AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Heterointerface engineering of perovskite defects and energetics for light-emitting diodes

Xiaomeng Zhang1,§Lei Shi1,§Junyang Bai1,§Feijiu Wang2( )Maowei Jiang1( )
Key Laboratory of Special Functional Materials of Ministry of Education of China, School of Materials Science, Henan University, Kaifeng 475004, China
Henan Key Laboratory of Photovoltaic Materials, Henan University, Kaifeng 475004, China

§ Xiaomeng Zhang, Lei Shi, and Junyang Bai contributed equally to this work.

Show Author Information

Graphical Abstract

The defect engineering at perovskite bi-side heterointerfaces is performed by semiconducting P=O passivators featuring well-aligned energy levels regarding to perovskite. The passivators affect the heterointerface energetics, which enhance the electron injection and boost the high performance Perovskite light-emitting diodes (PeLEDs) in this system.

Abstract

Perovskite light-emitting diodes (PeLEDs) rely on optimized device architecture to realize effective electro-optical converting. Especially, the stacks of dissimilar semiconducting materials form heterointerfaces, at which the defects and energetics of perovskite film greatly affect the device performance. Herein, we focus on the heterointerface engineering of perovskite towards high-quality PeLEDs. The defect engineering at both the bottom-surface (namely buried interface) and top-surface of perovskite film is simultaneously performed by semiconducting passivating molecules, which feature aligned energy levels and superior carrier injection ability regarding to perovskite. Moreover, such defect passivation could influence the heterointerface energetics. The perovskite work function is decreased by our suggested passivator treatment because of interface dipole, which results in band bending at the heterojunction and modulates the carrier dynamics. Hence, the electron injection is greatly enhanced, which boosts the up-conversion electroluminescence in current system. Overall, via the heterointerface engineering of defects and energetics synergistically, efficient PeLEDs with 3-fold enhancement of external quantum efficiency and low driving voltages with respect to pristine ones are achieved based on our proposed PeLED architecture.

Electronic Supplementary Material

Download File(s)
12274_2022_5204_MOESM1_ESM.pdf (2.5 MB)

References

[1]

Tan, Z. K.; Moghaddam, R. S.; Lai, M. L.; Docampo, P.; Higler, R.; Deschler, F.; Price, M.; Sadhanala, A.; Pazos, L. M.; Credgington, D. et al. Bright light-emitting diodes based on organometal halide perovskite. Nat. Nanotechnol. 2014, 9, 687–692.

[2]

Cao, Y.; Wang, N. N.; Tian, H.; Guo, J. S.; Wei, Y. Q.; Chen, H.; Miao, Y. F.; Zou, W.; Pan, K.; He, Y. R. et al. Perovskite light-emitting diodes based on spontaneously formed submicrometre-scale structures. Nature 2018, 562, 249–253.

[3]

Lin, K. B.; Xing, J.; Quan, L. N.; de Arquer, F. P. G.; Gong, X. W.; Lu, J. X.; Xie, L. Q.; Zhao, W. J.; Zhang, D.; Yan, C. Z. et al. Perovskite light-emitting diodes with external quantum efficiency exceeding 20 per cent. Nature 2018, 562, 245–248.

[4]

Chiba, T.; Hayashi, Y.; Ebe, H.; Hoshi, K.; Sato, J.; Sato, S.; Pu, Y. J.; Ohisa, S.; Kido, J. Anion-exchange red perovskite quantum dots with ammonium iodine salts for highly efficient light-emitting devices. Nat. Photonics 2018, 12, 681–687.

[5]

Ma, D. X.; Lin, K. B.; Dong, Y. T.; Choubisa, H.; Proppe, A. H.; Wu, D.; Wang, Y. K.; Chen, B.; Li, P. C.; Fan, J. Z. et al. Distribution control enables efficient reduced-dimensional perovskite LEDs. Nature 2021, 599, 594–598.

[6]

Hassan, Y.; Park, J. H.; Crawford, M. L.; Sadhanala, A.; Lee, J.; Sadighian, J. C.; Mosconi, E.; Shivanna, R.; Radicchi, E.; Jeong, M. et al. Ligand-engineered bandgap stability in mixed-halide perovskite LEDs. Nature 2021, 591, 72–77.

[7]

Liu, X. K.; Xu, W. D.; Bai, S.; Jin, Y. Z.; Wang, J. P.; Friend, R. H.; Gao, F. Metal halide perovskites for light-emitting diodes. Nat. Mater. 2021, 20, 10–21.

[8]

Kim, Y. H.; Park, J.; Kim, S.; Kim, J. S.; Xu, H. X.; Jeong, S. H.; Hu, B.; Lee, T. W. Exploiting the full advantages of colloidal perovskite nanocrystals for large-area efficient light-emitting diodes. Nat. Nanotechnol. 2022, 17, 590–597.

[9]

Bae, Y.; Ryu, J.; Yoon, S.; Kang, D. W. Recent progress in quasi-two-dimensional and quantum dot perovskite light-emitting diodes harnessing the diverse effects of ligands: A review. Nano Res. 2022, 15, 6449–6465.

[10]

Chu, Z. M.; Ye, Q. F.; Zhao, Y.; Ma, F.; Yin, Z. G.; Zhang, X. W.; You, J. B. Perovskite light-emitting diodes with external quantum efficiency exceeding 22% via small-molecule passivation. Adv. Mater. 2021, 33, 2007169.

[11]

Yang, D. D.; Li, X. M.; Zhou, W. H.; Zhang, S. L.; Meng, C. F.; Wu, Y.; Wang, Y.; Zeng, H. B. CsPbBr3 quantum dots 2.0:Benzenesulfonic acid equivalent ligand awakens complete purification. Adv. Mater. 2019, 31, 1900767.

[12]

Kong, L. M.; Zhang, X. Y.; Li, Y. G.; Wang, H. R.; Jiang, Y. Z.; Wang, S.; You, M. Q.; Zhang, C. X.; Zhang, T.; Kershaw, S. V. et al. Smoothing the energy transfer pathway in quasi-2D perovskite films using methanesulfonate leads to highly efficient light-emitting devices. Nat. Commun. 2021, 12, 1246.

[13]

Wang, H. R.; Zhang, X. Y.; Wu, Q. Q.; Cao, F.; Yang, D. W.; Shang, Y. Q.; Ning, Z. J.; Zhang, W.; Zheng, W. T.; Yan, Y. F. et al. Trifluoroacetate induced small-grained CsPbBr3 perovskite films result in efficient and stable light-emitting devices. Nat. Commun. 2019, 10, 665.

[14]

Ke, Y.; Wang, N. N.; Kong, D. C.; Cao, Y.; He, Y. R.; Zhu, L.; Wang, Y. M.; Xue, C.; Peng, Q. M.; Gao, F. et al. Defect passivation for red perovskite light-emitting diodes with improved brightness and stability. J. Phys. Chem. Lett. 2019, 10, 380–385.

[15]

Kim, H.; Kim, J. S.; Heo, J. M.; Pei, M. Y.; Park, I. H.; Liu, Z.; Yun, H. J.; Park, M. H.; Jeong, S. H.; Kim, Y. H. et al. Proton-transfer-induced 3D/2D hybrid perovskites suppress ion migration and reduce luminance overshoot. Nat. Commun. 2020, 11, 3378.

[16]

Wang, H. R.; Gong, X. W.; Zhao, D. W.; Zhao, Y. B.; Wang, S.; Zhang, J. F.; Kong, L. M.; Wei, B.; Quintero-Bermudez, R.; Voznyy, O. et al. A multi-functional molecular modifier enabling efficient large-area perovskite light-emitting diodes. Joule 2020, 4, 1977–1987.

[17]

Ban, M. Y.; Zou, Y. T.; Rivett, J. P. H.; Yang, Y. G.; Thomas, T. H.; Tan, Y. S.; Song, T.; Gao, X. Y.; Credgington, D.; Deschler, F. et al. Solution-processed perovskite light emitting diodes with efficiency exceeding 15% through additive-controlled nanostructure tailoring. Nat. Commun. 2018, 9, 3892.

[18]

Liu, Z.; Qiu, W. D.; Peng, X. M.; Sun, G. W.; Liu, X. Y.; Liu, D. H.; Li, Z. C.; He, F. R.; Shen, C. Y.; Gu, Q. et al. Perovskite light-emitting diodes with EQE exceeding 28% through a synergetic dual-additive strategy for defect passivation and nanostructure regulation. Adv. Mater. 2021, 33, 2103268.

[19]

Xu, W. D.; Hu, Q.; Bai, S.; Bao, C. X.; Miao, Y. F.; Yuan, Z. C.; Borzda, T.; Barker, A. J.; Tyukalova, E.; Hu, Z. J. et al. Rational molecular passivation for high-performance perovskite light-emitting diodes. Nat. Photonics 2019, 13, 418–424.

[20]

Jiang, M. W.; Hu, Z. H.; Liu, Z. H.; Wu, Z. F.; Ono, L. K.; Qi, Y. B. Engineering green-to-blue emitting CsPbBr3 quantum-dot films with efficient ligand passivation. ACS Energy Lett. 2019, 4, 2731–2738.

[21]

Zhao, B. D.; Lian, Y. X.; Cui, L. S.; Divitini, G.; Kusch, G.; Ruggeri, E.; Auras, F.; Li, W. W.; Yang, D. X.; Zhu, B. N. et al. Efficient light-emitting diodes from mixed-dimensional perovskites on a fluoride interface. Nat. Electron. 2020, 3, 704–710.

[22]

Yuan, Z. C.; Miao, Y. F.; Hu, Z. J.; Xu, W. D.; Kuang, C. Y.; Pan, K.; Liu, P. L.; Lai, J. Y.; Sun, B. Q.; Wang, J. P. et al. Unveiling the synergistic effect of precursor stoichiometry and interfacial reactions for perovskite light-emitting diodes. Nat. Commun. 2019, 10, 2818.

[23]

Kuang, C. Y.; Hu, Z. J.; Yuan, Z. C.; Wen, K. C.; Qing, J.; Kobera, L.; Abbrent, S.; Brus, J.; Yin, C. Y.; Wang, H. Y. et al. Critical role of additive-induced molecular interaction on the operational stability of perovskite light-emitting diodes. Joule 2021, 5, 618–630.

[24]

Yang, X. L.; Zhang, X. W.; Deng, J. X.; Chu, Z. M.; Jiang, Q.; Meng, J. H.; Wang, P. Y.; Zhang, L. Q.; Yin, Z. G.; You, J. B. Efficient green light-emitting diodes based on quasi-two-dimensional composition and phase engineered perovskite with surface passivation. Nat. Commun. 2018, 9, 570.

[25]

Li, G. P.; Huang, J. S.; Li, Y. Q.; Tang, J. X.; Jiang, Y. Highly bright and low turn-on voltage CsPbBr3 quantum dot LEDs via conjugation molecular ligand exchange. Nano Res. 2019, 12, 109–114.

[26]

You, M. Q.; Wang, H. R.; Cao, F.; Zhang, C. X.; Zhang, T.; Kong, L. M.; Wang, L.; Zhao, D. W.; Zhang, J. H.; Yang, X. Y. Improving efficiency and stability in quasi-2D perovskite light-emitting diodes by a multifunctional lif interlayer. ACS Appl. Mater. Interfaces 2020, 12, 43018–43023.

[27]

Zhu, C. R.; Yuan, F.; Liu, X. Y.; Li, J. R.; Dong, H.; Zhao, C. J.; Yan, L. H.; Xu, Y. M.; Dai, J. F.; Si, J. H. et al. High triplet energy level molecule enables highly efficient sky-blue perovskite light-emitting diodes. J. Phys. Chem. Lett. 2021, 12, 11723–11729.

[28]

Na Quan, L.; Ma, D. X.; Zhao, Y. B.; Voznyy, O.; Yuan, H. F.; Bladt, E.; Pan, J.; García de Arquer, F. P.; Sabatini, R.; Piontkowski, Z. et al. Edge stabilization in reduced-dimensional perovskites. Nat. Commun. 2020, 11, 170.

[29]

Cho, H.; Jeong, S. H.; Park, M. H.; Kim, Y. H.; Wolf, C.; Lee, C. L.; Heo, J. H.; Sadhanala, A.; Myoung, N.; Yoo, S. et al. Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes. Science 2015, 350, 1222–1225.

[30]

Peng, X. F.; Wu, X. Y.; Ji, X. X.; Ren, J.; Wang, Q.; Li, G. Q.; Yang, X. H. Modified conducting polymer hole injection layer for high-efficiency perovskite light-emitting devices: Enhanced hole injection and reduced luminescence quenching. J. Phys. Chem. Lett. 2017, 8, 4691–4697.

[31]

Xu, L. M.; Li, J. H.; Cai, B.; Song, J. Z.; Zhang, F. J.; Fang, T.; Zeng, H. B. A bilateral interfacial passivation strategy promoting efficiency and stability of perovskite quantum dot light-emitting diodes. Nat. Commun. 2020, 11, 3902.

[32]

Tan, S.; Huang, T. Y.; Yavuz, I.; Wang, R.; Yoon, T. W.; Xu, M. J.; Xing, Q. Y.; Park, K.; Lee, D. K.; Chen, C. H. et al. Stability-limiting heterointerfaces of perovskite photovoltaics. Nature 2022, 605, 268–273.

[33]

Canil, L.; Cramer, T.; Fraboni, B.; Ricciarelli, D.; Meggiolaro, D.; Singh, A.; Liu, M. N.; Rusu, M.; Wolff, C. M.; Phung, N. et al. Tuning halide perovskite energy levels. Energy Environ. Sci. 2021, 14, 1429–1438.

[34]

Zhang, Z. X.; Ye, Y. X.; Pu, C. D.; Deng, Y. Z.; Dai, X. L.; Chen, X. P.; Chen, D.; Zheng, X. R.; Gao, Y.; Fang, W. et al. High-performance, solution-processed, and insulating-layer-free light-emitting diodes based on colloidal quantum dots. Adv. Mater. 2018, 30, 1801387.

[35]

Li, M. L.; Zhao, Y. P.; Qin, X. Q.; Ma, Q. S.; Lu, J. X.; Lin, K. B.; Xu, P.; Li, Y. Q.; Feng, W. J.; Zhang, W. H. et al. Conductive phosphine oxide passivator enables efficient perovskite light-emitting diodes. Nano Lett. 2022, 22, 2490–2496.

[36]

Sasabe, H.; Nakanishi, H.; Watanabe, Y.; Yano, S.; Hirasawa, M.; Pu, Y. J.; Kido, J. Extremely low operating voltage green phosphorescent organic light-emitting devices. Adv. Funct. Mater. 2013, 23, 5550–5555.

[37]

Peng, X. F.; Yang, X. H.; Liu, D. T.; Zhang, T.; Yang, Y.; Qin, C. C.; Wang, F.; Chen, L.; Li, S. B. Targeted distribution of passivator for polycrystalline perovskite light-emitting diodes with high efficiency. ACS Energy Lett. 2021, 6, 4187–4194.

[38]

Zuo, C. T.; Ding, L. M. Modified PEDOT layer makes a 1. 52 V VOC for perovskite/PCBM solar cells. Adv. Energy Mater. 2017, 7, 1601193.

[39]

Sasabe, H.; Sato, R.; Suzuki, K.; Watanabe, Y.; Adachi, C.; Kaji, H.; Kido, J. Ultrahigh power efficiency thermally activated delayed fluorescent OLEDs by the strategic use of electron-transport materials. Adv. Optical Mater. 2018, 6, 1800376.

[40]

Su, Q.; Chen, S. M. Thermal assisted up-conversion electroluminescence in quantum dot light emitting diodes. Nat. Commun. 2022, 13, 369.

[41]

Chou, H. H.; Cheng, C. H. A highly efficient universal bipolar host for blue, green, and red phosphorescent OLEDs. Adv. Mater. 2010, 22, 2468–2471.

[42]

Liu, Y.; Cui, J. Y.; Du, K.; Tian, H.; He, Z. F.; Zhou, Q. H.; Yang, Z. L.; Deng, Y. Z.; Chen, D.; Zuo, X. B. et al. Efficient blue light-emitting diodes based on quantum-confined bromide perovskite nanostructures. Nat. Photonics 2019, 13, 760–764.

[43]

Wu, T.; Li, J. N.; Zou, Y. T.; Xu, H.; Wen, K. C.; Wan, S. S.; Bai, S.; Song, T.; McLeod, J. A.; Duhm, S. et al. High-performance perovskite light-emitting diode with enhanced operational stability using lithium halide passivation. Angew. Chem., Int. Ed. 2020, 59, 4099–4105.

[44]

Lee, J. H.; Cheng, S. H.; Yoo, S. J.; Shin, H.; Chang, J. H.; Wu, C. I.; Wong, K. T.; Kim, J. J. An exciplex forming host for highly efficient blue organic light emitting diodes with low driving voltage. Adv. Funct. Mater. 2015, 25, 361–366.

[45]

Mashford, B. S.; Stevenson, M.; Popovic, Z.; Hamilton, C.; Zhou, Z. Q.; Breen, C.; Steckel, J.; Bulovic, V.; Bawendi, M.; Coe-Sullivan, S. et al. High-efficiency quantum-dot light-emitting devices with enhanced charge injection. Nat. Photonics 2013, 7, 407–412.

[46]

Lin, X.; Dai, X. L.; Ye, Z. K.; Shu, Y. F.; Song, Z. X.; Peng, X. G. Highly-efficient thermoelectric-driven light-emitting diodes based on colloidal quantum dots. Nano Res. 2022, 15, 9402–9409.

[47]

Jiang, M. W.; Hu, Z. H.; Ono, L. K.; Qi, Y. B. CsPbBrxI3−x thin films with multiple ammonium ligands for low turn-on pure-red perovskite light-emitting diodes. Nano Res. 2021, 14, 191–197.

[48]

Wang, J. P.; Wang, N. N.; Jin, Y. Z.; Si, J. J.; Tan, Z. K.; Du, H.; Cheng, L.; Dai, X. L.; Bai, S.; He, H. P. et al. Interfacial control toward efficient and low-voltage perovskite light-emitting diodes. Adv. Mater. 2015, 27, 2311–2316.

[49]

Lian, Y. X.; Lan, D. C.; Xing, S. Y.; Guo, B. B.; Ren, Z. X.; Lai, R. C.; Zou, C.; Zhao, B. D.; Friend, R. H.; Di, D. W. Ultralow-voltage operation of light-emitting diodes. Nat. Commun. 2022, 13, 3845.

[50]

Guo, Y. C.; Zou, B. S.; Yang, F.; Zheng, X.; Peng, H.; Wang, J. P. Dielectric polarization effect and transient relaxation in FAPbBr3 films before and after PMMA passivation. Phys. Chem. Chem. Phys. 2021, 23, 10153–10163.

[51]

Kou, T. T.; Wei, Q. L.; Jia, W. Y.; Chang, T.; Peng, C. Y.; Liang, Y.; Zou, B. S. Light emission enhancement of (C3H10N)4Pb1−xMnxBr6 metal-halide powders by the dielectric confinement effect of a nanosized water layer. ACS Appl. Mater. Interfaces 2022, 14, 6167–6179.

[52]

Komatsu, R.; Sasabe, H.; Kido, J. Recent progress of pyrimidine derivatives for high-performance organic light-emitting devices. J. Photonics Energy 2018, 8, 032108.

[53]

Jiang, X. Y.; Wang, F.; Wei, Q.; Li, H. S.; Shang, Y. Q.; Zhou, W. J.; Wang, C.; Cheng, P. H.; Chen, Q.; Chen, L. W. et al. Ultra-high open-circuit voltage of tin perovskite solar cells via an electron transporting layer design. Nat. Commun. 2020, 11, 1245.

[54]

Wang, R.; Xue, J. J.; Wang, K. L.; Wang, Z. K.; Luo, Y. Q.; Fenning, D.; Xu, G. W.; Nuryyeva, S.; Huang, T. Y.; Zhao, Y. P. et al. Constructive molecular configurations for surface-defect passivation of perovskite photovoltaics. Science 2019, 366, 1509–1513.

[55]

Lin, J.; Dai, X. L.; Liang, X. Y.; Chen, D. S.; Zheng, X. R.; Li, Y. F.; Deng, Y. Z.; Du, H.; Ye, Y. X.; Chen, D. et al. High-performance quantum-dot light-emitting diodes using NiOx hole-injection layers with a high and stable work function. Adv. Funct. Mater. 2020, 30, 1907265.

[56]

Wu, Z. F.; Liu, Z. H.; Hu, Z. H.; Hawash, Z.; Qiu, L. B.; Jiang, Y.; Ono, L. K.; Qi, Y. B. Highly efficient and stable perovskite solar cells via modification of energy levels at the perovskite/carbon electrode interface. Adv. Mater. 2019, 31, 1804284.

[57]

Deng, Y. Z.; Lin, X.; Fang, W.; Di, D. W.; Wang, L. J.; Friend, R. H.; Peng, X. G.; Jin, Y. Z. Deciphering exciton-generation processes in quantum-dot electroluminescence. Nat. Commun. 2020, 11, 2309.

Nano Research
Pages 5525-5532
Cite this article:
Zhang X, Shi L, Bai J, et al. Heterointerface engineering of perovskite defects and energetics for light-emitting diodes. Nano Research, 2023, 16(4): 5525-5532. https://doi.org/10.1007/s12274-022-5204-7
Topics:

2810

Views

9

Crossref

8

Web of Science

9

Scopus

0

CSCD

Altmetrics

Received: 24 August 2022
Revised: 13 October 2022
Accepted: 15 October 2022
Published: 13 December 2022
© Tsinghua University Press 2022
Return