AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Core/hybrid-shell structures boost thermoelectric performance of flexible inorganic/organic nanowire films

Changcun Li1,2Xiaoqi Lan1Peipei Liu1Jingkun Xu1( )Qinglin Jiang3Congcong Liu1( )Cheng Liu1Fengxing Jiang1( )
Jiangxi Key Laboratory of Flexible Electronics, Jiangxi Science and Technology Normal University, Nanchang 330013, China
School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
Show Author Information

Graphical Abstract

Interface control is a prominent strategy to achieve significant improvements in composites performance. A novel core/hybrid-shell strategy is proposed to efficiently control the energy matching of the inorganic/organic interface, realizing the utilization of energy filtering effect and the substantial great improvement in thermoelectric (TE) performance. Moreover, the prepared core/hybrid-shell composite films exhibit superior air-stability and flexibility, demonstrating great potential in low-power portable electronics.

Abstract

Interface control in inorganic/organic composites has always been regarded as one of the effective means to optimize their thermoelectric (TE) performance, and the past few years have witnessed its development, including carrier-energy filtering and phonon scattering. However, the energy barrier created by the band alignment at the composite interface depends on the Fermi level difference between the organic and inorganic components, which is difficult to be controlled by the common means. Herein, a core/hybrid-shell strategy aiming for efficient interface control is proposed to tune the energy barrier of the inorganic/organic core/shell nanowire interface. The Fermi level of hybrid-shell can be effectively controlled by separating the charge carriers compared to the single-shell composites. The energy barrier of the core/hybrid-shell interface is tuned to an appropriate position, and the energy filtering effect is utilized, resulting in a substantial improvement in power factor and reduction in thermal conductivity for the prepared core/hybrid-shell composites with good air-stability and flexibility. Moreover, both the flexible p type and p-n type TE devices based on the prepared core/hybrid-shell films yield excellent output properties with the maximum power densities of 41 and 45 μW·cm−2 at a temperature difference of ca. 30 K, respectively. This study provides a novel strategy to improve the TE performance of the inorganic/organic composites, displaying great potential for low-power wearable electronics.

Electronic Supplementary Material

Download File(s)
12274_2022_5193_MOESM1_ESM.pdf (1.5 MB)

References

[1]

Gao, M. Y.; Wang, P.; Jiang, L. L.; Wang, B. W.; Yao, Y.; Liu, S.; Chu, D. W.; Cheng, W. L.; Lu, Y. R. Power generation for wearable systems. Energy Environ. Sci. 2021, 14, 2114–2157.

[2]

Masoumi, S.; O'Shaughnessy, S.; Pakdel, A. Organic-based flexible thermoelectric generators: From materials to devices. Nano Energy 2022, 92, 106774.

[3]

Li, C. C.; Jiang, F. X.; Liu, C. C.; Liu, P. P.; Xu, J. K. Present and future thermoelectric materials toward wearable energy harvesting. Appl. Mater. Today 2019, 15, 543–557.

[4]

Wang, Y.; Yang, L.; Shi, X. L.; Shi, X.; Chen, L. D.; Dargusch, M. S.; Zou, J.; Chen, Z. G. Flexible thermoelectric materials and generators: Challenges and innovations. Adv. Mater. 2019, 31, 1807916.

[5]

Nandihalli, N.; Liu, C. J.; Mori, T. Polymer based thermoelectric nanocomposite materials and devices: Fabrication and characteristics. Nano Energy 2020, 78, 105186.

[6]

Zhou, M. Y.; Al-Furjan, M. S. H.; Zou, J.; Liu, W. A review on heat and mechanical energy harvesting from human-principles, prototypes and perspectives. Renew. Sust. Energy Rev. 2018, 82, 3582–3609.

[7]
Jiang, F. X.; Liu, C. C.; Xu, J. K. Advanced PEDOT Thermoelectric Materials; Woodhead Publishing: Cambridge, MA, 2022.
[8]

Li, M.; Bai, Z. Z.; Chen, X.; Liu, C. C.; Xu, J. K.; Lan, X. Q.; Jiang, F. X. Thermoelectric transport in conductive poly(3,4-ethylenedioxythiophene). Chin. Phys. B 2022, 31, 027201.

[9]

Dresselhaus, M. S.; Chen, G.; Tang, M. Y.; Yang, R. G.; Lee, H.; Wang, D. Z.; Ren, Z. F.; Fleurial, J. P.; Gogna, P. New directions for low-dimensional thermoelectric materials. Adv. Mater. 2007, 19, 1043–1053.

[10]

He, J.; Tritt, T. M. Advances in thermoelectric materials research: Looking back and moving forward. Science 2017, 357, eaak9997.

[11]

Bulman, G.; Barletta, P.; Lewis, J.; Baldasaro, N.; Manno, M.; Bar-Cohen, A.; Yang, B. Superlattice-based thin-film thermoelectric modules with high cooling fluxes. Nat. Commun. 2016, 7, 10302.

[12]

Wan, C. L.; Tian, R. M.; Kondou, M.; Yang, R. G.; Zong, P. A.; Koumoto, K. Ultrahigh thermoelectric power factor in flexible hybrid inorganic–organic superlattice. Nat. Commun. 2017, 8, 1024.

[13]

Lu, Y.; Qiu, Y.; Cai, K. F.; Ding, Y. F.; Wang, M. D.; Jiang, C.; Yao, Q.; Huang, C. J.; Chen, L. D.; He, J. Q. Ultrahigh power factor and flexible silver selenide-based composite film for thermoelectric devices. Energy Environ. Sci. 2020, 13, 1240–1249.

[14]

Jiang, C.; Wei, P.; Ding, Y. F.; Cai, K. F.; Tong, L.; Gao, Q.; Lu, Y.; Zhao, W. Y.; Chen, S. Ultrahigh performance polyvinylpyrrolidone/Ag2Se composite thermoelectric film for flexible energy harvesting. Nano Energy 2021, 80, 105488.

[15]

Jo, S.; Choo, S.; Kim, F.; Heo, S. H.; Son, J. S. Ink processing for thermoelectric materials and power-generating devices. Adv. Mater. 2019, 31, 1804930.

[16]

He, R.; Schierning, G.; Nielsch, K. Thermoelectric devices: A review of devices, architectures, and contact optimization. Adv. Mater. Technol. 2018, 3, 1700256.

[17]

Peng, P.; Zhou, J. Q.; Liang, L. R.; Huang, X.; Lv, H. C.; Liu, Z. X.; Chen, G. M. Regulating thermogalvanic effect and mechanical robustness via redox ions for flexible quasi-solid-state thermocells. Nanomicro Lett. 2022, 14, 81.

[18]

Zhu, T. J.; Liu, Y. T.; Fu, C. G.; Heremans, J. P.; Snyder, J. G.; Zhao, X. B. Compromise and synergy in high-efficiency thermoelectric materials. Adv. Mater. 2017, 29, 1605884.

[19]

Zhang, Z. W.; Ouyang, Y. L.; Cheng, Y.; Chen, J.; Li, N. B.; Zhang, G. Size-dependent phononic thermal transport in low-dimensional nanomaterials. Phys. Rep. 2020, 860, 1–26.

[20]

Jin, H. L.; Li, J.; Iocozzia, J.; Zeng, X.; Wei, P. C.; Yang, C.; Li, N.; Liu, Z. P.; He, J. H.; Zhu, T. J. et al. Hybrid organic–inorganic thermoelectric materials and devices. Angew. Chem., Int. Ed. 2019, 58, 15206–15226.

[21]

Tan, G. J.; Zhao, L. D.; Kanatzidis, M. G. Rationally designing high-performance bulk thermoelectric materials. Chem. Rev. 2016, 116, 12123–12149.

[22]

Bai, W.; Xiao, C.; Xie, Y. Bulk superlattice analogues for energy conversion. J. Am. Chem. Soc. 2022, 144, 3298–3313.

[23]

Schmidt, V.; Wittemann, J. V.; Senz, S.; Gösele, U. Silicon nanowires: A review on aspects of their growth and their electrical properties. Adv. Mater. 2009, 21, 2681–2702.

[24]

Zuev, Y. M.; Lee, J. S.; Galloy, C.; Park, H.; Kim, P. Diameter dependence of the transport properties of antimony telluride nanowires. Nano Lett. 2010, 10, 3037–3040.

[25]

Martin, P. N.; Aksamija, Z.; Pop, E.; Ravaioli, U. Reduced thermal conductivity in nanoengineered rough Ge and GaAs nanowires. Nano Lett. 2010, 10, 1120–1124.

[26]

Martin, P.; Aksamija, Z.; Pop, E.; Ravaioli, U. Impact of phonon-surface roughness scattering on thermal conductivity of thin Si nanowires. Phys. Rev. Lett. 2009, 102, 125503.

[27]

Wang, L. M.; Zhang, Z. M.; Liu, Y. C.; Wang, B. R.; Fang, L.; Qiu, J. J.; Zhang, K.; Wang, S. R. Exceptional thermoelectric properties of flexible organic–inorganic hybrids with monodispersed and periodic nanophase. Nat. Commun. 2018, 9, 3817.

[28]

Kumar, P.; Zaia, E. W.; Yildirim, E.; Repaka, D. V. M.; Yang, S. W.; Urban, J. J.; Hippalgaonkar, K. Polymer morphology and interfacial charge transfer dominate over energy-dependent scattering in organic–inorganic thermoelectrics. Nat. Commun. 2018, 9, 5347.

[29]

Guan, X.; Ouyang, J. Y. Enhancement of the Seebeck coefficient of organic thermoelectric materials via energy filtering of charge carriers. CCS Chem. 2021, 3, 2415–2427.

[30]

He, S. Y.; Lehmann, S.; Bahrami, A.; Nielsch, K. Current state-of-the-art in the interface/surface modification of thermoelectric materials. Adv. Energy Mater. 2021, 11, 2101877.

[31]

Gayner, C.; Amouyal, Y. Energy filtering of charge carriers: Current trends, challenges, and prospects for thermoelectric materials. Adv. Funct. Mater. 2019, 30, 1901789.

[32]

Mulla, R.; Dunnill, C. W. Core–shell nanostructures for better thermoelectrics. Mater. Adv. 2022, 3, 125–141.

[33]

Meng, Q. F.; Jiang, Q. L.; Cai, K. F.; Chen, L. D. Preparation and thermoelectric properties of PEDOT:PSS coated Te nanorod/PEDOT:PSS composite films. Org. Electron. 2019, 64, 79–85.

[34]

Song, H. J.; Cai, K. F. Preparation and properties of PEDOT: PSS/Te nanorod composite films for flexible thermoelectric power generator. Energy 2017, 125, 519–525.

[35]

Kim, J. W.; Kim, A. Absolute work function measurement by using photoelectron spectroscopy. Curr. Appl. Phys. 2021, 31, 52–59.

[36]

Helander, M. G.; Greiner, M. T.; Wang, Z. B.; Lu, Z. H. Pitfalls in measuring work function using photoelectron spectroscopy. Appl. Surf. Sci. 2010, 256, 2602–2605.

[37]

Fang, H. Y.; Wu, Y. Telluride nanowire and nanowire heterostructure-based thermoelectric energy harvesting. J. Mater. Chem. A 2014, 2, 6004–6014.

[38]

Liang, H. W.; Liu, J. W.; Qian, H. S.; Yu, S. H. Multiplex templating process in one-dimensional nanoscale: Controllable synthesis, macroscopic assemblies, and applications. Acc. Chem. Res. 2013, 46, 1450–1461.

[39]

Li, C. C.; Jiang, F. X.; Liu, C. C.; Wang, W. F.; Li, X. J.; Wang, T. Z.; Xu, J. K. A simple thermoelectric device based on inorganic/organic composite thin film for energy harvesting. Chem. Eng. J. 2017, 320, 201–210.

[40]

Sun, P. L.; Li, C. C.; Xu, J. K.; Jiang, Q. L.; Wang, W. F.; Liu, J.; Zhao, F.; Ding, Y. B.; Hou, J.; Jiang, F. X. Effect of Sn element on optimizing thermoelectric performance of Te nanowires. Sustain. Energy Fuels 2018, 2, 2636–2643.

[41]

Choi, J.; Lee, K.; Park, C. R.; Kim, H. Enhanced thermopower in flexible tellurium nanowire films doped using single-walled carbon nanotubes with a rationally designed work function. Carbon 2015, 94, 577–584.

[42]

Cook, J. H.; Al-Attar, H. A.; Monkman, A. P. Effect of PEDOT-PSS resistivity and work function on PLED performance. Org. Electron. 2014, 15, 245–250.

[43]

Jiang, F. X.; Xiong, J. H.; Zhou, W. Q.; Liu, C. C.; Wang, L. Y.; Zhao, F.; Liu, H.; Xu, J. Use of organic solvent-assisted exfoliated MoS2 for optimizing the thermoelectric performance of flexible PEDOT: PSS thin films. J. Mater. Chem. A 2016, 4, 5265–5273.

[44]

Song, H. J.; Cai, K. F.; Shen, S. Enhanced thermoelectric properties of PEDOT/PSS/Te composite films treated with H2SO4. J. Nanopart. Res. 2016, 18, 386.

[45]

Li, S. H.; Xin, J. W.; Basit, A.; Long, Q.; Li, S. W.; Jiang, Q. H.; Luo, Y. B.; Yang, J. Y. In situ reaction induced core–shell structure to ultralow κlat and high thermoelectric performance of SnTe. Adv. Sci. 2020, 7, 1903493.

[46]

Bae, E. J.; Kang, Y. H.; Jang, K. S.; Cho, S. Y. Enhancement of thermoelectric properties of PEDOT:PSS and tellurium-PEDOT:PSS hybrid composites by simple chemical treatment. Sci. Rep. 2016, 6, 18805.

[47]

Fang, H. Y.; Yang, H. R.; Wu, Y. Thermoelectric properties of silver telluride-bismuth telluride nanowire heterostructure synthesized by site-selective conversion. Chem. Mater. 2014, 26, 3322–3327.

Nano Research
Pages 5702-5708
Cite this article:
Li C, Lan X, Liu P, et al. Core/hybrid-shell structures boost thermoelectric performance of flexible inorganic/organic nanowire films. Nano Research, 2023, 16(4): 5702-5708. https://doi.org/10.1007/s12274-022-5193-6
Topics:

782

Views

4

Crossref

5

Web of Science

5

Scopus

1

CSCD

Altmetrics

Received: 21 July 2022
Revised: 12 October 2022
Accepted: 12 October 2022
Published: 29 December 2022
© Tsinghua University Press 2022
Return