AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Nanogenerator-based bidirectional pressure sensor array and its demonstration in underwater invasive species detection

Yunqi Cao1Hongyang Shi2Xiaobo Tan2Nelson Sepúlveda2( )
State Key Laboratory of Industrial Control Technology, College of Control Science and Engineering, Zhejiang University, Hangzhou 310027, China
Department of Electrical and Computer Engineering, Michigan State University, East Lansing, Michigan 48824, USA
Show Author Information

Graphical Abstract

In this work, we present the use of a nanogenerator-based bidirectional pressure sensor array to detect underwater species that use oral suction pressures to hold their positions or predate other fish. The demonstrated device could be implemented to detect spawning and population densities of such underwater species.

Abstract

Assessment of spawning-phase dynamics is an essential prerequisite to successful control of invasive sea lampreys in Great Lakes areas, which cause catastrophic damages in both commercial fishery and ecological systems. However, current assessment strategies may pose challenges for lake-wide abundance estimation and non-target anadromous species preservation. Here, we demonstrate an efficacious species-specific non-destructive sensing system based on porous ferroelectret nanogenerator for in-situ monitoring of lamprey spawning migration using their unique suction behavior. Simulations show that the porous structure enables a redistribution of surface charges under bidirectional deformations, which allows the detection of both positive and negative pressures. The quasi-piezoelectric effect is further validated by quantitative analysis in a wide pressure range of −50 to 60 kPa, providing detailed insights into transduction working principles. For reliable lamprey detection, a 4 × 4-pixel sensor array is developed and integrated with a complementary metal-oxide-semiconductor (CMOS) based signal processing array thus constituting a sensing panel capable of recording oral suction patterns in an underwater environment.

Electronic Supplementary Material

Download File(s)
12274_2022_5195_MOESM1_ESM.pdf (1.1 MB)

References

[1]

Smith, B. R.; Tibbles, J. J. Sea lamprey (Petromyzon marinus) in Lakes Huron, Michigan, and superior: History of invasion and control, 1936-78. Can. J. Fish. Aquatic Sci. 1980, 37, 1780–1801.

[2]

Lark, J. G. I. An early record of the sea lamprey (Petromyzon marinus) from Lake Ontario. J. Fish. Board Can. 1973, 30, 131–133.

[3]

Johnson, N. S.; Lewandoski, S. A.; Merkes, C. Assessment of sea lamprey (Petromyzon marinus) diet using dna metabarcoding of feces. Ecol. Indic. 2021, 125, 107605.

[4]

Bryan, M. B.; Zalinski, D.; Filcek, K. B.; Libants, S.; Li, W.; Scribner, K. T. Patterns of invasion and colonization of the sea lamprey (Petromyzon marinus) in North America as revealed by microsatellite genotypes. Mol. Ecol. 2005, 14, 3757–3773.

[5]

Cuhel, R. L.; Aguilar, C. Ecosystem transformations of the Laurentian Great Lake Michigan by nonindigenous biological invaders. Annu. Rev. Mar. Sci. 2013, 5, 289–320.

[6]

Docker, M. F.; Bravener, G. A.; Garroway, C. J.; Hrodey, P. J.; Hume, J. B.; Johnson, N. S.; Lewandoski, S. A.; Ogden, J. L.; Zollweg-Horan, E. C. A review of sea lamprey dispersal and population structure in the Great Lakes and the implications for control. J. Great Lakes Res. 2021, 47, S549–S569.

[7]

Miehls, S.; Sullivan, P.; Twohey, M.; Barber, J.; McDonald, R. The future of barriers and trapping methods in the sea lamprey (Petromyzon marinus) control program in the Laurentian Great Lakes. Rev. Fish Biol. Fish. 2020, 30, 1–24.

[8]

Jones, M. L. Toward improved assessment of sea lamprey population dynamics in support of cost-effective sea lamprey management. J. Great Lakes Res. 2007, 33, 35–47.

[9]

Sard, N. M.; Smith, S. R.; Homola, J. J.; Kanefsky, J.; Bravener, G.; Adams, J. V.; Holbrook, C. M.; Hrodey, P. J.; Tallon, K.; Scribner, K. T. Rapture (RAD capture) panel facilitates analyses characterizing sea lamprey reproductive ecology and movement dynamics. Ecol. Evol. 2020, 10, 1469–1488.

[10]

Adams, J. V.; Barber, J. M.; Bravener, G. A.; Lewandoski, S. A. Quantifying Great Lakes sea lamprey populations using an index of adults. J. Great Lakes Res. 2021, 47, S335–S346.

[11]

Robinson, K. F.; Miehls, S. M.; Siefkes, M. J. Understanding sea lamprey abundances in the Great Lakes prior to broad implementation of sea lamprey control. J. Great Lakes Res. 2021, 47, S328–S334.

[12]

Gingera, T. D.; Steeves, T. B.; Boguski, D. A.; Whyard, S.; Li, W. M.; Docker, M. F. Detection and identification of lampreys in Great Lakes streams using environmental DNA. J. Great Lakes Res. 2016, 42, 649–659.

[13]

Schloesser, N. A.; Merkes, C. M.; Rees, C. B.; Amberg, J. J.; Steeves, T. B.; Docker, M. F. Correlating sea lamprey density with environmental DNA detections in the lab. Manage. Biol. Invasions 2018, 9, 483–495.

[14]

Mize, E. L.; Erickson, R. A.; Merkes, C. M.; Berndt, N.; Bockrath, K.; Credico, J.; Grueneis, N.; Merry, J.; Mosel, K.; Tuttle-Lau, M. et al. Refinement of eDNA as an early monitoring tool at the landscape-level: Study design considerations. Ecol. Appl. 2019, 29, e01951.

[15]

Zielinski, D. P.; McLaughlin, R.; Castro-Santos, T.; Paudel, B.; Hrodey, P.; Muir, A. Alternative sea lamprey barrier technologies: History as a control tool. Rev. Fish. Sci. Aquac. 2019, 27, 438–457.

[16]

Hubbs, C. L.; Pope, T. E. B. The spread of the sea lamprey through the great lakes. Trans. Am. Fish. Soc. 1937, 66, 172–176.

[17]

Shi, H. Y.; Holbrook, C. M.; Cao, Y. Q.; Sepúlveda, N.; Tan, X. B. Measurement of suction pressure dynamics of sea lampreys, Petromyzon marinus. PLoS One 2021, 16, e0247884.

[18]

González-Afanador, I.; Shi, H. Y.; Holbrook, C.; Tan, X. B.; Sepúlveda, N. Invasive sea lamprey detection and characterization using interdigitated electrode (IDE) contact sensor. IEEE Sens. J. 2021, 21, 27947–27956.

[19]

Shi, H. Y.; González-Afanador, I.; Holbrook, C.; Sepúlveda, N.; Tan, X. B. Soft pressure sensor for underwater sea lamprey detection. IEEE Sens. J. 2022, 22, 9932–9944.

[20]

Shi, H. Y.; Al-Rubaiai, M.; Holbrook, C. M.; Miao, J. S.; Pinto, T.; Wang, C.; Tan, X. B. Screen-printed soft capacitive sensors for spatial mapping of both positive and negative pressures. Adv. Funct. Mater. 2019, 29, 1809116.

[21]

Chen, Y. Y.; Xie, R. J.; Zou, B. H.; Liu, Y. H.; Zhang, K.; Li, S.; Zheng, B.; Zhang, W. N.; Wu, J. S.; Huo, F. W. CNT@leather-based electronic bidirectional pressure sensor. Sci China Technol Sci. 2020, 63, 2137–2146.

[22]

Bai, N. N.; Wang, L.; Wang, Q.; Deng, J.; Wang, Y.; Lu, P.; Huang, J.; Li, G.; Zhang, Y.; Yang, J. L. et al. Graded intrafillable architecture-based iontronic pressure sensor with ultra-broad-range high sensitivity. Nat. Commun. 2020, 11, 209.

[23]

Ji, B.; Zhou, Q.; Lei, M.; Ding, S.; Song, Q.; Gao, Y. B.; Li, S. B.; Xu, Y.; Zhou, Y. N.; Zhou, B. P. Gradient architecture-enabled capacitive tactile sensor with high sensitivity and ultrabroad linearity range. Small 2021, 17, 2103312.

[24]

Boutry, C. M.; Beker, L.; Kaizawa, Y.; Vassos, C.; Tran, H.; Hinckley, A. C.; Pfattner, R.; Niu, S. M.; Li, J. H.; Claverie, J. et al. Biodegradable and flexible arterial-pulse sensor for the wireless monitoring of blood flow. Nat. Biomed. Eng. 2019, 3, 47–57.

[25]

Yoo, D.; Won, D. J.; Cho, W.; Lim, J.; Kim, J. Double side electromagnetic interference-shielded bending-insensitive capacitive-type flexible touch sensor with linear response over a wide detection range. Adv. Mater. Technol. 2021, 6, 2100358.

[26]
Lin, C. M.; Lin, L. Y.; Fang, W. Monolithic integration of carbon nanotubes based physical sensors. In 2010 IEEE 23rd International Conference on Micro Electro Mechanical Systems (MEMS), Hong Kong, China, 2010, pp 55–58.
[27]

Atalay, O.; Atalay, A.; Gafford, J.; Walsh, C. A highly sensitive capacitive-based soft pressure sensor based on a conductive fabric and a microporous dielectric layer. Adv. Mater. Technol. 2018, 3, 1700237.

[28]

Ruth, S. R. A.; Feig, V. R.; Kim, M. G.; Khan, Y.; Phong, J. K.; Bao, Z. N. Flexible fringe effect capacitive sensors with simultaneous high-performance contact and non-contact sensing capabilities. Small Struct. 2021, 2, 2000079.

[29]

Zhang, Y.; Bowen, C. R.; Ghosh, S. K.; Mandal, D.; Khanbareh, H.; Arafa, M.; Wan, C. Y. Ferroelectret materials and devices for energy harvesting applications. Nano Energy 2019, 57, 118–140.

[30]

Cao, Y. Q.; Sepúlveda, N. Design of flexible piezoelectric gyroscope for structural health monitoring. Appl. Phys. Lett. 2019, 115, 241901.

[31]

Cao, Y. Q.; Shi, H. Y.; Tan, X. B.; Sepúlveda, N. Enabling negative pressure sensing through ferroelectret device. IEEE Sens. Lett. 2022, 6, 2500704.

[32]

Cao, Y. Q.; Li, W.; Sepúlveda, N. Performance of self-powered, water-resistant bending sensor using transverse piezoelectric effect of polypropylene ferroelectret polymer. IEEE Sens. J. 2019, 19, 10327–10335.

[33]

Johnson, N. S.; Yun, S. S.; Thompson, H. T.; Brant, C. O.; Li, W. M. A synthesized pheromone induces upstream movement in female sea lamprey and summons them into traps. Proc. Natl. Acad. Sci. USA 2009, 106, 1021–1026.

[34]

Johnson, N. S.; Snow, B.; Bruning, T.; Jubar, A. A seasonal electric barrier blocks invasive adult sea lamprey (Petromyzon marinus) and reduces production of larvae. J. Great Lakes Res. 2021, 47, S310–S319.

[35]

Hu, S. M.; Han, J.; Shi, Z. J.; Chen, K.; Xu, N.; Wang, Y. F.; Zheng, R. Z.; Tao, Y. Z.; Sun, Q. J.; Wang, Z. L. et al. Biodegradable, super-strong, and conductive cellulose macrofibers for fabric-based triboelectric nanogenerator. Nano-Micro Lett. 2022, 14, 115.

[36]

Sun, J. G.; Schütz, U.; Tu, K. K.; Koch, S. M.; Roman, G.; Stucki, S.; Chen, F.; Ding, Y.; Yan, W. Q.; Wu, C. S. et al. Scalable and sustainable wood for efficient mechanical energy conversion in buildings via triboelectric effects. Nano Energy 2022, 102, 107670.

[37]

Wang, Z. L. Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors. ACS Nano 2013, 7, 9533–9557.

[38]

Wang, H. L.; Guo, Z. H.; Pu, X.; Wang, Z. L. Ultralight iontronic triboelectric mechanoreceptor with high specific outputs for epidermal electronics. Nano-Micro Lett. 2022, 14, 86.

[39]

Chen, P. F.; Luo, Y. J.; Cheng, R. W.; Shu, S.; An, J.; Berbille, A.; Jiang, T.; Wang, Z. L. Achieving high power density and durability of sliding mode triboelectric nanogenerator by double charge supplement strategy. Adv. Energy Mater. 2022, 12, 2201813.

[40]

Li, W.; Torres, D.; Wang, T. Y.; Wang, C.; Sepúlveda, N. Flexible and biocompatible polypropylene ferroelectret nanogenerator (FENG): On the path toward wearable devices powered by human motion. Nano Energy 2016, 30, 649–657.

[41]

Cao, Y. Q.; Figueroa, J.; Li, W.; Chen, Z. Q.; Wang, Z. L.; Sepúlveda, N. Understanding the dynamic response in ferroelectret nanogenerators to enable self-powered tactile systems and human-controlled micro-robots. Nano Energy 2019, 63, 103852.

[42]

Cao, Y. Q.; Figueroa, J.; Pastrana, J. J.; Li, W.; Chen, Z. Q.; Wang, Z. L.; Sepúlveda, N. Flexible ferroelectret polymer for self-powering devices and energy storage systems. ACS Appl. Mater. Interfaces 2019, 11, 17400–17409.

[43]

Wan, H. C.; Cao, Y. Q.; Lo, L. W.; Zhao, J. Y.; Sepúlveda, N.; Wang, C. Flexible carbon nanotube synaptic transistor for neurological electronic skin applications. ACS Nano 2020, 14, 10402–10412.

[44]

Wan, H. C.; Zhao, J. Y.; Lo, L. W.; Cao, Y. Q.; Sepúlveda, N.; Wang, C. Multimodal artificial neurological sensory–memory system based on flexible carbon nanotube synaptic transistor. ACS Nano 2021, 15, 14587–14597.

[45]

He, J.; Zhang, Y. F.; Zhou, R. H.; Meng, L. R.; Chen, T.; Mai, W. J.; Pan, C. F. Recent advances of wearable and flexible piezoresistivity pressure sensor devices and its future prospects. J. Materiomics 2020, 6, 86–101.

[46]

Li, J.; Bao, R. R.; Tao, J.; Peng, Y. Y.; Pan, C. F. Recent progress in flexible pressure sensor arrays: From design to applications. J. Mater. Chem. C 2018, 6, 11878–11892.

[47]

Gupta, S.; Yogeswaran, N.; Giacomozzi, F.; Lorenzelli, L.; Dahiya, R. Touch sensor based on flexible ALN piezocapacitor coupled with MOSFET. IEEE Sens. J. 2020, 20, 6810–6817.

[48]

Hahn, C. M.; Iwanowicz, L. R.; Cornman, R. S.; Conway, C. M.; Winton, J. R.; Blazer, V. S. Characterization of a novel hepadnavirus in the white sucker (Catostomus commersonii) from the Great Lakes region of the United States. J. Virol. 2015, 89, 11801–11811.

[49]

Wang, N. Z.; Daniels, R.; Connelly, L.; Sotzing, M.; Wu, C.; Gerhard, R.; Sotzing, G. A.; Cao, Y. All-organic flexible ferroelectret nanogenerator with fabric-based electrodes for self-powered body area networks. Small 2021, 17, 2103161.

[50]

Oh, H.; Yi, G. C.; Yip, M.; Dayeh, S. A. Scalable tactile sensor arrays on flexible substrates with high spatiotemporal resolution enabling slip and grip for closed-loop robotics. Sci. Adv. 2020, 6, eabd7795.

[51]

Fissette, S. D.; Buchinger, T. J.; Wagner, C. M.; Johnson, N. S.; Scott, A. M.; Li, W. M. Progress towards integrating an understanding of chemical ecology into sea lamprey control. J. Great Lakes Res. 2021, 47, S660–S672.

[52]

Lin, W. K.; Wang, B.; Peng, G. X.; Shan, Y.; Hu, H.; Yang, Z. B. Skin-inspired piezoelectric tactile sensor array with crosstalk-free row+column electrodes for spatiotemporally distinguishing diverse stimuli. Adv. Sci. 2021, 8, 2002817.

Nano Research
Pages 11822-11831
Cite this article:
Cao Y, Shi H, Tan X, et al. Nanogenerator-based bidirectional pressure sensor array and its demonstration in underwater invasive species detection. Nano Research, 2023, 16(9): 11822-11831. https://doi.org/10.1007/s12274-022-5195-4
Topics:
Part of a topical collection:

3219

Views

4

Crossref

4

Web of Science

3

Scopus

0

CSCD

Altmetrics

Received: 30 August 2022
Revised: 06 October 2022
Accepted: 07 October 2022
Published: 29 November 2022
© Tsinghua University Press 2022
Return