. Soc. 2022, 144, 3535–3542.

[92]

Han, J. T.; Xue, Z. H.; Zhang, K.; Wang, H. H.; Li, X. H.; Chen, J. S. Atomically dispersed Ni-based anti-coking catalysts for methanol dehydrogenation in a fixed-bed reactor. ACS Catal. 2020, 10, 12569–12574.

[93]

Gómez-Quero, S.; Tsoufis, T.; Rudolf, P.; Makkee, M.; Kapteijn, F.; Rothenberg, G. Kinetics of propane dehydrogenation over Pt-Sn/Al2O3. Catal. Sci. Technol. 2013, 3, 962–971.

[94]

Zhu, J.; Yang, M. L.; Yu, Y. D.; Zhu, Y. A.; Sui, Z. J.; Zhou, X. G.; Holmen, A.; Chen, D. Size-dependent reaction mechanism and kinetics for propane dehydrogenation over Pt catalysts. ACS Catal. 2015, 5, 6310–6319.

[95]

Phadke, N. M.; Mansoor, E.; Bondil, M.; Head-Gordon, M.; Bell, A. T. Mechanism and kinetics of propane dehydrogenation and cracking over Ga/H-MFI prepared via vapor-phase exchange of H-MFI with GaCl3. J. Am. Chem. Soc. 2019, 141, 1614–1627.

[96]

Peng, M.; Jia, Z. M.; Gao, Z. R.; Xu, M.; Cheng, D. Y.; Wang, M.; Li, C. Y.; Wang, L. L.; Cai, X. B.; Jiang, Z. et al. Antisintering Pd1 catalyst for propane direct dehydrogenation with in situ active sites regeneration ability. ACS Catal. 2022, 12, 2244–2252.

[97]

Chen, X. W.; Peng, M.; Cai, X. B.; Chen, Y. L.; Jia, Z. M.; Deng, Y. C.; Mei, B. B.; Jiang, Z.; Xiao, D. Q.; Wen, X. D. et al. Regulating coordination number in atomically dispersed Pt species on defect-rich graphene for n-butane dehydrogenation reaction. Nat. Commun. 2021, 12, 2664.

[98]

Shi, L.; Yan, B.; Shao, D.; Jiang, F.; Wang, D. Q.; Lu, A. H. Selective oxidative dehydrogenation of ethane to ethylene over a hydroxylated boron nitride catalyst. Chin. J. Catal. 2017, 38, 389–395.

[99]

Li, P. P.; Zhang, X. J.; Wang, J. N.; Xue, Y. M.; Yao, Y. B.; Chai, S. S.; Zhou, B.; Wang, X.; Zheng, N. F.; Yao, J. N. Engineering O-O species in boron nitrous nanotubes increases olefins for propane oxidative dehydrogenation. J. Am. Chem. Soc. 2022, 144, 5930–5936.

[100]

Yang, J. H.; Wu, X. T.; Li, X. F.; Liu, Y.; Gao, M.; Liu, X. Y.; Kong, L. N.; Yang, S. Y. Synthesis and characterization of nitrogen-rich carbon nitride nanobelts by pyrolysis of melamine. Appl. Phys. A 2011, 105, 161.

[101]

Li, Y. G.; Zhang, J.; Wang, Q. S.; Jin, Y. X.; Huang, D. H.; Cui, Q. L.; Zou, G. T. Nitrogen-rich carbon nitride hollow vessels: Synthesis, characterization, and their properties. J. Phys. Chem. B 2010, 114, 9429–9434.

[102]

Wang, T.; Abild-Pedersen, F. Identifying factors controlling the selective ethane dehydrogenation on Pt-based catalysts from DFT based micro-kinetic modeling. J. Energy Chem. 2021, 58, 37–40.

[103]

Wu, J.; Peng, Z. M.; Bell, A. T. Effects of composition and metal particle size on ethane dehydrogenation over PtxSn100−x/Mg(Al)O (70 ≤ x ≤ 100). J. Catal. 2014, 311, 161–168.

[104]

Han, G. F.; Li, F.; Rykov, A. I.; Im, Y. K.; Yu, S. Y.; Jeon, J. P.; Kim, S. J.; Zhou, W. H.; Ge, R. L.; Ao, Z. M. et al. Abrading bulk metal into single atoms. Nat. Nanotechnol. 2022, 17, 403–407.

[105]

Nam, J. S.; Rong Kim, A.; Kim, D. M.; Chang, T. S.; Kim, B. S.; Bae, J. W. Novel heterogeneous Rh-incorporated graphitic-carbon nitride for liquid-phase carbonylation of methanol to acetic acid. Catal. Commun. 2017, 99, 141–145.

[106]
Wang, H. K.; Chai, S. S.; Li, P. P.; Yang, Y. J.; Wang, X. Non-oxidative propane dehydrogenation over vanadium doped graphitic carbon nitride catalysts. Catal. Lett., in press, https://doi.org/10.1007/s10562-022-04018-y.
[107]

Wang, Q. G.; Xu, W. T.; Ma, Z. C.; Yu, F.; Chen, Y.; Liao, H. Y.; Wang, X. Y.; Zhou, J. C. Highly effective direct dehydrogenation of propane to propylene by microwave catalysis at low temperature over Co-Sn/NC microwave catalyst. ChemCatChem 2021, 13, 1009–1022.

[108]

Jiang, Y. Q.; Fan, X. L.; Chen, M.; Xiao, X. Z.; Zhang, Y. W.; Wang, C. T.; Chen, L. X. AuPd nanoparticles anchored on nitrogen-decorated carbon nanosheets with highly efficient and selective catalysis for the dehydrogenation of formic acid. J. Phys. Chem. C 2018, 122, 4792–4801.

[109]

Deng, Q. F.; Xin, J. J.; Ma, S. K.; Cui, F. J.; Zhao, Z. L.; Jia, L. H. Hydrogen production from the decomposition of formic acid over carbon nitride-supported AgPd alloy nanoparticles. Energy Technol. 2018, 6, 2374–2379.

[110]

Liu, H.; Liu, X. Y.; Yang, W. W.; Shen, M. Q.; Geng, S.; Yu, C.; Shen, B.; Yu, Y. B. Photocatalytic dehydrogenation of formic acid promoted by a superior PdAg@g-C3N4 Mott–Schottky heterojunction. J. Mater. Chem. A 2019, 7, 2022–2026.

[111]

Gao, M. Y.; Yu, Y. S.; Yang, W. W.; Li, J.; Xu, S. C.; Feng, M.; Li, H. B. Ni nanoparticles supported on graphitic carbon nitride as visible light catalysts for hydrolytic dehydrogenation of ammonia borane. Nanoscale 2019, 11, 3506–3513.

[112]

Verma, S.; Nasir Baig, R. B.; Nadagouda, M. N.; Varma, R. S. Photocatalytic C–H activation and oxidative esterification using Pd@g-C3N4. Catal. Today 2018, 309, 248–252.

[113]

Zhao, Z. J.; Liu, S. H.; Zha, S.; Cheng, D. F.; Studt, F.; Henkelman, G.; Gong, J. L. Theory-guided design of catalytic materials using scaling relationships and reactivity descriptors. Nat. Rev. Mater. 2019, 4, 792–804.

[114]

Latimer, A. A.; Kulkarni, A. R.; Aljama, H.; Montoya, J. H.; Yoo, J. S.; Tsai, C.; Abild-Pedersen, F.; Studt, F.; Nørskov, J. K. Understanding trends in C–H bond activation in heterogeneous catalysis. Nat. Mater. 2017, 16, 225–229.

Nano Research
Pages 6142-6152
Cite this article:
Zhang Y, Wang B, Fan M, et al. Ethane dehydrogenation over the g-C3N4 supported metal single-atom catalysts to enhance reactivity and coking-resistance ability. Nano Research, 2023, 16(5): 6142-6152. https://doi.org/10.1007/s12274-022-5187-4
Topics:
Part of a topical collection:
Metrics & Citations  
Article History
Copyright
Return