AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Synthesis, crystal structure, and magnetic properties of a new one-dimensional chain antiferromagnet Co(ox)(bib)·H2O (ox = oxalate; bib = 1,4-bis(imidazole-1-yl)benzene)

Yan She1,§Yanhong Wang1,§Shuang Li1Tao Wang2Hongcheng Lu1( )
School of Chemistry and Chemical Engineering, Key Laboratory of Material Chemistry for Energy Conversion and Storage, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Huazhong University of Science and Technology, Wuhan 430074, China
Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi’an 710072, China

§ Yan She and Yanhong Wang contributed equally to this work.

Show Author Information

Graphical Abstract

A new oxalate-bridged compound Co(ox)(bib)·H2O (bib = 1,4-bis(imidazole-1-yl)benzene) with linear CoII–ox–CoII spin chains has been successfully synthesized by hydrothermal method. Due to the negligible interchain interactions through bib ligand and weak hydrogen bonds, the magnetic susceptibility and heat capacity results indicate that Co(ox)(bib)·H2O exhibits a good one-dimensional (1D) magnetism.

Abstract

A new one-dimensional (1D) chain antiferromagnet Co(ox)(bib)·H2O 1 (ox = oxalate; bib = 1,4-bis(imidazole-1-yl)benzene) has been successfully synthesized under hydrothermal condition and characterized by single crystal X-ray crystallography, powder X-ray diffraction, thermogravimetric analysis, Fourier transform infrared (FTIR) spectroscopy, magnetic susceptibility, and heat capacity measurements. The CoII ion is connected by oxalate ions in trans-configuration to form 1D CoII–ox–CoII spin chains, which are further separated by the long organic molecule bib. The magnetic susceptibility curve shows that 1 exhibits a feature of broad maximum around 29 K, indicating strong antiferromagnetic interactions with short spin–spin correlations along the spin chains. However, no long-range order is observed due to the negligible interchain interactions through bib ligand and weak hydrogen bonds, which is further confirmed by the heat capacity data. The intrachain interaction J of −8.4 K is estimated. Both magnetic susceptibility and heat capacity results indicate that 1 exhibits a good 1D magnetism.

References

[1]

Balents, L. Spin liquids in frustrated magnets. Nature 2010, 464, 199–208.

[2]

Bray, J. W.; Hart, H. R.; Interrante, L. V.; Jacobs, I. S.; Kasper, J. S.; Watkins, G. D.; Wee, S. H.; Bonner, J. C. Observation of a spin-Peierls transition in a Heisenberg antiferromagnetic linear-chain system. Phys. Rev. Lett. 1975, 35, 744–747.

[3]

Nandi, M.; Prabhakaran, D.; Mandal, P. Spin-charge-lattice coupling in quasi-one-dimensional Ising spin chain CoNb2O6. J. Phys.: Condens. Matter 2019, 31, 195802.

[4]

Rau, J. G.; Gingras, M. J. P. Spin slush in an extended spin ice model. Nat. Commun. 2016, 7, 12234.

[5]

Yu, M. H.; Jiang, X.; Han, S. D.; Wang, Q. L.; Bu, X. H. Stepwise assembly of heterometallic 3d-4f chain exhibiting slow magnetic relaxation. Chin. Chem. Lett. 2016, 27, 317–320.

[6]

Qu, L. L.; Lan, D.; Si, L.; Ma, C.; Wang, S. S.; Xu, L. Q.; Zhang, K. X.; Jin, F.; Zhang, Z. X.; Hua, E. D. et al. Asymmetric interfaces and high-TC ferromagnetic phase in La0.67Ca0.33MnO3/SrRuO3 superlattices. Nano Res. 2021, 14, 3621–3628.

[7]

Liu, T. F.; Fu, D.; Gao, S.; Zhang, Y. Z.; Sun, H. L.; Su, G.; Liu, Y. J. An azide-bridged homospin single-chain magnet: [Co(2,2'-bithiazoline)(N3)2]n. J. Am. Chem. Soc. 2003, 125, 13976–13977.

[8]

Wen, R. M.; Han, S. D.; Wang, H.; Zhang, Y. H. Synthesis, structure and magnetic properties of manganese(II) coordination polymer with azido and zwitterionic dicarboxylate ligand. Chin. Chem. Lett. 2014, 25, 854–858.

[9]

Zhao, X. H.; Deng, L. D.; Zhou, Y.; Shao, D.; Wu, D. Q.; Wei, X. Q.; Wang, X. Y. Slow magnetic relaxation in one-dimensional azido-bridged CoII complexes. Inorg. Chem. 2017, 56, 8058–8067.

[10]

Zhang, X. M.; Wang, Y. Q.; Song, Y.; Gao, E. Q. Synthesis, structures, and magnetism of copper(II) and manganese(II) coordination polymers with azide and pyridylbenzoates. Inorg. Chem. 2011, 50, 7284–7294.

[11]

Li, D. F.; Parkin, S.; Wang, G. B.; Yee, G. T.; Clérac, R.; Wernsdorfer, W.; Holmes, S. M. An S = 6 cyanide-bridged octanuclear FeIII4NiII4 complex that exhibits slow relaxation of the magnetization. J. Am. Chem. Soc. 2006, 128, 4214–4215.

[12]

Yang, J.; Deng, Y. F.; Zhang, X. Y.; Chang, X. Y.; Zheng, Z. P.; Zhang, Y. Z. An azido-cyanide mixed-bridged [Fe4Ni4] single-molecule magnet. Inorg. Chem. 2019, 58, 7127–7130.

[13]

Yoon, J. H.; Yoo, H. S.; Kim, H. C.; Yoon, S. W.; Suh, B. J.; Hong, C. S. Cyanide-bridged one-dimensional ferromagnetic RuIIIMnIII coordination polymer exhibiting a field-induced magnetic phase transition. Inorg. Chem. 2009, 48, 816–818.

[14]

Wu, S. G.; Bala, S.; Ruan, Z. Y.; Huang, G. Z.; Ni, Z. P.; Tong, M. L. Four-step spin-crossover in an oxamide-decorated metal-organic framework. Chin. Chem. Lett. 2022, 33, 1381–1384.

[15]

Neumann, T.; Ceglarska, M.; Germann, L. S.; Rams, M.; Dinnebier, R. E.; Suckert, S.; Jess, I.; Näther, C. Structures, thermodynamic relations, and magnetism of stable and metastable Ni(NCS)2 coordination polymers. Inorg. Chem. 2018, 57, 3305–3314.

[16]

Wellm, C.; Rams, M.; Ceglarska, M.; Näther, C. Synthesis and magnetic properties of the layered compound [Fe(NCS)2(4-acetylpyridine)2]n and its mixed crystals with the Ni(II) analogue. Cryst. Growth Des. 2020, 20, 2508–2515.

[17]

Liu, J. J.; Goddard, P. A.; Singleton, J.; Brambleby, J.; Foronda, F.; Möller, J. S.; Kohama, Y.; Ghannadzadeh, S.; Ardavan, A.; Blundell, S. J. et al. Antiferromagnetism in a family of S = 1 square lattice coordination polymers NiX2(pyz)2 (X = Cl, Br, I, NCS; pyz = pyrazine). Inorg. Chem. 2016, 55, 3515–3529.

[18]

Keene, T. D.; Zimmermann, I.; Neels, A.; Sereda, O.; Hauser, J.; Bonin, M.; Hursthouse, M. B.; Price, D. J.; Decurtins, S. Heterocyclic amine directed synthesis of metal(II)-oxalates: Investigating the magnetic properties of two complete series of chains with S = 5/2 to S = 1/2. Dalton Trans. 2010, 39, 4937–4950.

[19]

Marino, N.; Armentano, D.; De Munno, G.; Lloret, F.; Cano, J.; Julve, M. Towards a better understanding of honeycomb alternating magnetic networks. Dalton Trans. 2015, 44, 11040–11051.

[20]

Coronado, E.; Galán-Mascarós, J. R.; Martí-Gastaldo, C. Single chain magnets based on the oxalate ligand. J. Am. Chem. Soc. 2008, 130, 14987–14989.

[21]

Manson, J. L.; Lecher, J. G.; Gu, J.; Geiser, U.; Schlueter, J. A.; Henning, R.; Wang, X. P.; Schultz, A. J.; Koo, H. J.; Whangbo, M. H. Cu(HCO2)2L {L = pyrazine, 4,4'-bipyridine}: Employing the formate anion as a building block in three-dimensional coordination polymers. Dalton Trans. 2003, 2905–2911.

[22]

Li, Z. X.; Zhao, J. P.; Sañudo, E. C.; Ma, H.; Pan, Z. D.; Zeng, Y. F.; Bu, X. H. New 3D coordination polymers constructed from pillared metal-formate Kagomé layers exhibiting spin canting only in the nickel(II) complex. Inorg. Chem. 2009, 48, 11601–11607.

[23]

Lu, J. Y.; Lawandy, M. A.; Li, J.; Yuen, T.; Lin, C. L. A new type of two-dimensional metal coordination systems: Hydrothermal synthesis and properties of the first oxalate-bpy mixed-ligand framework 2[M(ox)(bpy)] (M = Fe(II), Co(II), Ni(II), Zn(II); ox = C2O42−; bpy = 4,4'-bipyridine). Inorg. Chem. 1999, 38, 2695–2704.

[24]

Inoue, K.; Hayamizu, T.; Iwamura, H.; Hashizume, D.; Ohashi, Y. Assemblage and alignment of the spins of the organic trinitroxide radical with a quartet ground state by means of complexation with magnetic metal ions. A molecule-based magnet with three-dimensional structure and high TC of 46 K. J. Am. Chem. Soc. 1996, 118, 1803–1804.

[25]

Verdaguer, M.; Julve, M.; Michalowicz, A.; Kahn, O. EXAFS structure and magnetic properties of a CuIINiII μ-oxalato mixed linear chain. Inorg. Chem. 1983, 22, 2624–2629.

[26]

Martínez-Lillo, J.; Armentano, D.; De Munno, G.; Wernsdorfer, W.; Clemente-Juan, J. M.; Krzystek, J.; Lloret, F.; Julve, M.; Faus, J. Heterotetranuclear oxalato-bridged ReIV3MII (M = Mn, Fe, Co, Ni, Cu) complexes: A new example of a single-molecule magnet (M = Ni). Inorg. Chem. 2009, 48, 3027–3038.

[27]

Pei, Y.; Journaux, Y.; Kahn, O. Ferromagnetic interactions between t2g3 and eg2 magnetic orbitals in a CrIIINilI3 tetranuclear compound. Inorg. Chem. 1989, 28, 100–103.

[28]

Lu, J. Y.; Schroeder, T. J.; Babb, A. M.; Olmstead, M. Two new coordination polymers differentiated by C–H···O hydrogen bonding—Synthesis and crystal structure of [(oxa)M(DPA)]. Polyhedron 2001, 20, 2445–2449.

[29]

Wojciechowska, A.; Kochel, A.; Zierkiewicz, W. 1-D framework L-arginine zinc(II) units bridged by oxalate: Synthesis, structure, properties, and theoretical studies. J. Coord. Chem. 2016, 69, 886–900.

[30]

Natarajan, S. Synthesis and structure of a zinc oxalate with honeycomb layers and zinc phosphates with one- and three-dimensional structures. Solid State Sci. 2002, 4, 1331–1342.

[31]

Clemente-León, M.; Coronado, E.; López-Jordà, M. 2D and 3D bimetallic oxalate-based ferromagnets prepared by insertion of different FeIII spin crossover complexes. Dalton Trans. 2010, 39, 4903–4910.

[32]

Jacko, A. C.; Powell, B. J. Quasi-one dimensional magnetic interactions in the three-dimensional hyper-honeycomb framework [(C2H5)3NH]2Cu2(C2O4)3. Phys. Chem. Chem. Phys. 2021, 23, 5012–5019.

[33]

Wang, Y. N.; Yang, Q. F.; Huo, Q. S.; Yu, J. H.; Xu, J. Q. A new 3-D Ni2+ coordination polymer constructed from C2O42− and N2H4: Synthesis, structure and magnetic property. Polyhedron 2017, 130, 154–159.

[34]

Lu, J. Y.; Babb, A. Self-assembly of two-dimensional coordination polymers with rigid and flexible building blocks. Inorg. Chim. Acta 2001, 318, 186–190.

[35]

Keene, T. D.; Hursthouse, M. B.; Price, D. J. Two-dimensional metal-organic frameworks: A system with competing chelating ligands. Crystal Growth Des. 2009, 9, 2604–2609.

[36]

Keene, T. D.; Ogilvie, H. R.; Hursthouse, M. B.; Price, D. J. One-dimensional magnetism in new, layered structures: Piperazine-linked copper and nickel oxalate chains. Eur. J. Inorg. Chem. 2004, 2004, 1007–1013.

[37]

Yu, J. H.; Hou, Q.; Bi, M. H.; Lü, Z. L.; Zhang, X.; Qu, X. J.; Lu, J.; Xu, J. Q. Structure characterization of several oxalate-bridged transition-metal coordination polymers. J. Mol. Struct. 2006, 800, 69–73.

[38]

García-Terán, J. P.; Castillo, O.; Luque, A.; García-Couceiro, U.; Román, P.; Lloret, F. One-dimensional oxalato-bridged Cu(II), Co(II), and Zn(II) complexes with purine and adenine as terminal ligands. Inorg. Chem. 2004, 43, 5761–5770.

[39]

Hong, C. S.; Yoon, J. H.; You, Y. S. Ferromagnetic oxalato-bridged zigzag chain Cu(II) compound capped with an aliphatic bidentate ligand. Inorg. Chem. Commun. 2005, 8, 310–313.

[40]

García-Couceiro, U.; Castillo, O.; Luque, A.; Beobide, G.; Román, P. A new hydrated phase of cobalt(II) oxalate: Crystal structure, thermal behavior and magnetic properties of {[Co(μ-ox)(H2O)2]·2H2O}n. Inorg. Chim. Acta 2004, 357, 339–344.

[41]

Wang, J. J.; Xing, X. Y.; Li, Y. G.; Sun, Z.; Wang, Q. L.; Li, L. C. Two cobalt and nickel coordination polymers constructed from 1,4-bis(1,2,4-triazol-1-ylmethyl)benzene: Crystal structure and magnetic properties. J. Mol. Struct. 2014, 1068, 255–260.

[42]

Castillo, O.; Luque, A.; Román, P.; Lloret, F.; Julve, M. Syntheses, crystal structures, and magnetic properties of one-dimensional oxalato-bridged Co(II), Ni(II), and Cu(II) complexes with n-aminopyridine (n = 2–4) as terminal ligand. Inorg. Chem. 2001, 40, 5526–5535.

[43]

Olea, D.; García-Couceiro, U.; Castillo, O.; Gómez-Herrero, J.; Zamora, F. Nanoprocessability of a one-dimensional oxalato-bridged cobalt(II) complex with 1,2,4-triazole. Inorg. Chim. Acta 2007, 360, 48–54.

[44]

García-Couceiro, U.; Castillo, O.; Luque, A.; García-Terán, J. P.; Beobide, G.; Román, P. Rational design of 2D magnetic metal-organic coordination polymers assembled from oxalato and dipyridyl spacers. Crystal Growth Des. 2006, 6, 1839–1847.

[45]

Manna, S. C.; Zangrando, E.; Ribas, J.; Ray Chaudhuri, N. Cobalt(II)-(dpyo)-dicarboxylate networks: Unique H-bonded assembly and rare bridging mode of dpyo in one of them [dpyo = 4,4′-dipyridyl N,N′-dioxide]. Dalton Trans. 2007, 1383–1391.

[46]

Zheng, L. M.; Fang, X.; Lii, K. H.; Song, H. H.; Xin, X. Q.; Fun, H. K.; Chinnakali, K.; Abdul Razak, I. Syntheses, crystal structures and magnetic properties of two novel layered compounds: [Fe3(C2O4)3(4,4′-bpy)4] and [Co(C2O4)(4,4′-bpy)]. J. Chem. Soc., Dalton Trans. 1999, 2311–2316.

[47]

Lukin, J. A.; Simizu, S.; VanderVen, N. S.; Friedberg, S. A. Low-dimensional magnetic behavior of α-CoC2O4·2H2O. J. Magn. Magn. Mater. 1995, 140–144, 1669–1670.

[48]

Romero, E.; Mendoza, M. E.; Escudero, R. Weak ferromagnetism in cobalt oxalate crystals. Phys. Status Solidi B 2011, 248, 1519–1525.

[49]

Fantechi, E.; Innocenti, C.; Bertoni, G.; Sangregorio, C.; Pineider, F. Modulation of the magnetic properties of gold-spinel ferrite heterostructured nanocrystals. Nano Res. 2020, 13, 785–794.

[50]

Hardy, V.; Lees, M. R.; Maignan, A.; Hébert, S.; Flahaut, D.; Martin, C.; Paul, D. M. Specific heat investigation of the magnetic ordering in two frustrated spin-chain oxides: Ca3Co2O6 and Ca3CoRhO6. J Phys.: Condens. Matter 2003, 15, 5737–5746.

[51]

Leclercq, B.; Kabbour, H.; Damay, F.; Colin, C. V.; Pautrat, A.; Arevalo-Lopez, A. M.; Mentré, O. Metamagnetic transitions versus magnetocrystalline anisotropy in two cobalt arsenates with 1D Co2+ chains. Inorg. Chem. 2019, 58, 12609–12617.

[52]

Fan, J.; Hanson, B. E. A two-dimensional cationic lattice built from [Zn6(HPO4)2(PO4)2]2+ clusters. Chem. Commun. 2005, 2327–2329.

[53]

Sheldrick, G. M. SHELXT—Integrated space-group and crystal-structure determination. Acta Crystallogr. Sect. A: Found. Adv. 2015, 71, 3–8.

[54]

Spek, A. L. Structure validation in chemical crystallography. Acta Crystallogr. Sect. D: Biol. Crystallogr. 2008, 65, 148–155.

[55]

Brese, N. E.; O’Keeffe, M. Bond-valence parameters for solids. Acta Crystallogr. Sect. B 1991, 47, 192–197.

[56]

Choi, J. H.; Moon, D. Synthesis, crystal structure and spectroscopic properties of trans-difluoro(1,4,7,11-tetraazaundecane)chromium(III) perchlorate. J. Mol. Struct. 2014, 1059, 325–331.

[57]

Jaeun, K.; Yumi, L.; Seungjoo, K.; Hoseop, Y.; Junghwan, D. 1D and 2D cobalt(II) coordination polymers, Co(ox)(en): Synthesis, structures and magnetic properties. Bull. Korean Chem. Soc. 2014, 35, 3244–3248.

[58]

Glerup, J.; Goodson, P. A.; Hodgson, D. J.; Michelsen, K. Magnetic exchange through oxalate bridges: Synthesis and characterization of (μ-oxalato)dimetal(II) complexes of manganese, iron, cobalt, nickel, copper, and zinc. Inorg. Chem. 1995, 34, 6255–6264.

[59]

Fisher, M. E. Magnetism in one-dimensional systems-the Heisenberg model for infinite spin. Am. J. Phys. 1964, 32, 343–346.

[60]

Lines, M. E. The quadratic-layer antiferromagnet. J. Phys. Chem. Solids 1970, 31, 101–116.

[61]
Carlin, R. L., Magnetochemistry; Springer-Verlag: Berlin, 1986; pp 178.
[62]

Oguchi, T. Exchange interactions in Cu(NH3)4SO4·H2O. Phys. Rev. 1964, 133, A1098–A1099.

[63]

Ami, T.; Crawford, M. K.; Harlow, R. L.; Wang, Z. R.; Johnston, D. C.; Huang, Q.; Erwin, R. W. Magnetic susceptibility and low-temperature structure of the linear chain cuprate Sr2CuO3. Phys. Rev. B 1995, 51, 5994–6001.

Nano Research
Pages 3552-3557
Cite this article:
She Y, Wang Y, Li S, et al. Synthesis, crystal structure, and magnetic properties of a new one-dimensional chain antiferromagnet Co(ox)(bib)·H2O (ox = oxalate; bib = 1,4-bis(imidazole-1-yl)benzene). Nano Research, 2023, 16(2): 3552-3557. https://doi.org/10.1007/s12274-022-5206-5
Topics:

5003

Views

8

Crossref

3

Web of Science

7

Scopus

1

CSCD

Altmetrics

Received: 27 September 2022
Revised: 13 October 2022
Accepted: 15 October 2022
Published: 29 November 2022
© Tsinghua University Press 2022
Return