AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Photoexcited singlet enhanced oxygen reduction reaction with high selectivity on the photosensitizer/layered double hydroxides nanocomposite

Beibei Yang1Sheng Tao2Xuefei Liu1Jun Lu1( )
State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
Tianjin University, Tianjin 300072, China
Show Author Information

Graphical Abstract

Photoexcited singlet 1O2 enhanced oxygen reduction reaction with high selectivity on the photosensitizer/layered double hydroxides nanocomposite.

Abstract

Oxygen reduction reaction (ORR) plays a pivotal role in advanced electrochemical energy conversion devices. However, the ORR conversion efficiency is extremely limited. The major obstacles originate from the adsorption and activation of O2 on the electrode surface. A novel nanocomposite catalyst, photosensitizers (PS) meso-tetraphenylporphyrin iron(III) chloride (FePcCl)/NiCoFe-layered double hydroxides (NiCoFe-LDHs) is designed in this study. Herein, owing to excellent oxygen molecules activation ability and remarkable illumination absorption feature, FePcCl/NiCoFe-LDHs is employed to uncover the relationship between the intrinsic ORR activity and PS behaviour. Interestingly, the reaction mechanism of singlet 1O2 is proposed owing to the combination of electrochemical ORR catalysed via LDHs and PS. The boosted cathodic ORR properties exhibit singlet 1O2 dependent response arising from the synergistic effect to selectively produce active intermediates in alkaline medium. This work imparts the promising new mechanism about the high 4-electron ORR selectivity via material design, which will guide the development of photo-assisted energy conversion devices.

Electronic Supplementary Material

Download File(s)
12274_2022_5192_MOESM1_ESM.pdf (3.9 MB)

References

[1]

Sun, Z. H.; Zhang, X.; Yang, X. D.; Shi, W. N.; Huang, Y. Q.; Men, Y. L.; Yang, J.; Zhou, Z. Y. Identification of a pyrone-type species as the active site for the oxygen reduction reaction. Chem. Commun. (Camb.) 2022, 58, 8998–9001.

[2]

Debe, M. K. Electrocatalyst approaches and challenges for automotive fuel cells. Nature 2012, 486, 43–51.

[3]

Wang, Y. L.; Waterhouse, G. I. N.; Shang, L.; Zhang, T. R. Electrocatalytic oxygen reduction to hydrogen peroxide: From homogeneous to heterogeneous electrocatalysis. Adv. Energy Mater. 2021, 11, 2003323.

[4]
Wu, L. M.; Zhao, R. G.; Du, G.; Wang, H.; Hou, M. C.; Zhang, W.; Sun, P. C.; Chen, T. H. Hierarchically porous Fe/N/S/C nanospheres with high-content of Fe-Nx for enhanced ORR and Zn-air battery performance. Green Energy Environ., in press, https://doi.org/10.1016/j.gee.2022.03.014.
[5]

Wu, Z. X.; Wu, H. B.; Niu, T. F.; Wang, S.; Fu, G. T.; Jin, W.; Ma, T. Y. Sulfurated metal-organic framework-derived nanocomposites for efficient bifunctional oxygen electrocatalysis and rechargeable Zn-air battery. ACS Sustainable Chem. Eng. 2020, 8, 9226–9234.

[6]

Alduhaish, O.; Ubaidullah, M.; Al-Enizi, A. M.; Alhokbany, N.; Alshehri, S. M.; Ahmed, J. Facile synthesis of mesoporous α-Fe2O3@g-C3N4-NCs for efficient bifunctional electro-catalytic activity (OER/ORR). Sci. Rep. 2019, 9, 14139.

[7]

Bhardwaj, U.; Sharma, A.; Gupta, V.; Batoo, K. M.; Hussain, S.; Kushwaha, H. S. High energy storage capabilities of CaCu3Ti4O12 for paper-based zinc-air battery. Sci. Rep. 2022, 12, 3999.

[8]

Ren, M. Q.; Zhang, J. B.; Tour, J. M. Laser-induced graphene hybrid catalysts for rechargeable Zn-air batteries. ACS Appl. Energy Mater. 2019, 2, 1460–1468.

[9]

Ma, B.; Chen, T. T.; Li, Q. Y.; Qin, H. N.; Dong, X. Y.; Zang, S. Q. Bimetal-organic-framework-derived nanohybrids Cu0.9Co2. 1S4@MoS2 for high-performance visible-light-catalytic hydrogen evolution reaction. ACS Appl. Energy Mater. 2019, 2, 1134–1148.

[10]

Zhou, T. P.; Shan, H.; Yu, H.; Zhong, C.; Ge, J. K.; Zhang, N.; Chu, W. S.; Yan, W. S.; Xu, Q.; Wu, H. et al. Nanopore confinement of electrocatalysts optimizing triple transport for an ultrahigh-power-density zinc-air fuel cell with robust stability. Adv. Mater. 2020, 32, 2003251.

[11]

Wang, Y.; Wang, L.; Xie, Y.; Tong, M. M.; Tian, C. G.; Fu, H. G. The Fe3C-Nx site assists the Fe-Nx site to promote activity of the Fe-N-C electrocatalyst for oxygen reduction reaction. ACS Sustainable Chem. Eng. 2022, 10, 3346–3354.

[12]

Zhou, C. H.; Chen, X.; Liu, S.; Han, Y.; Meng, H. B.; Jiang, Q. Y.; Zhao, S. M.; Wei, F.; Sun, J.; Tan, T. et al. Superdurable bifunctional oxygen electrocatalyst for high-performance zinc-air batteries. J. Am. Chem. Soc. 2022, 144, 2694–2704.

[13]

Shu, Q. H.; Zhang, J.; Hu, B.; Deng, X.; Yuan, J. L.; Ran, R.; Zhou, W.; Shao, Z. P. Rational design of a high-durability Pt-based ORR catalyst supported on Mn/N codoped carbon sheets for PEMFCs. Energy Fuels 2022, 36, 1707–1715.

[14]

Xie, Y. X.; Yang, Y.; Muller, D. A.; Abruña, H. D.; Dimitrov, N.; Fang, J. Y. Enhanced ORR kinetics on Au-doped Pt-Cu porous films in alkaline media. ACS Catal. 2020, 10, 9967–9976.

[15]

Zhang, L. Y.; Guo, C. X.; Cao, H. J.; Wang, S.; Ouyang, Y. R.; Xu, B. H.; Guo, P. Z.; Li, C. M. Highly wrinkled palladium nanosheets as advanced electrocatalysts for the oxygen reduction reaction in acidic medium. Chem. Eng. J. 2022, 431, 133237.

[16]

Zeng, T. T.; Meng, X. M.; Huang, H. W.; Zheng, L. W.; Chen, H. B.; Zhang, Y.; Yuan, W. Y.; Zhang, L. Y. Controllable synthesis of web-footed PdCu nanosheets and their electrocatalytic applications. Small 2022, 18, 2107623.

[17]

Meng, X. M.; Zeng, T. T.; Ma, S. Y.; Zheng, L. W.; Chen, H. B.; Yuan, W. Y.; Zhang, L. Y. Surface nitridation of PdCu nanosheets to promote charge transfer and suppress CO poisoning toward ethanol electrooxidation. Adv. Mater. Interfaces 2022, 9, 2101849.

[18]

Li, Q.; Song, S. Z.; Wang, Y. Q. Ionic liquid-derived ultrafine Pt nanoparticles with a uniformly dispersed state for long-life oxygen electroreduction. ACS Sustainable Chem. Eng. 2021, 9, 14986–14996.

[19]

Jia, Q. Y.; Zhao, Z. P.; Cao, L.; Li, J. K.; Ghoshal, S.; Davies, V.; Stavitski, E.; Attenkofer, K.; Liu, Z. Y.; Li, M. F. et al. Roles of Mo surface dopants in enhancing the ORR performance of octahedral PtNi nanoparticles. Nano Lett. 2018, 18, 798–804.

[20]

Li, C. L.; Ren, Y. Y.; Gao, F.; Li, B. S.; Li, L. L.; Zhang, X. H.; Lu, Z. M.; Yang, X. J.; Yu, X. F. PtPd nanonets derived from Pd@PtPd RDs as high-performance catalysts for the oxygen reduction reaction. ACS Appl. Energy Mater. 2021, 4, 10968–10975.

[21]

Li, C. L.; Gao, F.; Ren, Y. Y.; Li, B. S.; Li, L. L.; Lu, Z. M.; Yang, X. J.; Zhang, X. H.; Yu, X. F. PtPdMo nanosheets with controllable synthesis for enhanced oxygen reduction reactions. ACS Appl. Nano Mater. 2022, 5, 1192–1199.

[22]

Yin, Y. C.; Shi, Y.; Sun, Y. B.; Yang, D. R.; Liu, Y.; Xia, X. H. Selective electrochemical generation of hydrogen peroxide from oxygen reduction on atomically dispersed platinum. ACS Appl. Energy Mater. 2021, 4, 10843–10848.

[23]

Cai, X.; Jiang, T. T.; Wu, M. Z. Confined growth of NiFe LDH with hierarchical structures on copper nanowires for long-term stable rechargeable Zn-air batteries. Appl. Surf. Sci. 2022, 577, 151911.

[24]

Khater, D. Z.; Amin, R. S.; Mahmoud, M.; El-Khatib, K. M. Evaluation of mixed transition metal (Co, Mn, and Cu) oxide electrocatalysts anchored on different carbon supports for robust oxygen reduction reaction in neutral media. RSC Adv. 2022, 12, 2207–2218.

[25]

Li, J. Z.; Chen, M. J.; Cullen, D. A.; Hwang, S.; Wang, M. Y.; Li, B. Y.; Liu, K. X.; Karakalos, S.; Lucero, M.; Zhang, H. G. et al. Atomically dispersed manganese catalysts for oxygen reduction in proton-exchange membrane fuel cells. Nat. Catal. 2018, 1, 935–945.

[26]

Wu, J.; Mehmood, A.; Zhang, G. H.; Wu, S.; Ali, G.; Kucernak, A. Highly selective O2 reduction to H2O2 catalyzed by cobalt nanoparticles supported on nitrogen-doped carbon in alkaline solution. ACS Catal. 2021, 11, 5035–5046.

[27]

Wang, Q.; Yang, Y. Q.; Sun, F. F.; Chen, G. B.; Wang, J.; Peng, L. S.; Chen, W. T.; Shang, L.; Zhao, J. Q.; Sun-Waterhouse, D. et al. Molten NaCl-assisted synthesis of porous Fe-N-C electrocatalysts with a high density of catalytically accessible FeN4 active sites and outstanding oxygen reduction reaction performance. Adv. Energy Mater. 2021, 11, 2100219.

[28]

Xie, X. Y.; Peng, L. S.; Yang, H. Z.; Waterhouse, G. I. N.; Shang, L.; Zhang, T. R. MIL-101-derived mesoporous carbon supporting highly exposed Fe single-atom sites as efficient oxygen reduction reaction catalysts. Adv. Mater. 2021, 33, 2101038.

[29]

Kang, J. X.; Xue, Y. F.; Yang, J.; Hu, Q.; Zhang, Q. H.; Gu, L.; Selloni, A.; Liu, L. M.; Guo, L. Realizing two-electron transfer in Ni(OH)2 nanosheets for energy storage. J. Am. Chem. Soc. 2022, 144, 8969–8976.

[30]

Zhao, C. X.; Liu, J. N.; Wang, J.; Ren, D.; Li, B. Q.; Zhang, Q. Recent advances of noble-metal-free bifunctional oxygen reduction and evolution electrocatalysts. Chem. Soc. Rev. 2021, 50, 7745–7778.

[31]

Zhang, Y. L.; Goh, K.; Zhao, L.; Sui, X. L.; Gong, X. F.; Cai, J. J.; Zhou, Q. Y.; Zhang, H. D.; Li, L.; Kong, F. R. et al. Advanced non-noble materials in bifunctional catalysts for ORR and OER toward aqueous metal-air batteries. Nanoscale 2020, 12, 21534–21559.

[32]

He, B.; Zhang, Q. C.; Pan, Z. H.; Li, L.; Li, C. W.; Ling, Y.; Wang, Z. X.; Chen, M. X.; Wang, Z.; Yao, Y. G. et al. Freestanding metal-organic frameworks and their derivatives: An emerging platform for electrochemical energy storage and conversion. Chem. Rev. 2022, 122, 10087–10125.

[33]

Pegis, M. L.; Wise, C. F.; Martin, D. J.; Mayer, J. M. Oxygen reduction by homogeneous molecular catalysts and electrocatalysts. Chem. Rev. 2018, 118, 2340–2391.

[34]

Zhang, B. W.; Zheng, T.; Wang, Y. X.; Du, Y.; Chu, S. Q.; Xia, Z. H.; Amal, R.; Dou, S. X.; Dai, L. M. Highly efficient and selective electrocatalytic hydrogen peroxide production on Co-O-C active centers on graphene oxide. Commun. Chem. 2022, 5, 43.

[35]

Dong, K.; Liang, J.; Ren, Y. C.; Wang, Y. Y.; Xu, Z. Q.; Yue, L. C.; Li, T. S.; Liu, Q.; Luo, Y. L.; Liu, Y. et al. Electrochemical two-electron O2 reduction reaction toward H2O2 production: Using cobalt porphyrin decorated carbon nanotubes as a nanohybrid catalyst. J. Mater. Chem. A 2021, 9, 26019–26027.

[36]

Thakur, D.; Ta, Q. T. H.; Noh, J. S. Photosensitizer-conjugated hollow ZnFe2O4 nanoparticles for antibacterial near-infrared photodynamic therapy. ACS Appl. Nano Mater. 2021, 5, 1533–1541.

[37]

He, G. L.; Xu, N.; Ge, H. Y.; Lu, Y.; Wang, R.; Wang, H. X.; Du, J. J.; Fan, J. L.; Sun, W.; Peng, X. J. Red-light-responsive Ru complex photosensitizer for lysosome localization photodynamic therapy. ACS Appl. Mater. Interfaces 2021, 13, 19572–19580.

[38]

Yang, X. T.; Wang, L.; Guo, S. T.; Li, R.; Tian, F. Z.; Guan, S. Y.; Zhou, S. Y.; Lu, J. Self-cycling free radical generator from LDH-based nanohybrids for ferroptosis-enhanced chemodynamic therapy. Adv. Healthcare Mater. 2021, 10, 2100539.

[39]

Tamtaji, M.; Tyagi, A.; You, C. Y.; Galligan, P. R.; Liu, H. W.; Liu, Z. J.; Karimi, R.; Cai, Y. T.; Roxas, A. P.; Wong, H. et al. Singlet oxygen photosensitization using graphene-based structures and immobilized dyes: A review. ACS Appl. Nano Mater. 2021, 4, 7563–7586.

[40]

Xu, M. K.; Zhang, C.; Zeng, Z. L.; Pu, K. Y. Semiconducting polymer nanoparticles as activatable nanomedicines for combinational phototherapy. ACS Appl. Polym. Mater. 2021, 3, 4375–4389.

[41]

Schlachter, A.; Asselin, P.; Harvey, P. D. Porphyrin-containing MOFs and COFs as heterogeneous photosensitizers for singlet oxygen-based antimicrobial nanodevices. ACS Appl. Mater. Interfaces 2021, 13, 26651–26672.

[42]

Cui, J. Y.; Chen, Q. J.; Li, X. J.; Zhang, S. J. Recent advances in non-precious metal electrocatalysts for oxygen reduction in acidic media and PEMFCs: An activity, stability and mechanism study. Green Chem. 2021, 23, 6898–6925.

[43]

Yan, Y.; Cheng, H. Y.; Qu, Z. H.; Yu, R.; Liu, F.; Ma, Q. W.; Zhao, S.; Hu, H.; Cheng, Y.; Yang, C. Y. et al. Recent progress on the synthesis and oxygen reduction applications of Fe-based single-atom and double-atom catalysts. J. Mater. Chem. A 2021, 9, 19489–19507.

[44]

Tian, S. F.; Tang, Q. Activating transition metal dichalcogenide monolayers as efficient electrocatalysts for the oxygen reduction reaction via single atom doping. J. Mater. Chem. C 2021, 9, 6040–6050.

[45]

Wang, D. W.; Li, Q.; Han, C.; Lu, Q. Q.; Xing, Z. C.; Yang, X. R. Atomic and electronic modulation of self-supported nickel-vanadium layered double hydroxide to accelerate water splitting kinetics. Nat. Commun. 2019, 10, 3899.

[46]

Wan, H.; Chen, F. S.; Ma, W.; Liu, X. H.; Ma, R. Z. Advanced electrocatalysts based on two-dimensional transition metal hydroxides and their composites for alkaline oxygen reduction reaction. Nanoscale 2020, 12, 21479–21496.

[47]

Cai, Z. Y.; Bu, X. M.; Wang, P.; Ho, J. C.; Yang, J. H.; Wang, X. Y. Recent advances in layered double hydroxide electrocatalysts for the oxygen evolution reaction. J. Mater. Chem. A 2019, 7, 5069–5089.

[48]

Tajdid Khajeh, R.; Aber, S.; Zarei, M. Comparison of NiCo2O4, CoNiAl-LDH, and CoNiAl-LDH@NiCo2O4 performances as ORR catalysts in MFC cathode. Renewable Energy 2020, 154, 1263–1271.

[49]

Chen, D.; Chen, X.; Cui, Z. X.; Li, G. F.; Han, B.; Zhang, Q.; Sui, J.; Dong, H. Z.; Yu, J. H.; Yu, L. Y. et al. Dual-active-site hierarchical architecture containing NiFe-LDH and ZIF-derived carbon-based framework composite as efficient bifunctional oxygen electrocatalysts for durable rechargeable Zn-air batteries. Chem. Eng. J. 2020, 399, 125718.

[50]

Yang, Y. J.; Duan, M. H.; Yan, C. X.; Zhao, D. D.; Jiang, C.; Duan, X. Y.; Song, X. Y. Facile synthesis of CoFe-LDH/MWCNT/rGO nanocomposite as efficient bifunctional electrocatalysts for oxygen evolution and reduction. J. Electroanal. Chem. 2020, 856, 113697.

[51]

Yang, Z. Q.; Yan, X. R.; Tang, Z. Y.; Peng, W. C.; Zhang, J. S.; Tong, Y. B.; Li, J.; Zhang, J. L. Facile synthesis of hemin-based Fe-N-C catalyst by MgAl-LDH confinement effect for oxygen reduction reaction. Appl. Surf. Sci. 2022, 573, 151505.

[52]

Qian, L.; Lu, Z. Y.; Xu, T. H.; Wu, X. C.; Tian, Y.; Li, Y. P.; Huo, Z. Y.; Sun, X. M.; Duan, X. Trinary layered double hydroxides as high-performance bifunctional materials for oxygen electrocatalysis. Adv. Energy Mater. 2015, 5, 1500245.

[53]

Wang, W.; Liu, Y. C.; Li, J.; Luo, J.; Fu, L.; Chen, S. L. NiFe LDH nanodots anchored on 3D macro/mesoporous carbon as a high-performance ORR/OER bifunctional electrocatalyst. J. Mater. Chem. A 2018, 6, 14299–14306.

[54]

Abedi, H.; Mehrpooya, M. Synthesis of three-metal layered double hydroxide and dual doped graphene oxide composite as a novel electrocatalyst for oxygen reduction reaction. J. Alloys Compd. 2021, 875, 160047.

[55]

Jia, X. D.; Gao, S. J.; Liu, T. Y.; Li, D. Q.; Tang, P. G.; Feng, Y. J. Fabrication and bifunctional electrocatalytic performance of ternary CoNiMn layered double hydroxides/polypyrrole/reduced graphene oxide composite for oxygen reduction and evolution reactions. Electrochim. Acta 2017, 245, 59–68.

[56]

Long, X.; Wang, Z. L.; Xiao, S.; An, Y. M.; Yang, S. H. Transition metal based layered double hydroxides tailored for energy conversion and storage. Mater. Today 2016, 19, 213–226.

[57]
Mallakpour, S.; Motirasoul, F. Electrical and electronic applications of layered double-hydroxide polymer nanocomposites. In Layered Double Hydroxide Polymer Nanocomposites: A volume in Woodhead Publishing Series in Composites Science and Engineering. Thomas, S.; Daniel, S. , Eds.; Elsevier: Amsterdam, 2020.
[58]

Zhao, G. Q.; Zou, J.; Chen, X. Q.; Yu, J. G.; Jiao, F. P. Layered double hydroxides materials for photo(electro-) catalytic applications. Chem. Eng. J. 2020, 397, 125407.

[59]

Liao, F. F.; Zhao, X.; Yang, G. Y.; Cheng, Q. H.; Mao, L.; Chen, L. Y. Recent advances on two-dimensional NiFe-LDHs and their composites for electrochemical energy conversion and storage. J. Alloys Compd. 2021, 872, 159649.

[60]

Duan, M. T.; Liu, S. J.; Jiang, Q. M.; Guo, X. M.; Zhang, J. H.; Xiong, S. L. Recent progress on preparation and applications of layered double hydroxides. Chin. Chem. Lett. 2022, 33, 4428–4436.

[61]

Jiang, Y. Y.; Lu, Y. Z.; Lv, X. Y.; Han, D. X.; Zhang, Q. X.; Niu, L.; Chen, W. Enhanced catalytic performance of Pt-free iron phthalocyanine by graphene support for efficient oxygen reduction reaction. ACS Catal. 2013, 3, 1263–1271.

[62]

Liu, W. B.; Wang, K.; Wang, C. M.; Liu, W. P.; Pan, H. H.; Xiang, Y. J.; Qi, D. D.; Jiang, J. Z. Mixed phthalocyanine-porphyrin-based conjugated microporous polymers towards unveiling the activity origin of Fe-N4 catalysts for the oxygen reduction reaction. J. Mater. Chem. A 2018, 6, 22851–22857.

[63]

Amanullah, S.; Saha, P.; Dey, A. O2 reduction by iron porphyrins with electron withdrawing groups: To scale or not to scale. Faraday Discuss. 2022, 234, 143–158.

[64]

Yue, J. Y.; Wang, Y. T.; Wu, X.; Yang, P.; Ma, Y.; Liu, X. H.; Tang, B. Two-dimensional porphyrin covalent organic frameworks with tunable catalytic active sites for the oxygen reduction reaction. Chem. Commun. (Camb.) 2021, 57, 12619–12622.

[65]

Yamazaki, S. I.; Asahi, M.; Taguchi, N.; Ioroi, T. Electrochemical analysis of the porphyrazine-induced enhancement of ORR activity of Pt catalysts for the development of porphyrazine-adsorbed Pt catalysts. J. Electroanal. Chem. 2019, 848, 113321.

[66]

Mondal, P.; Satra, J.; Ghorui, U. K.; Saha, N.; Srivastava, D. N.; Adhikary, B. Facile fabrication of novel hetero-structured organic–inorganic high-performance nanocatalyst: A smart system for enhanced catalytic activity toward ciprofloxacin degradation and oxygen reduction. ACS Appl. Nano Mater. 2018, 1, 6015–6026.

[67]

Yu, W. D.; Li, B.; Zhang, Y.; Yan, Q. W.; Yan, J. Discovery of a fullerene–polyoxometalate hybrid exhibiting enhanced photocurrent response. Inorg. Chem. 2020, 59, 5266–5270.

[68]

Anastasescu, C.; Negrila, C.; Angelescu, D. G.; Atkinson, I.; Anastasescu, M.; Spataru, N.; Zaharescu, M.; Balint, I. Particularities of photocatalysis and formation of reactive oxygen species on insulators and semiconductors: Cases of SiO2, TiO2 and their composite SiO2-TiO2. Catal. Sci. Technol. 2018, 8, 5657–5668.

[69]

Cai, X.; Zhao, Y. W.; Wang, L.; Hu, M. C.; Wu, Z. E.; Liu, L. F.; Zhu, W. P.; Pei, R. J. Synthesis of Au@MOF core–shell hybrids for enhanced photodynamic/photothermal therapy. J. Mater. Chem. B 2021, 9, 6646–6657.

Nano Research
Pages 5938-5945
Cite this article:
Yang B, Tao S, Liu X, et al. Photoexcited singlet enhanced oxygen reduction reaction with high selectivity on the photosensitizer/layered double hydroxides nanocomposite. Nano Research, 2023, 16(4): 5938-5945. https://doi.org/10.1007/s12274-022-5192-7
Topics:

719

Views

1

Crossref

1

Web of Science

1

Scopus

0

CSCD

Altmetrics

Received: 30 August 2022
Revised: 04 October 2022
Accepted: 11 October 2022
Published: 16 January 2023
© Tsinghua University Press 2022
Return