Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
The commercial application of non-precious metal-based electrocatalysts is not only limited by the intrinsic activity of the catalysts, but also the stability of the catalysts is extremely important. Herein, we fabricated an ultra-stable NiFe armored catalyst (Ar-NiFe/NC) by a simple secondary pyrolysis strategy. The as-obtained Ar-NiFe/NC electrocatalyst exhibits an excellent bifunctional oxygen electrocatalytic performance with an activity indicator ∆E of 0.74 V vs. reversible hydrogen electrode (RHE). More importantly, the Ar-NiFe/NC electrocatalyst also shows a remarkable operational and storage stability. After accelerated durability test (ADT) cycles, no obvious degradation of oxygen electrocatalytic performance could be observed. In addition, the Ar-NiFe/NC electrocatalyst still exhibits an unbated oxygen electrocatalytic performance comparable to fresh catalysts after three months of air-exposed storage. The assembled liquid and flexible quasi-solid-state rechargeable Zn–air batteries with the Ar-NiFe/NC electrocatalyst exhibit impressive performance. The liquid rechargeable Zn–air batteries possess a high open-circuit voltage (OCV) of 1.43 V and a salient peak power density of 146.40 mW·cm−2, while the flexible quasi-solid-state rechargeable Zn–air batteries also exhibit an excellent OCV of 1.60 V and an exciting peak power density of 41.99 mW·cm−2.
Wagh, N. K.; Kim, D. H.; Kim, S. H.; Shinde, S. S.; Lee, J. H. Heuristic iron-cobalt-mediated robust pH-universal oxygen bifunctional lusters for reversible aqueous and flexible solid-state Zn–air cells. ACS Nano 2021, 15, 14683–14696.
Tiwari, A. P.; Kim, D.; Kim, Y.; Lee, H. Bifunctional oxygen electrocatalysis through chemical bonding of transition metal chalcogenides on conductive carbons. Adv. Energy Mater. 2017, 7, 1602217.
Zheng, X. B.; Yang, J. R.; Xu, Z. F.; Wang, Q. S.; Wu, J. B.; Zhang, E. H.; Dou, S. X.; Sun, W. P.; Wang, D. S.; Li, Y. D. Ru-Co pair sites catalyst boosts the energetics for the oxygen evolution reaction. Angew. Chem., Int. Ed. 2022, 61, e202205946.
Wang, B.; Srinivas, K.; Liu, Y. F.; Liu, D. W.; Zhang, X. J.; Zhang, W. L.; Chen, Y. F. N-doped CNTs capped with carbon layer armored CoFe alloy as highly stable bifunctional catalyst for oxygen electrocatalysis. Nano Res 2022, 15, 3971–3979.
Pan, J.; Xu, Y. Y.; Yang, H.; Dong, Z. H.; Liu, H. F.; Xia, B. Y. Advanced architectures and relatives of air electrodes in Zn–air batteries. Adv. Sci. 2018, 5, 1700691.
Lei, Y. P.; Wang, Q. C.; Peng, S. J.; Ramakrishna, S.; Zhang, D.; Zhou, K. C. Electrospun inorganic nanofibers for oxygen electrocatalysis: Design, fabrication, and progress. Adv. Energy Mater. 2020, 10, 1902115.
Lei, Z.; Tan, Y. Y.; Zhang, Z. Y.; Wu. W.; Cheng, N. C.; Chen, R. Z.; Mu, S. C.; Sun, X. L. Defects enriched hollow porous Co-N-doped carbons embedded with ultrafine CoFe/Co nanoparticles as bifunctional oxygen electrocatalyst for rechargeable flexible solid zinc–air batteries. Nano Res. 2021, 14, 868–878.
Wang, C. Y.; Xie, N. H.; Zhang, Y. L.; Huang, Z. H.; Xia, K. L.; Wang, H. M.; Guo, S. J.; Xu, B. Q.; Zhang, Y. Y. Silk-derived highly active oxygen electrocatalysts for flexible and rechargeable Zn–air batteries. Chem. Mater. 2019, 31, 1023–1029.
Sun, C.; Zhao, Y. J.; Yuan, X. Y.; Li, J. B.; Jin, H. B. Bimetal nanoparticles hybridized with carbon nanotube boosting bifunctional oxygen electrocatalytic performance. Rare Met. 2022, 41, 2616–2623.
Wang, Y.; Zheng, X. B.; Wang, D. S. Design concept for electrocatalysts. Nano Res. 2022, 15, 1730–1752.
Zhu, Z.; Shi, X. M.; Zhu, D. D.; Wang, L. B.; Lei, K. X.; Li, F. J. A hybrid Na//K+-containing electrolyte//O2 battery with high rechargeability and cycle stability. Research 2019, 2019, 6180615.
Shang, H. S.; Zhou, X. Y.; Dong, J. C.; Li, A.; Zhao, X.; Liu, Q. H.; Lin, Y.; Pei, J. J.; Li, Z.; Jiang, Z. L. et al. Engineering unsymmetrically coordinated Cu-S1N3 single atom sites with enhanced oxygen reduction activity. Nat. Commun. 2020, 11, 3049.
Fu, G. T.; Chen, Y. F.; Cui, Z. M.; Li, Y. T.; Zhou, W. D.; Xin, S.; Tang, Y. W.; Goodenough, J. B. Novel hydrogel-derived bifunctional oxygen electrocatalyst for rechargeable air cathodes. Nano Lett. 2016, 16, 6516–6522.
Zhang, J. X.; Zhao, X.; Du, L.; Li, Y. T.; Zhang, L. H.; Liao, S. J.; Goodenough, J. B.; Cui, Z. M. Antiperovskite nitrides CuNCo3−xVx: Highly efficient and durable electrocatalysts for the oxygen-evolution reaction. Nano Lett. 2019, 19, 7457–7463.
Chen, J. J.; Gu, S.; Hao, R.; Wang, Z. Y.; Li, M. Q.; Li, Z. Q.; Liu, K.; Liao, K. M.; Wang, Z. Q.; Huang, H. et al. Co single atoms and nanoparticles dispersed on N-doped carbon nanotube as high-performance catalysts for Zn–air batteries. Rare Met. 2022, 41, 2055–2062.
Shang, H. S.; Sun, W. M.; Sui, R.; Pei, J. J.; Zheng, L. R.; Dong, J. C.; Jiang, Z. L.; Zhou, D. N.; Zhuang, Z. B.; Chen, W. X. et al. Engineering isolated Mn-N2C2 atomic interface sites for efficient bifunctional oxygen reduction and evolution reaction. Nano Lett. 2020, 20, 5443–5450.
Wang, Y. C.; Chu, F. L.; Zeng, J.; Wang, Q. J.; Naren, T.; Li, Y. Y.; Cheng, Y.; Lei, Y. P.; Wu, F. X. Single atom catalysts for fuel cells and rechargeable batteries: Principles, advances, and opportunities. ACS Nano 2021, 15, 210–239.
Jiao, Y.; Zheng, Y.; Jaroniecb, M.; Qiao, S. Z. Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions. Chem. Soc. Rev. 2015, 44, 2060–2086.
Naeem, M.; Rizwan, M.; Bakhtawar, R.; Usman, Z.; Ma, X. L.; Cao, C. B. Oxynitride perovskite: Computational approach to correlate structural, electronic, and optical properties of c-BiAlO3/N3. ACS Appl. Electron. Mater. 2022, 4, 375–385.
Ullah, H. M. N.; Rizwan, M.; Ali, S. S.; Usman, Z.; Ma, X. L.; Cao, C. B. A computational study for mechanical, thermoelectric and optoelectronic applications of BiAlO3 under static pressure. J. Phys. Chem. Solids 2022, 168, 110819.
Wang, X. J.; Li, Y.; Jin, T.; Meng, J.; Jiao, L. F.; Zhu, M.; Chen, J. Electrospun thin-walled CuCo2O4@C nanotubes as bifunctional oxygen electrocatalysts for rechargeable Zn–air batteries. Nano Lett. 2017, 17, 7989–7994.
Su, C. Y.; Cheng, H.; Li, W.; Liu, Z. Q.; Li, N.; Hou, Z. F.; Bai, F. Q.; Zhang, H. X.; Ma, T. Y. Atomic modulation of Fe Co-nitrogen-carbon bifunctional oxygen electrodes for rechargeable and flexible all-solid-state zinc–air battery. Adv. Energy Mater. 2017, 7, 1602420.
Han, X. P.; Zhang, W.; Ma, X. Y.; Zhong, C.; Zhao, N. Q.; Hu, W. B.; Deng, Y. D. Identifying the activation of bimetallic sites in NiCo2S4@g-C3N4-CNT hybrid electrocatalysts for synergistic oxygen reduction and evolution. Adv. Mater. 2019, 31, 1808281.
Yang, Z. K.; Zhao, C. M.; Qu, Y. T.; Zhou, H.; Zhou, F. Y.; Wang, J.; Wu, Y. E.; Li, Y. D. Trifunctional self-supporting cobalt-embedded carbon nanotube films for ORR, OER, and HER triggered by solid diffusion from bulk meta. Adv. Mater. 2019, 31, 1808043.
Zeng, S.; Chen, H. Y.; Wang, H.; Tong, X.; Chen, M. H.; Di, J. T.; Li, Q. W. Crosslinked carbon nanotube aerogel films decorated with cobalt oxides for flexible rechargeable Zn–air batteries. Small 2017, 13, 1700518.
Lin, Y. X.; Yang, L.; Zhang, Y. K.; Jiang, H. L.; Xiao, Z. J.; Wu, C. Q.; Zhang, G. B.; Jiang, J.; Song, L. Defective carbon-CoP nanoparticles hybrids with interfacial charges polarization for efficient bifunctional oxygen electrocatalysis. Adv. Energy Mater. 2018, 8, 1703623.
Fu, G. T.; Cui, Z. M.; Chen, Y. F.; Li, Y. T.; Tang, Y. W.; Goodenough, J. B. Ni3Fe-N doped carbon sheets as a bifunctional electrocatalyst for air cathodes. Adv. Energy Mater. 2017, 7, 1601172.
Chen, J. Y.; Li, H.; Fan, C.; Meng, Q. W.; Tang, Y. W.; Qiu, X. Y.; Fu, G. T.; Ma, T. Y. Dual single-atomic Ni-N4 and Fe-N4 sites constructing Janus hollow graphene for selective oxygen electrocatalysis. Adv. Mater. 2020, 32, 2003134.
Chai, G. L.; Qiu, K. P.; Qiao, M.; Titirici, M. M.; Shang, C. X.; Guo, Z. X. Active sites engineering leads to exceptional ORR and OER bifunctionality in P, N Co-doped graphene frameworks. Energy Environ. Sci. 2017, 10, 1186–1195.
Wang, X. R.; Liu, J. Y.; Liu, Z. W.; Wang, W. C.; Luo, J.; Han, X. P.; Du, X. W.; Qiao, S. Z.; Yang, J. Identifying the key role of pyridinic-N-Co bonding in synergistic electrocatalysis for reversible ORR/OER. Adv. Mater. 2018, 30, 1800005.
Younas, W.; Naveed, M.; Cao, C. B.; Zhu, Y. Q.; Du, C. L.; Ma, X. L.; Mushtaq, N.; Tahir, M.; Naeem, M. Facile one-step microwave-assisted method to synthesize nickel selenide nanosheets for high-performance hybrid supercapacitor. J. Colloid Interface Sci. 2022, 608, 1005–1014.
Cheng, W. R.; Zhao, X.; Su, H.; Tang, F. M.; Che, W.; Zhang, H.; Liu, Q. H. Lattice-strained metal–organic-framework arrays for bifunctional oxygen electrocatalysis. Nat. Energy 2019, 4, 115–122.
Shinde, S. S.; Lee, C. H.; Jung, J. Y.; Wagh, N. K.; Kim, S. H.; Kim, D. H.; Lin, C.; Lee, S. U.; Lee, J. H. Unveiling dual-linkage 3D hexaiminobenzene metal–organic frameworks towards long-lasting advanced reversible Zn–air batteries. Energy Environ. Sci. 2019, 12, 727–738.
Liu, S. H.; Wang, Z. Y.; Zhou, S.; Yu, F. J.; Yu, M. Z.; Chiang, C. Y.; Zhou, W. Z.; Zhao, J. J.; Qiu, J. S. Metal–organic-framework-derived hybrid carbon nanocages as a bifunctional electrocatalyst for oxygen reduction and evolution. Adv. Mater. 2017, 29, 1700874.
Feng, S. Q.; Liu, C.; Chai, Z. G.; Li, Q.; Xu, D. S. Cobalt-based hydroxide nanoparticles@N-doping carbonic frameworks core−shell structures as highly efficient bifunctional electrocatalysts for oxygen evolution and oxygen reduction reactions. Nano Res. 2018, 11, 1482–1489.
Li, B. Q.; Zhao, C. X.; Liu, J. N.; Zhang, Q. Electrosynthesis of hydrogen peroxide synergistically catalyzed by atomic Co-Nx-C sites and oxygen functional groups in noble-metal-free electrocatalysts. Adv. Mater. 2019, 31, 1808173.
Li, B. Q.; Zhao, C. X.; Chen, S. M.; Liu, J. N.; Chen, X.; Song, L.; Zhang, Q. Framework-porphyrin-derived single-atom bifunctional oxygen electrocatalysts and their applications in Zn–air batteries. Adv. Mater. 2019, 31, 1900592.
Chen, Y. J.; Gao, R.; Ji, S. F.; Li, H. J.; Tang, K.; Jiang, P.; Hu, H. B.; Zhang, Z. D.; Hao, H. G.; Qu, Q. Y. et al. Atomic-level modulation of electronic density at cobalt single-atom sites derived from metal–organic frameworks: Enhanced oxygen reduction performance. Angew. Chem., Int. Ed. 2021, 60, 3212–3221.
Han, A. L.; Wang, X. J.; Tang, K.; Zhang, Z. D.; Ye, C. L.; Kong, K. J.; Hu, H. B.; Zheng, L. R.; Jiang, P.; Zhao, C. X. et al. An adjacent atomic platinum site enables single-atom iron with high oxygen reduction reaction performance. Angew. Chem., Int. Ed. 2021, 60, 19262–19271.
Cui, T. T.; Wang, Y. P.; Ye, T.; Wu, J.; Chen, Z. Q.; Li, J.; Lei, Y. P.; Wang, D. S.; Li, Y. D. Engineering dual single-atom sites on 2D ultrathin N-doped carbon nanosheets attaining ultra-low-temperature zinc–air battery. Angew. Chem., Int. Ed. 2022, 61, e202115219.
Yang, L.; Zeng, X. F.; Wang, D.; Cao, D. P. Biomass-derived FeNi alloy and nitrogen-codoped porous carbons as highly efficient oxygen reduction and evolution bifunctional electrocatalysts for rechargeable Zn–air battery. Energy Storage Mater. 2018, 12, 277–283.
Zhong, L. X.; Jiang, C. Y.; Zheng, M. T.; Peng, X. W.; Liu, T. C.; Xi, S. B.; Chi, X.; Zhang, Q. H.; Gu, L.; Zhang, S. Q. et al. Wood carbon based single-atom catalyst for rechargeable Zn–air batteries. ACS Energy Lett. 2021, 6, 3624–3633.
Zhang, N. N.; Xie, S. L.; Wang, W. L.; Xie, D.; Zhu, D. L.; Cheng, F. L. Ultra-small Fe2N/N-CNTs as efficient bifunctional catalysts for rechargeable Zn–air batteries. J. Electrochem. Soc. 2020, 167, 020505.
Wang, C.; Li, Z. F.; Wang, L. K.; Niu, X. L.; Wang, S. W. Facile synthesis of 3D Fe/N codoped mesoporous graphene as efficient bifunctional oxygen electrocatalysts for rechargeable Zn–air batteries. ACS Sustainable Chem. Eng. 2019, 7, 13873–13885.
Du, C.; Gao, Y. G.; Wang, J. G.; Chen, W. A new strategy for engineering a hierarchical porous carbon-anchored Fe single-atom electrocatalyst and the insights into its bifunctional catalysis for flexible rechargeable Zn–air batteries. J. Mater. Chem. A 2020, 8, 9981–9990.
Ren, J. T.; Chen, L.; Wang, Y. S.; Tian, W. W.; Gao, L. J.; Yuan, Z. Y. FeNi nanoalloys encapsulated in N-doped CNTs tangled with N-doped carbon nanosheets as efficient multifunctional catalysts for overall water splitting and rechargeable Zn–air batteries. ACS Sustainable Chem. Eng. 2020, 8, 223–237.
Ma, Y. F.; Chen, W. H.; Jiang, Z. Q.; Tian, X. N.; Wangguo, X. Y.; Chen, G. L.; Jiang, Z. J. NiFe nanoparticles supported on N-doped graphene hollow spheres entangled with self-grown N-doped carbon nanotubes for liquid electrolyte/flexible all-solid-state rechargeable zinc–air batteries. J. Mater. Chem. A 2022, 10, 12616–12631.
Qiao, X. C.; Jin, J. T.; Luo, J. M.; Fan, H. B.; Cui, L. F.; Wang, W. L.; Liu, D.; Liao, S. J. In-situ formation of N doped hollow graphene nanospheres/CNTs architecture with encapsulated Fe3C@C nanoparticles as efficient bifunctional oxygen electrocatalysts. J. Alloys Compd. 2020, 828, 154238.