Article Link
Collect
Submit Manuscript
Show Outline
Outline
Graphical Abstract
Abstract
Keywords
Electronic Supplementary Material
References
Show full outline
Hide outline
Research Article

Dual MOFs composites: MIL-53 coated with amorphous UiO-66 for enhanced photocatalytic oxidation of tetracycline and methylene blue

Xuesheng Liu1Xiangyu Zhao1Hong Meng2()Junsu Jin1()
Beijing Key Laboratory of Membrane Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830046, China
Show Author Information

Graphical Abstract

View original image Download original image
The MIL-53@UiO-66 core–shell composites can effectively inhibit electron–hole recombination through rapid electron transfer, thus improving the efficiency of visible light degradation of tetracycline and methylene blue.

Abstract

In this work, we proposed a novel strategy for the photocatalytic degradation of the target pollutants tetracycline (TC) and methylene blue (MB) using core–shell dual metal-organic frameworks (MOFs) composites. A series of mesoporous composites MIL-53@UiO-66 were synthesized by solvent-thermal synthesis via coating UiO-66 on the surface of MIL-53. The results show that under the same degradation conditions, only 30 and 15 min are needed to degrade 93% of TC and 96% of MB in the photo-Fenton reaction system, respectively. The amorphous shell layer brings stronger adsorption to the catalyst. MIL-53@UiO-66 composites with equalizing Fermi level are formed to promote photon absorption and electron transfer. Meanwhile, the MIL-53@UiO-66 composites with excellent stability will be a promising catalyst for environmental remediation.

Electronic Supplementary Material

Download File(s)
12274_2022_5200_MOESM1_ESM.pdf (1.3 MB)

References

[1]

Li, S. H.; Qi, M. Y.; Tang, Z. R.; Xu, Y. J. Nanostructured metal phosphides: From controllable synthesis to sustainable catalysis. Chem. Soc. Rev. 2021, 50, 7539–7586.

[2]

Qi, M. Y.; Conte, M.; Anpo, M.; Tang, Z. R.; Xu, Y. J. Cooperative coupling of oxidative organic synthesis and hydrogen production over semiconductor-based photocatalysts. Chem. Rev. 2021, 121, 13051–13085.

[3]

Das, K.; Bariki, R.; Majhi, D.; Mishra, A.; Das, K. K.; Dhiman, R.; Mishra, B. G. Facile synthesis and application of CdS/Bi20TiO32/Bi4Ti3O12 ternary heterostructure: A synergistic multi-heterojunction photocatalyst for enhanced endosulfan degradation and hydrogen evolution reaction. Appl. Catal. B Environ. 2022, 303, 120902.

[4]

Weng, B.; Qi, M. Y.; Han, C.; Tang, Z. R.; Xu, Y. J. Photocorrosion inhibition of semiconductor-based photocatalysts: Basic principle, current development, and future perspective. ACS Catal. 2019, 9, 4642–4687.

[5]

Das, K.; Bariki, R.; Pradhan, S. K.; Majhi, D.; Dash, P.; Mishra, A.; Dhiman, R.; Nayak, B.; Mishra, B. G. Boosting the photocatalytic performance of Bi2Fe4O9 through formation of Z-scheme heterostructure with In2S3: Applications towards water decontamination. Chemosphere 2022, 306, 135600.

[6]

Naghdi, S.; Cherevan, A.; Giesriegl, A.; Guillet-Nicolas, R.; Biswas, S.; Gupta, T.; Wang, J.; Haunold, T.; Bayer, B. C.; Rupprechter, G.; et, al. Selective ligand removal to improve accessibility of active sites in hierarchical MOFs for heterogeneous photocatalysis. Nat. Commun. 2022, 13, 282–18086.

[7]

Singh, B. K.; Lee, S.; Na, K. An overview on metal-related catalysts: Metal oxides, nanoporous metals and supported metal nanoparticles on metal organic frameworks and zeolites. Rare Met. 2020, 39, 751–766.

[8]

Chen, H.; Liu, Y. T.; Cai, T.; Dong, W. Y.; Tang, L.; Xia, X. N.; Wang, L. L.; Li, T. Boosting photocatalytic performance in mixed-valence MIL-53(Fe) by changing FeII/FeIII ratio. ACS Appl. Mater. Interfaces 2019, 11, 28791–28800.

[9]

Gao, D.; Zhang, Y. P.; Yan, H. Y.; Li, B. Z.; He, Y. F.; Song, P. F.; Wang, R. M. Construction of UiO-66@MoS2 flower-like hybrids through electrostatically induced self-assembly with enhanced photodegradation activity towards lomefloxacin. Sep. Purif. Technol. 2021, 265, 118486.

[10]

Zhang, Y. F.; Park, S. J. Facile construction of MoO3@ZIF-8 core–shell nanorods for efficient photoreduction of aqueous Cr(VI). Appl. Catal. B Environ. 2019, 240, 92–101.

[11]

Chen, H. Y.; Yuan, X. Z.; Jiang, L. B.; Wang, H.; Yu, H. B.; Wang, X. X. Intramolecular modulation of iron-based metal organic framework with energy level adjusting for efficient photocatalytic activity. Appl. Catal. B Environ. 2022, 302, 120823.

[12]

Pu, M. J.; Guan, Z. Y.; Ma, Y. W.; Wan, J. Q.; Wang, Y.; Brusseau, M. L.; Chi, H. Y. Synthesis of iron-based metal-organic framework MIL-53 as an efficient catalyst to activate persulfate for the degradation of Orange G in aqueous solution. Appl. Catal. A Gen. 2018, 549, 82–92.

[13]

Luo, L. B.; Dong, S. Y.; Cui, H.; Sun, L. H.; Huang, T. L. Indium sulfide deposited MIL-53(Fe) microrods: Efficient visible-light-driven photocatalytic reduction of hexavalent chromium. J. Colloid Interface Sci. 2022, 606, 1299–1310.

[14]

Xiang, X.; Chen, D. Y.; Li, N. J.; Xu, Q. F.; Li, H.; He, J. H.; Lu, J. M. MIL-53(Fe)-loaded polyacrylonitrile membrane with superamphiphilicity and double hydrophobicity for effective emulsion separation and photocatalytic dye degradation. Sep. Purif. Technol. 2022, 282, 119910.

[15]

Zhang, X. L.; Yuan, N.; Li, Y.; Han, L. J.; Wang, Q. B. Fabrication of new MIL-53(Fe)@TiO2 visible-light responsive adsorptive photocatalysts for efficient elimination of tetracycline. Chem. Eng. J. 2022, 428, 131077.

[16]

Chen, H.; Zeng, W. G.; Liu, Y. T.; Dong, W. Y.; Cai, T.; Tang, L.; Li, J.; Li, W. L. Unique MIL-53(Fe)/PDI supermolecule composites: Z-Scheme heterojunction and covalent bonds for uprating photocatalytic performance. ACS Appl. Mater. Interfaces 2021, 13, 16364–16373.

[17]

Zhang, B. F.; Zhang, L.; Akiyama, K.; Bingham, P. A.; Zhou, Y. T.; Kubuki, S. Self-assembly of nanosheet-supported Fe-MOF heterocrystals as a reusable catalyst for boosting advanced oxidation performance via radical and nonradical pathways. ACS Appl. Mater. Interfaces 2021, 13, 22694–22707.

[18]

Zhao, M. T.; Chen, J. Z.; Chen, B.; Zhang, X.; Shi, Z. Y.; Liu, Z. Q.; Ma, Q. L.; Peng, Y. W.; Tan, C. L.; Wu, X. J. et al. Selective epitaxial growth of oriented hierarchical metal-organic framework heterostructures. J. Am. Chem. Soc. 2020, 142, 8953–8961.

[19]

Lee, S.; Oh, S.; Oh, M. Atypical hybrid metal-organic frameworks (MOFs): A combinative process for MOF-on-MOF growth, etching, and structure transformation. Angew. Chem., Int. Ed. 2020, 59, 1327–1333.

[20]

Cavka, J. H.; Jakobsen, S.; Olsbye, U.; Guillou, N.; Lamberti, C.; Bordiga, S.; Lillerud, K. P. A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability. J. Am. Chem. Soc. 2008, 130, 13850–13851.

[21]

Bai, Y.; Dou, Y. B.; Xie, L. H.; Rutledge, W.; Li, J. R.; Zhou, H. C. Zr-based metal-organic frameworks: Design, synthesis, structure, and applications. Chem. Soc. Rev. 2016, 45, 2327–2367.

[22]

Wang, X. G.; Xu, L.; Li, M. J.; Zhang, X. Z. Construction of flexible-on-rigid hybrid-phase metal-organic frameworks for controllable multi-drug delivery. Angew. Chem., Int. Ed. 2020, 59, 18078–18086.

[23]

Zhuang, J.; Chou, L. Y.; Sneed, B. T.; Cao, Y. Z.; Hu, P.; Feng, L.; Tsung, C. K. Surfactant-mediated conformal overgrowth of core–shell metal-organic framework materials with mismatched topologies. Small 2015, 11, 5551–5555.

[24]

Liu, N.; Huang, W. Y.; Tang, M. Q.; Yin, C. C.; Gao, B.; Li, Z. M.; Tang, L.; Lei, J. Q.; Cui, L. F.; Zhang, X. D. In-situ fabrication of needle-shaped MIL-53(Fe) with 1T-MoS2 and study on its enhanced photocatalytic mechanism of ibuprofen. Chem. Eng. J. 2019, 359, 254–264.

[25]

Mota, H. P.; Quadrado, R. F. N.; Iglesias, B. A.; Fajardo, A. R. Enhanced photocatalytic degradation of organic pollutants mediated by Zn(II)-porphyrin/poly(acrylic acid) hybrid microparticles. Appl. Catal. B Environ. 2020, 277, 119208.

[26]

Zhang, C. J.; Fei, W. H.; Wang, H. Q.; Li, N. J.; Chen, D. Y.; Xu, Q. F.; Li, H.; He, J. H.; Lu, J. M. p–n Heterojunction of BiOI/ZnO nanorod arrays for piezo-photocatalytic degradation of bisphenol A in water. J. Hazard. Mater. 2020, 399, 123109.

[27]

Chen, T. F.; Han, S. Y.; Wang, Z. P.; Gao, H.; Wang, L. Y.; Deng, Y. H.; Wan, C. Q.; Tian, Y.; Wang, Q.; Wang, G. et al. Modified UiO-66 frameworks with methylthio, thiol and sulfonic acid function groups: The structure and visible-light-driven photocatalytic property study. Appl. Catal. B Environ. 2019, 259, 118047.

[28]

Tian, H. L.; Araya, T.; Li, R. P.; Fang, Y. F.; Huang, Y. P. Removal of MC-LR using the stable and efficient MIL-100/MIL-53 (Fe) photocatalyst: The effect of coordinate immobilized layers. Appl. Catal. B Environ. 2019, 254, 371–379.

[29]

Zhang, Y.; Zhou, J. B.; Chen, J. H.; Feng, X. Q.; Cai, W. Q. Rapid degradation of tetracycline hydrochloride by heterogeneous photocatalysis coupling persulfate oxidation with MIL-53(Fe) under visible light irradiation. J. Hazard. Mater. 2020, 392, 122315.

[30]

Chen, X.; Li, Q.; Li, J. J.; Chen, J.; Jia, H. P. Modulating charge separation via in situ hydrothermal assembly of low content Bi2S3 into UiO-66 for efficient photothermocatalytic CO2 reduction. Appl. Catal. B Environ. 2020, 270, 118915.

[31]

Cao, Y.; Zhao, Y. X.; Lv, Z. J.; Song, F. J.; Zhong, Q. Preparation and enhanced CO2 adsorption capacity of UiO-66/graphene oxide composites. J. Ind. Eng. Chem. 2015, 27, 102–107.

[32]

Xie, L. C.; Yang, Z. H.; Xiong, W. P.; Zhou, Y. Y.; Cao, J.; Peng, Y. R.; Li, X.; Zhou, C. Y.; Xu, R.; Zhang, Y. R. Construction of MIL-53(Fe) metal-organic framework modified by silver phosphate nanoparticles as a novel Z-Scheme photocatalyst: Visible-light photocatalytic performance and mechanism investigation. Appl. Surf. Sci. 2019, 465, 103–115.

[33]

Li, H.; Zhao, C.; Li, X.; Fu, H. F.; Wang, Z. H.; Wang, C. C. Boosted photocatalytic Cr(VI) reduction over Z-Scheme MIL-53(Fe)/Bi12O17Cl2 composites under white light. J. Alloys Compd. 2020, 844, 156147.

[34]

Zhou, Z.; Chen, D. Y.; Li, N. J.; Xu, Q. F.; Li, H.; He, J. H.; Lu, J. M. Three-dimensional g-C3N4/NH2-UiO-66 graphitic aerogel hybrids with recyclable property for enhanced photocatalytic elimination of nitric oxide. Chem. Eng. J. 2021, 418, 129117.

[35]

Huang, W. Y.; Liu, N.; Zhang, X. D.; Wu, M. H.; Tang, L. Metal organic framework g-C3N4/MIL-53(Fe) heterojunctions with enhanced photocatalytic activity for Cr(VI) reduction under visible light. Appl. Surf. Sci. 2017, 425, 107–116.

[36]

Gao, Y. W.; Li, S. M.; Li, Y. X.; Yao, L. Y.; Zhang, H. Accelerated photocatalytic degradation of organic pollutant over metal-organic framework MIL-53(Fe) under visible led light mediated by persulfate. Appl. Catal. B Environ. 2017, 202, 165–174.

[37]

Cao, J.; Yang, Z. H.; Xiong, W. P.; Zhou, Y. Y.; Peng, Y. R.; Li, X.; Zhou, C. Y.; Xu, R.; Zhang, Y. R. One-step synthesis of Co-doped UiO-66 nanoparticle with enhanced removal efficiency of tetracycline: Simultaneous adsorption and photocatalysis. Chem. Eng. J. 2018, 353, 126–137.

[38]

Yang, F.; Li, W. Y.; Tang, B. H. J. Facile synthesis of amorphous UiO-66 (Zr-MOF) for supercapacitor application. J. Alloys Compd. 2018, 733, 8–14.

[39]

Lee, Y. J.; Chang, Y. J.; Hsu, J. P. Amorphous mesoporous matrix from metal-organic framework UiO-66 template with strong nucleophile substitution. Chemosphere 2021, 268, 129155.

[40]

Zan, J.; Song, H.; Zuo, S. Y.; Chen, X. R.; Xia, D. S.; Li, D. Y. MIL-53(Fe)-derived Fe2O3 with oxygen vacancy as Fenton-like photocatalysts for the elimination of toxic organics in wastewater. J. Clean. Prod. 2020, 246, 118971.

[41]

Pan, T.; Chen, D. D.; Xu, W. C.; Fang, J. Z.; Wu, S. X.; Liu, Z.; Wu, K.; Fang, Z. Q. Anionic polyacrylamide-assisted construction of thin 2D-2D WO3/g-C3N4 step-scheme heterojunction for enhanced tetracycline degradation under visible light irradiation. J. Hazard. Mater. 2020, 393, 122366.

[42]

Cui, Y. Q.; Nengzi, L. C.; Gou, J. F.; Huang, Y.; Li, B.; Cheng, X. W. Fabrication of dual Z-Scheme MIL-53(Fe)/α-Bi2O3/g-C3N4 ternary composite with enhanced visible light photocatalytic performance. Sep. Purif. Technol. 2020, 232, 115959.

[43]

Li, X. P.; Zeng, Z. T.; Zeng, G. M.; Wang, D. B.; Xiao, R.; Wang, Y. R.; Zhou, C. Y.; Yi, H.; Ye, S. J.; Yang, Y. et al. A “bottle-around-ship” like method synthesized yolk–shell Ag3PO4@MIL-53(Fe) Z-scheme photocatalysts for enhanced tetracycline removal. J. Colloid Interface Sci. 2020, 561, 501–511.

[44]

Zhang, S. P.; Wang, Y. M.; Cao, Z.; Xu, J.; Hu, J.; Huang, Y.; Cui, C. Z.; Liu, H. L.; Wang, H. L. Simultaneous enhancements of light-harvesting and charge transfer in UiO-67/Cds/rGO composites toward ofloxacin photo-degradation. Chem. Eng. J. 2020, 381, 122771.

[45]

Tang, L.; Lv, Z. Q.; Xue, Y. C.; Xu, L.; Qiu, W. H.; Zheng, C. M.; Chen, W. Q.; Wu, M. H. MIL-53(Fe) incorporated in the lamellar BiOBr:Promoting the visible-light catalytic capability on the degradation of rhodamine B and carbamazepine. Chem. Eng. J. 2019, 374, 975–982.

[46]

Cai, H. R.; Wang, B.; Xiong, L. F.; Bi, J. L.; Hao, H. J.; Yu, X. J.; Li, C.; Liu, J. M.; Yang, S. C. Boosting photocatalytic hydrogen evolution of g-C3N4 catalyst via lowering the Fermi level of co-catalyst. Nano Res. 2022, 15, 1128–1134.

[47]

Lv, S. W.; Liu, J. M.; Zhao, N.; Li, C. Y.; Wang, Z. H.; Wang, S. Benzothiadiazole functionalized Co-doped MIL-53-NH2 with electron deficient units for enhanced photocatalytic degradation of bisphenol A and ofloxacin under visible light. J. Hazard. Mater. 2020, 387, 122011.

[48]

Ye, X. H.; Li, Y.; Luo, P. P.; He, B. C.; Cao, X. X.; Lu, T. B. Iron sites on defective BiOBr nanosheets: Tailoring the molecular oxygen activation for enhanced photocatalytic organic synthesis. Nano Res. 2022, 15, 1509–1516.

[49]

Zhang, Q. Q.; Chen, Y. H.; Zhao, C. X.; Yang, X. F.; Chen, Z. P. Facile regeneration of oxidized porous carbon nitride rods by the de-aromatization of the heptazine network in bulk g-C3N4. Inorg. Chem. Front. 2022, 9, 1107–1114.

[50]

Li, Y. H.; Tang, Z. R.; Xu, Y. Z. Multifunctional graphene-based composite photocatalysts oriented by multifaced roles of graphene in photocatalysis. Chin. J. Catal. 2022, 43, 708–730.

[51]

Zou, X.; Zhao, X. S.; Zhang, J. X.; Lv, W.; Qiu, L.; Zhang, Z. H. Photocatalytic degradation of ranitidine and reduction of nitrosamine dimethylamine formation potential over MXene-Ti3C2/MoS2 under visible light irradiation. J. Hazard. Mater. 2021, 413, 125424.

[52]

Zhang, F.; Li, Y. H.; Li, J. Y.; Tang, Z. R.; Xu, Y. Z. 3D graphene-based gel photocatalysts for environmental pollutants degradation. Environ. Pollut. 2019, 253, 365–376.

[53]

Lu, G.; Song, B.; Li, Z.; Liang, H. Y.; Zou, X. J. Photocatalytic degradation of naphthalene on CeVO4 nanoparticles under visible light. Chem. Eng. J. 2020, 402, 125645.

[54]

Meng, J. Q.; Wang, X. Y.; Yang, X.; Hu, A.; Guo, Y. H.; Yang, Y. X. Enhanced gas-phase photocatalytic removal of aromatics over direct Z-scheme-dictated H3PW12O40/g-C3N4 film-coated optical fibers. Appl. Catal. B Environ. 2019, 251, 168–180.

Nano Research
Pages 6160-6166
Cite this article:
Liu X, Zhao X, Meng H, et al. Dual MOFs composites: MIL-53 coated with amorphous UiO-66 for enhanced photocatalytic oxidation of tetracycline and methylene blue. Nano Research, 2023, 16(5): 6160-6166. https://doi.org/10.1007/s12274-022-5200-y
Topics:
Part of a topical collection:
Metrics & Citations  
Article History
Copyright
Return