AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Aerosolized immunotherapeutic nanoparticle inhalation potentiates PD-L1 blockade for locally advanced lung cancer

Yang Liu1William N. Crowe1Lulu Wang1W. Jeffrey Petty2Amyn A. Habib3Dawen Zhao1,4( )
Department of Biomedical Engineering, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
Department of Medicine, Section on Hematology and Oncology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
Department of Neurology, University of Texas Southwestern Medical Center and VA North Texas Medical Center, Dallas, TX 75390, USA
Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
Show Author Information

Graphical Abstract

Inhalation of aerosolized nanoparticles loaded with cyclic dinucleotide (AeroNP-CDN) synergizes with irradiation and anti-programmed death-ligand 1 (PD-L1) immunotherapy for locally advanced non-small cell lung cancer (LANSCLC).

Abstract

Despite therapeutic advancements, the prognosis of locally advanced non-small cell lung cancer (LANSCLC), which has invaded multiple lobes or the other lung and intrapulmonary lymph nodes, remains poor. The emergence of immunotherapy with immune checkpoint blockade (ICB) is transforming cancer treatment. However, only a fraction of lung cancer patients benefit from ICB. Significant clinical evidence suggests that the proinflammatory tumor microenvironment (TME) and programmed death-ligand 1 (PD-L1) expression correlate positively with response to the PD-1/PD-L1 blockade. We report here a liposomal nanoparticle loaded with cyclic dinucleotide and aerosolized (AeroNP-CDN) for inhalation delivery to deep-seated lung tumors and target CDN to activate stimulators of interferon (IFN) genes in macrophages and dendritic cells (DCs). Using a mouse model that recapitulates the clinical LANSCLC, we show that AeroNP-CDN efficiently mitigates the immunosuppressive TME by reprogramming tumor-associated macrophage from the M2 to M1 phenotype, activating DCs for effective tumor antigen presentation and increasing tumor-infiltrating CD8+ T cells for adaptive anticancer immunity. Intriguingly, activation of interferons by AeroNP-CDN also led to increased PD-L1 expression in lung tumors, which, however, set a stage for response to anti-PD-L1 treatment. Indeed, anti-PD-L1 antibody-mediated blockade of IFNs-induced immune inhibitory PD-1/PD-L1 signaling further prolonged the survival of the LANSCLC-bearing mice. Importantly, AeroNP-CDN alone or combination immunotherapy was safe without local or systemic immunotoxicity. In conclusion, this study demonstrates a potential nano-immunotherapy strategy for LANSCLC, and mechanistic insights into the evolution of adaptive immune resistance provide a rational combination immunotherapy to overcome it.

Electronic Supplementary Material

Download File(s)
12274_2022_5205_MOESM1_ESM.pdf (862.1 KB)

References

[1]
American Cancer Society. What is non-small cell lung cancer? [Online]. 2019. https://www.cancer.org/cancer/non-small-cell-lung-cancer/about/what-is-non-small-cell-lung-cancer.html (accessed May 30, 2022)
[2]
National Cancer Institute, SEER. Cancer stat facts: Lung and bronchus cancer [Online]. 2019. https://seer.cancer.gov/statfacts/html/lungb.html (accessed May 30, 2022)
[3]

Postmus, P. E.; Kerr, K. M.; Oudkerk, M.; Senan, S.; Waller, D. A.; Vansteenkiste, J.; Escriu, C.; Peters, S. Early and locally advanced non-small-cell lung cancer (NSCLC): ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2017, 28, IV1–IV21.

[4]

Aupérin, A.; Le Péchoux, C.; Rolland, E.; Curran, W. J.; Furuse, K.; Fournel, P.; Belderbos, J.; Clamon, G.; Ulutin, H. C.; Paulus, R. et al. Meta-analysis of concomitant versus sequential radiochemotherapy in locally advanced non-small-cell lung cancer. J. Clin. Oncol. 2010, 28, 2181–2190.

[5]

Barlesi, F.; Vansteenkiste, J.; Spigel, D.; Ishii, H.; Garassino, M.; de Marinis, F.; Özgüroğlu, M.; Szczesna, A.; Polychronis, A.; Uslu, R. et al. Avelumab versus docetaxel in patients with platinum-treated advanced non-small-cell lung cancer (JAVELIN Lung 200): An open-label, randomised, phase 3 study. Lancet Oncol. 2018, 19, 1468–1479.

[6]

Brahmer, J. R.; Tykodi, S. S.; Chow, L. Q. M.; Hwu, W. J.; Topalian, S. L.; Hwu, P.; Drake, C. G.; Camacho, L. H.; Kauh, J.; Odunsi, K. et al. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N. Engl. J. Med. 2012, 366, 2455–2465.

[7]

Brahmer, J.; Reckamp, K. L.; Baas, P.; Crinò, L.; Eberhardt, W. E. E.; Poddubskaya, E.; Antonia, S.; Pluzanski, A.; Vokes, E. E.; Holgado, E. et al. Nivolumab versus docetaxel in advanced squamous-cell non-small-cell lung cancer. N. Engl. J. Med. 2015, 373, 123–135.

[8]

Yu, Y. F.; Zeng, D. Q.; Ou, Q. Y.; Liu, S. B.; Li, A. L.; Chen, Y. J.; Lin, D. G.; Gao, Q. L.; Zhou, H. Y.; Liao, W. J. et al. Association of survival and immune-related biomarkers with immunotherapy in patients with non-small cell lung cancer: A meta-analysis and individual patient-level analysis. JAMA Netw. Open 2019, 2, e196879.

[9]

Barber, G. N. STING: Infection, inflammation and cancer. Nat. Rev. Immunol. 2015, 15, 760–770.

[10]

Woo, S. R.; Fuertes, M. B.; Corrales, L.; Spranger, S.; Furdyna, M. J.; Leung, M. Y. K.; Duggan, R.; Wang, Y.; Barber, G. N.; Fitzgerald, K. A. et al. STING-dependent cytosolic DNA sensing mediates innate immune recognition of immunogenic tumors. Immunity 2014, 41, 830–840.

[11]

Sun, L.; Wu, J.; Du, F.; Chen, X.; Chen, Z. J. Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway. Science 2013, 339, 786–791.

[12]

Liu, Y.; Wang, L. L.; Song, Q. Q.; Ali, M.; Crowe, W. N.; Kucera, G. L.; Hawkins, G. A.; Soker, S.; Thomas, K. W.; Miller, L. D. et al. Intrapleural nano-immunotherapy promotes innate and adaptive immune responses to enhance anti-PD-L1 therapy for malignant pleural effusion. Nat. Nanotechnol. 2022, 17, 206–216.

[13]

Park, C. G.; Hartl, C. A.; Schmid, D.; Carmona, E. M.; Kim, H. J.; Goldberg, M. S. Extended release of perioperative immunotherapy prevents tumor recurrence and eliminates metastases. Sci. Transl. Med. 2018, 10, eaar1916.

[14]

Chao, Y.; Xu, L. G.; Liang, C.; Feng, L. Z.; Xu, J.; Dong, Z. L.; Tian, L. L.; Yi, X.; Yang, K.; Liu, Z. Combined local immunostimulatory radioisotope therapy and systemic immune checkpoint blockade imparts potent antitumour responses. Nat. Biomed. Eng. 2018, 2, 611–621.

[15]

Lee, D.; Huntoon, K.; Wang, Y. F.; Jiang, W.; Kim, B. Y. S. Harnessing innate immunity using biomaterials for cancer immunotherapy. Adv. Mater. 2021, 33, 2007576.

[16]

Jin, Q. T.; Liu, Z.; Chen, Q. Controlled release of immunotherapeutics for enhanced cancer immunotherapy after local delivery. J. Control. Release 2021, 329, 882–893.

[17]

Chen, Q.; Wang, C.; Zhang, X. D.; Chen, G. J.; Hu, Q. Y.; Li, H. J.; Wang, J. Q.; Wen, D.; Zhang, Y. Q.; Lu, Y. F. et al. In situ sprayed bioresponsive immunotherapeutic gel for post-surgical cancer treatment. Nat. Nanotechnol. 2019, 14, 89–97.

[18]

Zhang, B. D.; Wu, J. J.; Li, W. H.; Hu, H. G.; Zhao, L.; He, P. Y.; Zhao, Y. F.; Li, Y. M. STING and TLR7/8 agonists-based nanovaccines for synergistic antitumor immune activation. Nano Res. 2022, 15, 6328–6339.

[19]

Cheng, N.; Watkins-Schulz, R.; Junkins, R. D.; David, C. N.; Johnson, B. M.; Montgomery, S. A.; Peine, K. J.; Darr, D. B.; Yuan, H.; McKinnon, K. P. et al. A nanoparticle-incorporated STING activator enhances antitumor immunity in PD-L1-insensitive models of triple-negative breast cancer. JCI Insight 2018, 3, e120638.

[20]

Garland, K. M.; Sheehy, T. L.; Wilson, J. T. Chemical and biomolecular strategies for STING pathway activation in cancer immunotherapy. Chem. Rev. 2022, 122, 5977–6039.

[21]

Liang, J. J.; Wang, H. F.; Ding, W. X.; Huang, J. X.; Zhou, X. F.; Wang, H. Y.; Dong, X.; Li, G. Y.; Chen, E. G.; Zhou, F. et al. Nanoparticle-enhanced chemo-immunotherapy to trigger robust antitumor immunity. Sci. Adv. 2020, 6, eabc3646.

[22]

Wang, X.; Wilhelm, J.; Li, W.; Li, S. X.; Wang, Z. H.; Huang, G.; Wang, J.; Tang, H. L.; Khorsandi, S.; Sun, Z. C. et al. Polycarbonate-based ultra-pH sensitive nanoparticles improve therapeutic window. Nat. Commun. 2020, 11, 5828.

[23]

Bennett, Z. T.; Li, S. X.; Sumer, B. D.; Gao, J. M. Polyvalent design in the cGAS-STING pathway. Semin. Immunol. 2021, 56, 101580.

[24]

Sun, X. Q.; Zhang, Y.; Li, J. Q.; Park, K. S.; Han, K.; Zhou, X. W.; Xu, Y.; Nam, J.; Xu, J.; Shi, X. Y. et al. Amplifying STING activation by cyclic dinucleotide-manganese particles for local and systemic cancer metalloimmunotherapy. Nat. Nanotechnol. 2021, 16, 1260–1270.

[25]

Qiu, X. Y.; Qu, Y.; Guo, B. B.; Zheng, H.; Meng, F. H.; Zhong, Z. Y. Micellar paclitaxel boosts ICD and chemo-immunotherapy of metastatic triple negative breast cancer. J. Control. Release 2022, 341, 498–510.

[26]

Lu, Z. D.; Chen, Y. F.; Shen, S.; Xu, C. F.; Wang, J. Co-delivery of phagocytosis checkpoint silencer and stimulator of interferon genes agonist for synergetic cancer immunotherapy. ACS Appl. Mater. Interfaces 2021, 13, 29424–29438.

[27]

Chen, Y. P.; Xu, L.; Tang, T. W.; Chen, C. H.; Zheng, Q. H.; Liu, T. P.; Mou, C. Y.; Wu, C. H.; Wu, S. H. STING activator c-di-GMP-loaded mesoporous silica nanoparticles enhance immunotherapy against breast cancer. ACS Appl. Mater. Interfaces 2020, 12, 56741–56752.

[28]

Nakamura, T.; Sato, T.; Endo, R.; Sasaki, S.; Takahashi, N.; Sato, Y.; Hyodo, M.; Hayakawa, Y.; Harashima, H. STING agonist loaded lipid nanoparticles overcome anti-PD-1 resistance in melanoma lung metastasis via NK cell activation. J. Immunother. Cancer 2021, 9, e002852.

[29]

Fuertes, M. B.; Kacha, A. K.; Kline, J.; Woo, S. R.; Kranz, D. M.; Murphy, K. M.; Gajewski, T. F. Host type I IFN signals are required for antitumor CD8+ T cell responses through CD8α+ dendritic cells. J. Exp. Med. 2011, 208, 2005–2016.

[30]

Diamond, M. S.; Kinder, M.; Matsushita, H.; Mashayekhi, M.; Dunn, G. P.; Archambault, J. M.; Lee, H.; Arthur, C. D.; White, J. M.; Kalinke, U. et al. Type I interferon is selectively required by dendritic cells for immune rejection of tumors. J. Exp. Med. 2011, 208, 1989–2003.

[31]

Benci, J. L.; Johnson, L. R.; Choa, R.; Xu, Y. M.; Qiu, J. Y.; Zhou, Z. L.; Xu, B. H.; Ye, D.; Nathanson, K. L.; June, C. H. et al. Opposing functions of interferon coordinate adaptive and innate immune responses to cancer immune checkpoint blockade. Cell 2019, 178, 933–948.E14.

[32]

Gulen, M. F.; Koch, U.; Haag, S. M.; Schuler, F.; Apetoh, L.; Villunger, A.; Radtke, F.; Ablasser, A. Signalling strength determines proapoptotic functions of STING. Nat. Commun. 2017, 8, 427.

[33]

Cerboni, S.; Jeremiah, N.; Gentili, M.; Gehrmann, U.; Conrad, C.; Stolzenberg, M. C.; Picard, C.; Neven, B.; Fischer, A.; Amigorena, S. et al. Intrinsic antiproliferative activity of the innate sensor STING in T lymphocytes. J. Exp. Med. 2017, 214, 1769–1785.

[34]

Larkin, B.; Ilyukha, V.; Sorokin, M.; Buzdin, A.; Vannier, E.; Poltorak, A. Cutting edge: Activation of STING in T cells induces type I IFN responses and cell death. J. Immunol. 2017, 199, 397–402.

[35]

Benci, J. L.; Xu, B. H.; Qiu, Y.; Wu, T. J.; Dada, H.; Twyman-Saint Victor, C.; Cucolo, L.; Lee, D. S. M.; Pauken, K. E.; Huang, A. C. et al. Tumor interferon signaling regulates a multigenic resistance program to immune checkpoint blockade. Cell 2016, 167, 1540–1554.e12.

[36]

Chen, J. Z.; Cao, Y. H.; Markelc, B.; Kaeppler, J.; Vermeer, J. A. F.; Muschel, R. J. Type I IFN protects cancer cells from CD8+ T cell-mediated cytotoxicity after radiation. J. Clin. Invest. 2019, 129, 4224–4238.

[37]

Liu, Y.; Crowe, W. N.; Wang, L. L.; Lu, Y.; Petty, W. J.; Habib, A. A.; Zhao, D. W. An inhalable nanoparticulate STING agonist synergizes with radiotherapy to confer long-term control of lung metastases. Nat. Commun. 2019, 10, 5108.

[38]

Gong, K.; Guo, G.; Panchani, N.; Bender, M. E.; Gerber, D. E.; Minna, J. D.; Fattah, F.; Gao, B. N.; Peyton, M.; Kernstine, K. et al. EGFR inhibition triggers an adaptive response by co-opting antiviral signaling pathways in lung cancer. Nat. Cancer 2020, 1, 394–409.

[39]

Freeman, G. J.; Casasnovas, J. M.; Umetsu, D. T.; DeKruyff, R. H. TIM genes: A family of cell surface phosphatidylserine receptors that regulate innate and adaptive immunity. Immunol. Rev. 2010, 235, 172–189.

[40]

Zhao, D. W.; Stafford, J. H.; Zhou, H. L.; Thorpe, P. E. Near-infrared optical imaging of exposed phosphatidylserine in a mouse glioma model. Transl. Oncol. 2011, 4, 355–364.

[41]

Knight, V.; Koshkina, N. V.; Waldrep, J. C.; Giovanella, B. C.; Gilbert, B. E. Anticancer effect of 9-nitrocamptothecin liposome aerosol on human cancer xenografts in nude mice. Cancer Chemother. Pharmacol. 1999, 44, 177–186.

[42]

Deng, L. F.; Liang, H.; Xu, M.; Yang, X. M.; Burnette, B.; Arina, A.; Li, X. D.; Mauceri, H.; Beckett, M.; Darga, T. et al. STING-dependent cytosolic DNA sensing promotes radiation-induced type I interferon-dependent antitumor immunity in immunogenic tumors. Immunity 2014, 41, 843–852.

[43]

Baird, J. R.; Friedman, D.; Cottam, B.; Dubensky, T. W. Jr.; Kanne, D. B.; Bambina, S.; Bahjat, K.; Crittenden, M. R.; Gough, M. J. Radiotherapy combined with novel STING-targeting oligonucleotides results in regression of established tumors. Cancer Res. 2016, 76, 50–61.

[44]

Reits, E. A.; Hodge, J. W.; Herberts, C. A.; Groothuis, T. A.; Chakraborty, M.; Wansley, E. K.; Camphausen, K.; Luiten, R. M.; de Ru, A. H.; Neijssen, J. et al. Radiation modulates the peptide repertoire, enhances MHC class I expression, and induces successful antitumor immunotherapy. J. Exp. Med. 2006, 203, 1259–1271.

[45]

Ko, E. C.; Raben, D.; Formenti, S. C. The integration of radiotherapy with immunotherapy for the treatment of non-small cell lung cancer. Clin. Cancer Res. 2018, 24, 5792–5806.

[46]

Wang, J.; Li, Z. M.; Wang, Z. T.; Yu, Y. H.; Li, D.; Li, B. S.; Ding, J. X. Nanomaterials for combinational radio-immuno oncotherapy. Adv. Funct. Mater. 2020, 30, 1910676.

[47]

den Haan, J. M. M.; Lehar, S. M.; Bevan, M. J. Cd8+ but not Cd8 dendritic cells cross-prime cytotoxic T cells in vivo. J. Exp. Med. 2000, 192, 1685–1696.

[48]

Spranger, S.; Dai, D.; Horton, B.; Gajewski, T. F. Tumor-residing Batf3 dendritic cells are required for effector T cell trafficking and adoptive T cell therapy. Cancer Cell 2017, 31, 711–723.e4.

[49]

Sato, E.; Olson, S. H.; Ahn, J.; Bundy, B.; Nishikawa, H.; Qian, F.; Jungbluth, A. A.; Frosina, D.; Gnjatic, S.; Ambrosone, C. et al. Intraepithelial CD8+ tumor-infiltrating lymphocytes and a high CD8+/regulatory T cell ratio are associated with favorable prognosis in ovarian cancer. Proc. Natl. Acad. Sci. USA 2005, 102, 18538–18543.

[50]

Ganesan, A. P.; Johansson, M.; Ruffell, B.; Yagui-Beltrán, A.; Lau, J.; Jablons, D. M.; Coussens, L. M. Tumor-infiltrating regulatory T cells inhibit endogenous cytotoxic T cell responses to lung adenocarcinoma. J. Immunol. 2013, 191, 2009–2017.

[51]

Greenwald, R. J.; Freeman, G. J.; Sharpe, A. H. The B7 family revisited. Annu. Rev. Immunol. 2005, 23, 515–548.

[52]

Li, H. Y.; McSharry, M.; Bullock, B.; Nguyen, T. T.; Kwak, J.; Poczobutt, J. M.; Sippel, T. R.; Heasley, L. E.; Weiser-Evans, M. C.; Clambey, E. T. et al. The tumor microenvironment regulates sensitivity of murine lung tumors to PD-1/PD-L1 antibody blockade. Cancer Immunol. Res. 2017, 5, 767–777.

[53]

Zhang, L.; Zhang, Z. W.; Mason, R. P.; Sarkaria, J. N.; Zhao, D. W. Convertible MRI contrast: Sensing the delivery and release of anti-glioma nano-drugs. Sci. Rep. 2015, 5, 9874.

[54]

Zhang, L.; Zhou, H. L.; Belzile, O.; Thorpe, P.; Zhao, D. W. Phosphatidylserine-targeted bimodal liposomal nanoparticles for in vivo imaging of breast cancer in mice. J. Control. Release 2014, 183, 114–123.

[55]

Torchilin, V. P. Recent advances with liposomes as pharmaceutical carriers. Nat. Rev. Drug Discov. 2005, 4, 145–160.

[56]

Sato, T.; Shimosato, T.; Ueda, A.; Ishigatsubo, Y.; Klinman, D. M. Intrapulmonary delivery of CpG microparticles eliminates lung tumors. Mol. Cancer Ther. 2015, 14, 2198–2205.

Nano Research
Pages 5300-5310
Cite this article:
Liu Y, Crowe WN, Wang L, et al. Aerosolized immunotherapeutic nanoparticle inhalation potentiates PD-L1 blockade for locally advanced lung cancer. Nano Research, 2023, 16(4): 5300-5310. https://doi.org/10.1007/s12274-022-5205-6
Topics:

3654

Views

11

Crossref

9

Web of Science

12

Scopus

0

CSCD

Altmetrics

Received: 29 August 2022
Revised: 14 October 2022
Accepted: 15 October 2022
Published: 31 December 2022
© Tsinghua University Press 2022
Return