AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Crown ether interlayer-modulated polyamide membrane with nanoscale structures for efficient desalination

Yanyu Zhao1,2Xiangju Song2( )Minghua Huang1Heqing Jiang2( )Arafat Toghan3,4
School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
Qingdao Key Laboratory of Functional Membrane Material and Membrane Technology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
Chemistry Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
Chemistry Department, Faculty of Science, South Valley University, Qena 83523, Egypt
Show Author Information

Graphical Abstract

A crown ether interlayer-modulated polyamide membrane with nanoscale structures is developed. It exhibits a water flux of 61.2 L·m−2·h−1, which is 364% of the pristine thin-film composite (TFC) membrane, while maintaining a rejection of above 97% to NaCl.

Abstract

Nanoscale thin-film composite (TFC) polyamide membranes are highly desirable for desalination owing to their excellent separation performance. It is a permanent pursuit to further improve the water flux of membrane without deteriorating the salt rejection. Herein, we fabricated a high-performance polyamide membrane with nanoscale structures through introducing multifunctional crown ether interlayer on the porous substrate impregnated with m-phenylenediamine. The crown ether interlayer can reduce the diffusion of amine monomers to reaction interface influenced by its interaction with m-phenylenediamine and the spatial shielding effect, leading to a controlled interfacial polymerization (IP) reaction. Besides, crown ether with intrinsic cavity is also favorable to adjust the IP process and the microstructure of polyamide layer. Since the outer surface of the nanocavity is lipophilic, crown ether has good solvency with the organic phase, thus attracting more trimesoyl chloride molecules to the interlayer and promoting the IP reaction in the confined space. As a result, a nanoscale polyamide membrane with an ultrathin selective layer of around 50 nm is obtained. The optimal TFC polyamide membrane at crown ether concentration of 0.25 wt.% exhibits a water flux of 61.2 L·m−2·h−1, which is 364% of the pristine TFC membrane, while maintaining a rejection of above 97% to NaCl. The development of the tailor-made nanoscale polyamide membrane via constructing multifunctional crown ether interlayer provides a straightforward route to fabricate competitive membranes for highly efficient desalination.

Electronic Supplementary Material

Download File(s)
12274_2022_5196_MOESM1_ESM.pdf (483.8 KB)

References

[1]

Li, Y.; Li, S.; Zhang, K. Influence of hydrophilic carbon dots on polyamide thin film nanocomposite reverse osmosis membranes. J. Membr. Sci. 2017, 537, 42–53.

[2]

Ali, M. E. A.; Wang, L. Y.; Wang, X. Y.; Feng, X. S. Thin film composite membranes embedded with graphene oxide for water desalination. Desalination 2016, 386, 67–76.

[3]

Kaldellis, J. K.; Kondili, E. M. The water shortage problem in the Aegean archipelago islands: Cost-effective desalination prospects. Desalination 2007, 216, 123–138.

[4]

Meng, S.; Greenlee, L. F.; Shen, Y. R.; Wang, E. G. Basic science of water: Challenges and current status towards a molecular picture. Nano Res. 2015, 8, 3085–3110.

[5]

Gin, D. L.; Noble, R. D. Designing the next generation of chemical separation membranes. Science 2011, 332, 674–676.

[6]

Ji, Y. L.; An, Q. F.; Guo, Y. S.; Hung, W. S.; Lee, K. R.; Gao, C. J. Bio-inspired fabrication of high perm-selectivity and anti-fouling membranes based on zwitterionic polyelectrolyte nanoparticles. J. Mater. Chem. A 2016, 4, 4224–4231.

[7]

Jia, F. C.; Xiao, X.; Nashalian, A.; Shen, S.; Yang, L.; Han, Z. Y.; Qu, H. J.; Wang, T. M.; Ye, Z.; Zhu, Z. J. et al. Advances in graphene oxide membranes for water treatment. Nano Res. 2022, 15, 6636–6654.

[8]

Ni, L.; Meng, J. Q.; Li, X. G.; Zhang, Y. F. Surface coating on the polyamide TFC RO membrane for chlorine resistance and antifouling performance improvement. J. Membr. Sci. 2014, 451, 205–215.

[9]

Greenlee, L. F.; Lawler, D. F.; Freeman, B. D.; Marrot, B.; Moulin, P. Reverse osmosis desalination: Water sources, technology, and today’s challenges. Water Res. 2009, 43, 2317–2348.

[10]
Xie, W.; Geise, G. M.; Freeman, B. D.; Lee, H. S.; Byun, G.; McGrath, J. E. Polyamide interfacial composite membranes prepared from m-phenylene diamine, trimesoyl chloride and a new disulfonated diamine. J. Membr. Sci. 2012, 403–404, 152–161.
[11]

Lohrasebi, A.; Rikhtehgaran, S. Ion separation and water purification by applying external electric field on porous graphene membrane. Nano Res. 2018, 11, 2229–2236.

[12]

Cadotte, J. E.; Petersen, R. J.; Larson, R. E.; Erickson, E. E. A new thin-film composite seawater reverse osmosis membrane. Desalination 1980, 32, 25–31.

[13]

Misdan, N.; Lau, W. J.; Ismail, A. F. Seawater reverse osmosis (SWRO) desalination by thin-film composite membrane-current development, challenges and future prospects. Desalination 2012, 287, 228–237.

[14]

Kang, G. D.; Cao, Y. M. Development of antifouling reverse osmosis membranes for water treatment: A review. Water Res. 2012, 46, 584–600.

[15]

Jiang, Z. W.; Karan, S.; Livingston, A. G. Water transport through ultrathin polyamide nanofilms used for reverse osmosis. Adv. Mater. 2018, 30, 1705973.

[16]

Lundstrom, J. E. Sorption, desorption and diffusion processes in membrane permeation. J. Membr. Sci. 2015, 486, 138–150.

[17]

Lu, D.; Yao, Z. K.; Jiao, L.; Waheed, M.; Sun, Z. L.; Zhang, L. Separation mechanism, selectivity enhancement strategies and advanced materials for mono-/multivalent ion-selective nanofiltration membrane. Adv. Membr. 2022, 2, 100032.

[18]

Song, Y.; Sun, P.; Henry, L. L.; Sun, B. Mechanisms of structure and performance controlled thin film composite membrane formation via interfacial polymerization process. J. Membr. Sci. 2005, 251, 67–79.

[19]

Jin, Y.; Su, Z. H. Effects of polymerization conditions on hydrophilic groups in aromatic polyamide thin films. J. Membr. Sci. 2009, 330, 175–179.

[20]

Tang, B. B.; Zou, C.; Wu, P. Y. Study on a novel polyester composite nanofiltration membrane by interfacial polymerization. II. The role of lithium bromide in the performance and formation of composite membrane. J. Membr. Sci. 2010, 365, 276–285.

[21]

Freger, V. Nanoscale heterogeneity of polyamide membranes formed by interfacial polymerization. Langmuir 2003, 19, 4791–4797.

[22]

Liang, Y. Z.; Zhu, Y. Z.; Liu, C.; Lee, K. R.; Hung, W. S.; Wang, Z. Y.; Li, Y. Y.; Elimelech, M.; Jin, J.; Lin, S. H. Polyamide nanofiltration membrane with highly uniform sub-nanometre pores for sub-1 Å precision separation. Nat. Commun. 2020, 11, 2015.

[23]

Freger, V. Kinetics of film formation by interfacial polycondensation. Langmuir 2005, 21, 1884–1894.

[24]

Yang, Z.; Zhou, Z. W.; Guo, H.; Yao, Z. K.; Ma, X. H.; Song, X. X.; Feng, S. P.; Tang, C. Y. Tannic acid/Fe3+ nanoscaffold for interfacial polymerization: Toward enhanced nanofiltration performance. Environ. Sci. Technol. 2018, 52, 9341–9349.

[25]

Heidari, A. A.; Mahdavi, H.; Khodaei Kahriz, P. Thin film composite solvent resistant nanofiltration membrane via interfacial polymerization on an engineered polyethylene membrane support coated with polydopamine. J. Membr. Sci. 2021, 634, 119406.

[26]

Wang, D.; Li, S. Y.; Li, F. L.; Li, J. M.; Li, N.; Wang, Z. N. Thin film nanocomposite membrane with triple-layer structure for enhanced water flux and antibacterial capacity. Sci. Total Environ. 2021, 770, 145370.

[27]

Zhang, X.; Lv, Y.; Yang, H. C.; Du, Y.; Xu, Z. K. Polyphenol coating as an interlayer for thin-film composite membranes with enhanced nanofiltration performance. ACS Appl. Mater. Interfaces 2016, 8, 32512–32519.

[28]

Chen, Y. Q.; Song, X. J.; Zhang, N.; Zhang, X. Q.; Su, G.; Huang, M. H.; Jiang, H. Q. Polyethyleneimine-mediated polyamide composite membrane with high perm-selectivity for forward osmosis. Macromol. Mater. Eng. 2021, 306, 2000818.

[29]

Li, Y.; Zhao, J. Q.; Yuan, Y. C.; Shi, C. Q.; Liu, S. M.; Yan, S. J.; Zhao, Y.; Zhang, M. Q. Polyimide/crown ether composite films with necklace-like supramolecular structure and improved mechanical, dielectric, and hydrophobic properties. Macromolecules 2015, 48, 2173–2183.

[30]

Shen, L.; Yi, M.; Japip, S.; Han, C.; Tian, L.; Lau, C. H.; Wang, Y. Breaking through permeability-selectivity trade-off of thin-film composite membranes assisted with crown ethers. AIChE J. 2021, 67, e17173.

[31]

Tian, C.; Fielden, S. D. P.; Whitehead, G. F. S.; Vitorica-Yrezabal, I. J.; Leigh, D. A. Weak functional group interactions revealed through metal-free active template rotaxane synthesis. Nat. Commun. 2020, 11, 744.

[32]

Song, X. J.; Wang, Y. C.; Jiao, C. L.; Huang, M. H.; Wang, G. H.; Jiang, H. Q. Microstructure regulation of polyamide nanocomposite membrane by functional mesoporous polymer for high-efficiency desalination. J. Membr. Sci. 2020, 597, 117783.

[33]
Wang, W. J.; Hao, J. L.; Sun, Q.; Zhao, M. Q.; Liu, H. Y.; Li, C.; Sui, X. Carbon nanofibers membrane bridged with graphene nanosheet and hyperbranched polymer for high-performance osmotic energy harvesting. Nano Res., in press, https://doi.org/10.1007/s12274-022-4634-6.
[34]

Shen, L.; Zuo, J.; Wang, Y. Tris(2-aminoethyl)amine in-situ modified thin-film composite membranes for forward osmosis applications. J. Membr. Sci. 2017, 537, 186–201.

[35]

Wang, Y.; Liang, R. Z.; Jia, T. Z.; Cao, X. L.; Wang, Q.; Cao, J. R.; Li, S.; Shi, Q. X.; Isaacs, L.; Sun, S. P. Voltage-gated membranes incorporating cucurbit[n]uril molecular containers for molecular nanofiltration. J. Am. Chem. Soc. 2022, 144, 6483–6492.

[36]

Tang, M. J.; Liu, M. L.; Wang, D. A.; Shao, D. D.; Wang, H. J.; Cui, Z. L.; Cao, X. L.; Sun, S. P. Precisely patterned nanostrand surface of cucurbituril[n]-based nanofiltration membranes for effective alcohol-water condensation. Nano Lett. 2020, 20, 2717–2723.

[37]

Ng, Z. C.; Lau, W. J.; Lai, G. S.; Meng, J. Q.; Gao, H. H.; Ismail, A. F. Facile fabrication of polyethyleneimine interlayer-assisted graphene oxide incorporated reverse osmosis membranes for water desalination. Desalination 2022, 526, 115502.

[38]

Gu, J. E.; Lee, J. S.; Park, S. H.; Kim, I. T.; Chan, E. P.; Kwon, Y. N.; Lee, J. H. Tailoring interlayer structure of molecular layer-by-layer assembled polyamide membranes for high separation performance. Appl. Surf. Sci. 2015, 356, 659–667.

[39]

Gan, B. W.; Qi, S. R.; Song, X. X.; Yang, Z.; Tang, C. Y.; Cao, X. Z.; Zhou, Y.; Gao, C. J. Ultrathin polyamide nanofilm with an asymmetrical structure: A novel strategy to boost the permeance of reverse osmosis membranes. J. Membr. Sci. 2020, 612, 118402.

[40]

Jiang, C.; Fei, Z. H.; Zhang, M. M.; Ma, X. P.; Hou, Y. F. Preparation of advanced reverse osmosis membrane by a wettability-transformable interlayer combining with N-acyl imidazole chemistry. J. Membr. Sci. 2022, 644, 120085.

[41]

Shen, Q.; Lin, Y. Q.; Ueda, T.; Zhang, P. F.; Jia, Y. D.; Istirokhatun, T.; Song, Q. Q.; Guan, K. C.; Yoshioka, T.; Matsuyama, H. The underlying mechanism insights into support polydopamine decoration toward ultrathin polyamide membranes for high-performance reverse osmosis. J. Membr. Sci. 2022, 646, 120269.

[42]

Cheng, X. J.; Peng, Y.; Li, S. X.; Su, B. W. Alginate hydrogel interlayer assisted interfacial polymerization for enhancing the separation performance of reverse osmosis membrane. J. Membr. Sci. 2021, 638, 119680.

[43]

Shin, M. G.; Choi, W.; Lee, J. H. Highly selective and pH-stable reverse osmosis membranes prepared via layered interfacial polymerization. Membranes 2022, 12, 156.

[44]

Liu, C.; Liu, Y. W.; Guo, Y. Q.; Wang, C.; Hu, Z.; Zhang, C. H. High-hydrophilic and salt rejecting PA-g/co-PVP RO membrane via bionic sand-fixing grass for pharmaceutical wastewater treatment. Chem. Eng. J. 2019, 357, 269–279.

[45]

Mamah, S. C.; Goh, P. S.; Ismail, A. F.; Suzaimi, N. D.; Ahmad, N. A.; Lee, W. J. Flux enhancement in reverse osmosis membranes induced by synergistic effect of incorporated palygorskite/chitin hybrid nanomaterial. J. Environ. Chem. Eng. 2021, 9, 105432.

Nano Research
Pages 6153-6159
Cite this article:
Zhao Y, Song X, Huang M, et al. Crown ether interlayer-modulated polyamide membrane with nanoscale structures for efficient desalination. Nano Research, 2023, 16(5): 6153-6159. https://doi.org/10.1007/s12274-022-5196-3
Topics:

9573

Views

15

Crossref

10

Web of Science

14

Scopus

0

CSCD

Altmetrics

Received: 31 August 2022
Revised: 11 October 2022
Accepted: 11 October 2022
Published: 18 November 2022
© Tsinghua University Press 2022
Return