AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Hierarchical polypyrrole@cobalt sulfide-based flexible on-chip microsupercapacitors with ultrahigh energy density for self-charging system

Yan Zhao1,2( )Jihua Zheng2Jing Yang2Wenjie Liu2Fen Qiao2Jiabiao Lian2Guochun Li2Tao Wang4Jiangwei Zhang1( )Limin Wu1,3( )
College of Energy Material and Chemistry, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China
Institute for Energy Research, School of Energy & Power Engineering, Jiangsu University, Zhenjiang 212013, China
Department of Materials Science, Fudan University, Shanghai 200433, China
Key Laboratory of Power Station Energy Transfer Conversion and System, Ministry of Education, North China Electric Power University, Beijing 102206, China
Show Author Information

Graphical Abstract

Ultrahigh energy density flexible on-chip supercapacitors and self-charging system based on unique polypyrrole@cobalt sulfide are investigated. The joint contribution of each component for enhanced reaction kinetics is verified by experimental results and theoretical calculations.

Abstract

Herein, we prepare the unique hierarchical polypyrrole@cobalt sulfide (PPy-hs@CoS) hollow sphere-based nanofilms as interdigitated electrodes for flexible on-chip micro-supercapacitors (MSC). Benefiting from the excellent flexibility and high electrical conductivity of PPy-hs combined with the great electrochemical activity of CoS, such PPy-hs@CoS composite material can not only inhibit the volume expansion of PPy but also promote the diffusion of the electrolyte ions. The PPy-hs@CoS film-based electrode delivers a greatly improved specific capacitance and small resistance. Density functional theory calculations infer that OH prefers to bind to PPy on CoS@PPy and confirms the synergistic effect of each component for enhanced reaction kinetics. A quasi-solid-state on-chip flexible asymmetric MSC based on PPy-hs@CoS and activated carbon (AC) microelectrodes exhibits large areal-specific capacitance (131.9 mF/cm2 at 0.3 mA/cm2), ultrahigh energy density (0.041 mWh/cm2@0.224 mW/cm2 and 25.6 mWh/cm3@140.6 mW/cm3), and long cycle lifespan. We demonstrate the possibility to scale up the PPy-hs@CoS nanofilm microelectrode by arranging two of our asymmetric MSC in series and parallel connections, which respectively increase the output voltage and current. A self-charging system by connecting our asymmetric MSCs with a piece of commercial solar cells is developed as a potential possible mode for future highly durable and high-voltage integrated electronics.

Electronic Supplementary Material

Download File(s)
12274_2022_5201_MOESM1_ESM.pdf (2.4 MB)

References

[1]

Feng, X.; Shi, X. Y.; Ning, J.; Wang, D.; Zhang, J. C.; Hao, Y.; Wu, Z. S. Recent advances in micro-supercapacitors for AC line-filtering performance: From fundamental models to emerging applications. eScience 2021, 1, 124–140.

[2]

Peng, M. K.; Wang, L.; Li, L. B.; Peng, Z. Y.; Tang, X. N.; Hu, T.; Yuan, K.; Chen, Y. W. Molecular crowding agents engineered to make bioinspired electrolytes for high-voltage aqueous supercapacitors. eScience 2021, 1, 83–90.

[3]

Cao, S.; Zhang, H. C.; Zhao, Y. X.; Zhao, Y. L. Pillararene/calixarene-based systems for battery and supercapacitor applications. eScience 2021, 1, 28–43.

[4]

Zhang, M.; Cao, J.; Wang, Y.; Song, J.; Jiang, T. C.; Zhang, Y. Y.; Si, W. M.; Li, X. W.; Meng, B.; Wen. Gu. W. Electrolyte-mediated dense integration of graphene-MXene films for high volumetric capacitance flexible supercapacitors. Nano Res. 2021, 14, 699–706.

[5]

Li, Z. J.; Dai, J.; Li, Y. R.; Sun, C. L.; Meng, A. L.; Cheng, R. F.; Zhao, J.; Hu, M. M. Wang. X. H. Intercalation−deintercalation design in MXenes for high-performance supercapacitors. Nano Res. 2022, 15, 3213–3221.

[6]

Guo, R.; Han, X. Y.; Yuan, P.; He, X. X.; Li, Q.; Sun, J.; Dang, L. Q.; Liu, Z. H.; Zhang, Y. T.; Lei. Z. B. Filling Ti3C2Tx nanosheets into melamine foam towards a highly compressible all-in-one supercapacitor. Nano Res. 2022, 15, 3254–3263.

[7]

Yu, D. S.; Goh, K.; Wang, H.; Wei, L.; Jiang, W. C.; Zhang, Q.; Dai, L. M.; Chen, Y. Scalable synthesis of hierarchically structured carbon nanotube-graphene fibres for capacitive energy storage. Nat. Nanotechnol. 2014, 9, 555–562.

[8]

Kamboj, N.; Purkait, T.; Das, M.; Sarkar, S.; Hazra, K. S.; Dey, R. S. Ultralong cycle life and outstanding capacitive performance of a 10.8 V metal free micro-supercapacitor with highly conducting and robust laser-irradiated graphene for an integrated storage device. Energy Environ. Sci. 2019, 12, 2507–2517.

[9]

Tan, Z.-L.; Wei, J.-X.; Liu, Y.; Zaman, F. U.; Rehman, W.; Hou, L.-R.; Yuan, C.-Z. V2CTx MXene and its derivatives: Synthesis and recent progress in electrochemical energy storage applications. Rare Metals 2022, 41, 775–797.

[10]

Chen, M. F.; Chen, J. Z.; Zhou, W. J.; Xu, J. L.; Wong, C. P. High-performance flexible and self-healable quasi-solid-state zinc-ion hybrid supercapacitor based on borax-crosslinked polyvinyl alcohol/nanocellulose hydrogel electrolyte. J. Mater. Chem. A 2019, 7, 26524–26532.

[11]

Jiang, S.-H.; Ding, J.; Wang, R.-H.; Chen, F.-Y.; Sun, J.; Deng, Y.-X.; Li, X.-L. Solvothermal-induced construction of ultra-tiny Fe2O3 nanoparticles/graphene hydrogels as binder-free high-capacitance anode for supercapacitors. Rare Metals 2021, 40, 3520–3530.

[12]

Zhang, P. P.; Wang, F. X.; Yang, S.; Wang, G.; Yu, M. H.; Feng, X. L. Flexible in-plane micro-supercapacitors: Progresses and challenges in fabrication and applications. Energy Storage Mater. 2020, 28, 160–187.

[13]

Qiu, Y. T.; Hou, M. Z.; Gao, J. C.; Zhai, H. L.; Liu, H. M.; Jin, M. M.; Liu, X.; Lai, L. F. One-step synthesis of monodispersed mesoporous carbon nanospheres for high-performance flexible quasi-solid-state micro-supercapacitors. Small 2019, 15, 1903836.

[14]

Rong, Y. X.; Chen, Y.; Zheng, J. H.; Zhao, Y.; Li, Q. P. Development of high performance alpha-Co(OH)2/reduced graphene oxide microfilm for flexible in-sandwich and planar micro-supercapacitors. J. Colloid Interface Sci. 2021, 598, 1–13.

[15]

Zhang, Y.; Ji, T. X.; Hou, S. H.; Zhang, L. F.; Shi, Y. H.; Zhao, J. X.; Xu, X. H. All-printed solid-state substrate-versatile and high-performance micro-supercapacitors for in situ fabricated transferable and wearable energy storage via multi-material 3D printing. J. Power Sources 2018, 403, 109–117.

[16]

Huang, T. Q.; Cai, S. Y.; Chen, H.; Jiang, Y. Q.; Wang, S. Y.; Gao, C. Continuous fabrication of the graphene-confined polypyrrole film for cycling stable supercapacitors. J. Mater. Chem. A 2017, 5, 8255–8260.

[17]
Liu, W. J.; Yuan, M.; Lian, J. B.; Li, G. C.; Li, Q. P.; Qiao, F.; Zhao, Y. Embedding partial sulfurization of iron-cobalt oxide nanoparticles into carbon nanofibers as an efficient electrode for the advanced asymmetric supercapacitor. Tungsten, in press, https://doi.org/10.1007/s42864-022-00157-2.
[18]

Huang, Y.; Li, H. F.; Wang, Z. F.; Zhu, M. S.; Pei, Z. X.; Xue, Q.; Huang, Y.; Zhi, C. Y. Nanostructured polypyrrole as a flexible electrode material of supercapacitor. Nano Energy 2016, 22, 422–438.

[19]

Zhao, C.; Jia, X. T.; Shu, K. W.; Yu, C. C.; Wallace, G. G.; Wang, C. Y. Conducting polymer composites for unconventional solid-state supercapacitors. J. Mater. Chem. A 2020, 8, 4677–4699.

[20]

Liu, W. J.; Zhao, Y.; Zheng, J. H.; Jin, D. Y.; Wang, Y. Q.; Lian, J. B.; Yang, S. L.; Li, G. C.; Bu, Y. F.; Qiao, F. Heterogeneous cobalt polysulfide leaf-like array/carbon nanofiber composites derived from zeolite imidazole framework for advanced asymmetric supercapacitors. J. Colloid Interface Sci. 2022, 606, 728–735.

[21]

Snook, G. A.; Kao, P.; Best, A. S. Conducting-polymer-based supercapacitor devices and electrodes. J. Power Sources 2011, 196, 1–12.

[22]

Zhai, Z. B.; Yan, W.; Dong, L.; Wang, J. Y.; Chen, C. H.; Lian, J.; Wang, X. M.; Xia, D. G.; Zhang, J. J. Multi-dimensional materials with layered structures for supercapacitors: Advanced synthesis, supercapacitor performance and functional mechanism. Nano Energy 2020, 78, 105193.

[23]

Teng, X. L.; Sun, X. T.; Guan, L.; Hu, H.; Wu, M. B. Self-supported transition metal oxide electrodes for electrochemical energy storage. Tungsten 2020, 2, 337–361.

[24]

Deng, Z. W.; Chen, M.; Gu, G. X.; Wu, L. M. A facile method to fabricate ZnO hollow spheres and their photocatalytic property. J. Phys. Chem. B 2008, 112, 16–22.

[25]

Osman, S.; Senthil, R. A.; Pan, J. Q.; Sun, Y. Z. A novel coral structured porous-like amorphous carbon derived from zinc-based fluorinated metal-organic framework as superior cathode material for high performance supercapacitors. J. Power Sources 2019, 414, 401–411.

[26]

Liu, S.; Zeng, Y. X.; Zhang, M.; Xie, S. L.; Tong, Y. X.; Cheng, F. L.; Lu, X. H. Binder-free WS2 nanosheets with enhanced crystallinity as a stable negative electrode for flexible asymmetric supercapacitors. J. Mater. Chem. A 2017, 5, 21460–21466.

[27]

Liu, H.; Cui, G. Z.; Li, L.; Zhang, Z.; Lv, X. L.; Wang, X. X. Polypyrrole chains decorated on CoS spheres: A core–shell like heterostructure for high-performance microwave absorption. Nanomaterials 2020, 10, 166.

[28]

Park, H.; Kim, J. W.; Hong, S. Y.; Lee, G.; Kim, D. S.; Oh, J. H.; Jin, S. W.; Jeong, Y. R.; Oh, S. Y.; Yun, J. Y. et al. Microporous polypyrrole-coated graphene foam for high-performance multifunctional sensors and flexible supercapacitors. Adv. Funct. Mater. 2018, 28, 1707013.

[29]

Huang, L.; Yao, X.; Yuan, L. Y.; Yao, B.; Gao, X.; Wan, J.; Zhou, P. P.; Xu, M.; Wu, J. B.; Yu, H. M. et al. 4-Butylbenzenesulfonate modified polypyrrole paper for supercapacitor with exceptional cycling stability. Energy Storage Mater 2018, 12, 191–196.

[30]

Mohammadi, A.; Arsalani, N.; Tabrizi, A. G.; Moosavifard, S. E.; Naqshbandi, Z.; Ghadimi, L. S. Engineering rGO-CNT wrapped Co3S4 nanocomposites for high-performance asymmetric supercapacitors. Chem. Eng. J. 2018, 334, 66–80.

[31]

Huo, J. H.; Wu, J. H.; Zheng, M.; Tu, Y. G.; Lan, Z. A transparent cobalt sulfide/reduced graphene oxide nanostructure counter electrode for high efficient dye-sensitized solar cells. Electrochim. Acta 2016, 187, 210–217.

[32]

Zheng, Y. Y.; Xu, J.; Yang, X. S.; Zhang, Y. J.; Shang, Y. Y.; Hu, X. Y. Decoration NiCo2S4 nanoflakes onto PPy nanotubes as core–shell heterostructure material for high-performance asymmetric supercapacitor. Chem. Eng. J. 2018, 333, 111–121.

[33]

Song, X. M.; Tan, L. C.; Wang, X. L.; Zhu, L.; Yi, X. Q.; Dong, Q. Synthesis of CoS@rGO composites with excellent electrochemical performance for supercapacitors. J. Electroanal. Chem. 2017, 794, 132–138.

[34]

Subramani, K.; Sudhan, N.; Divya, R.; Sathish, M. All-solid-state asymmetric supercapacitors based on cobalt hexacyanoferrate-derived CoS and activated carbon. RSC Adv. 2017, 7, 6648–6659.

[35]

Liu, Y.; Guo, S. J.; Zhang, W.; Kong, W.; Wang, Z. D.; Yan, W. J.; Fan, H. L.; Hao, X. G.; Guan, G. Q. Three-dimensional interconnected cobalt sulfide foam: Controllable synthesis and application in supercapacitor. Electrochim. Acta 2019, 317, 551–561.

[36]

Zhao, Y.; Zheng, J. H.; Yuan, M.; Wang, Y. Q.; Liu, W. J.; Yang, S. L.; Li, G. C.; Lian, J. B.; Bu, Y. F. Boosting the energy density of iron-cobalt oxide based hybrid supercapacitors by redox-additive electrolytes. J. Alloys Compd. 2021, 885, 160886.

[37]

Deng, T.; Lu, Y.; Zhang, W.; Sui, M. L.; Shi, X. Y.; Wang, D.; Zheng, W. T. Inverted design for high-performance supercapacitor via Co(OH)2-derived highly oriented MOF electrodes. Adv. Energy Mater. 2018, 8, 1702294.

[38]

Wang, H. X.; Qiu, F.; Lu, C. B.; Zhu, J. H.; Ke, C. C.; Han, S.; Zhuang, X. D. A terpyridine-Fe2+-based coordination polymer film for on-chip micro-supercapacitor with AC line-filtering performance. Polymers 2021, 13, 1002.

[39]

Li, L.; Zhang, J. B.; Peng, Z. W.; Li, Y. L.; Gao, C. T.; Ji, Y.; Ye, R. Q.; Kim, N. D.; Zhong, Q. F.; Yang, Y. et al. High-performance pseudocapacitive microsupercapacitors from laser-induced graphene. Adv. Mater. 2016, 28, 838–845.

[40]

Yang, W.; He, L.; Tian, X. C.; Yan, M. Y.; Yuan, H.; Liao, X. B.; Meng, J. S.; Hao, Z. M.; Mai, L. Carbon-MEMS-based alternating stacked MoS2@rGO-CNT micro-supercapacitor with high capacitance and energy density. Small 2017, 13, 1700639.

[41]

Feng, J.; Sun, X.; Wu, C. Z.; Peng, L. L.; Lin, C. W.; Hu, S. L.; Yang, J. L.; Xie, Y. Metallic few-layered VS2 ultrathin nanosheets: High two-dimensional conductivity for in-plane supercapacitors. J. Am. Chem. Soc. 2011, 133, 17832–17838.

[42]

Wu, Z. S.; Zheng, Y. J.; Zheng, S. H.; Wang, S.; Sun, C. L.; Parvez, K.; Ikeda, T.; Bao, X. H.; Müllen, K.; Feng, X. L. Stacked-layer heterostructure films of 2D thiophene nanosheets and graphene for high-rate all-solid-state pseudocapacitors with enhanced volumetric capacitance. Adv. Mater. 2017, 29, 1602960.

[43]

Tahir, M.; He, L.; Yang, W.; Hong, X. F.; Haider, W. A.; Tang, H.; Zhu, Z.; Owusu, K. A.; Mai, L. Boosting the electrochemical performance and reliability of conducting polymer microelectrode via intermediate graphene for on-chip asymmetric micro-supercapacitor. J. Energy Chem. 2020, 49, 224–232.

[44]

Tian, H.; Qin, J. Q.; Hou, D.; Li, Q.; Li, C.; Wu, Z. S.; Mai, Y. General interfacial self-assembly engineering for patterning two-dimensional polymers with cylindrical mesopores on graphene. Angew. Chem., Int. Ed. 2019, 58, 10173–10178.

[45]

Liu, X. J.; Qian, T.; Xu, N.; Zhou, J. Q.; Guo, J.; Yan, C. L. Preparation of on chip, flexible supercapacitor with high performance based on electrophoretic deposition of reduced graphene oxide/polypyrrole composites. Carbon 2015, 92, 348–353.

[46]

Zheng, S. H.; Wang, S.; Dong, Y. F.; Zhou, F.; Qin, J. Q.; Wang, X.; Su, F.; Sun, C. L.; Wu, Z. S.; Cheng, H. M. et al. All-solid-state planar sodium-ion microcapacitors with multidirectional fast ion diffusion pathways. Adv. Sci. 2019, 6, 1902147.

Nano Research
Pages 555-563
Cite this article:
Zhao Y, Zheng J, Yang J, et al. Hierarchical polypyrrole@cobalt sulfide-based flexible on-chip microsupercapacitors with ultrahigh energy density for self-charging system. Nano Research, 2023, 16(1): 555-563. https://doi.org/10.1007/s12274-022-5201-x
Topics:

4986

Views

14

Crossref

9

Web of Science

12

Scopus

0

CSCD

Altmetrics

Received: 08 August 2022
Revised: 01 October 2022
Accepted: 13 October 2022
Published: 10 November 2022
© Tsinghua University Press 2022
Return