AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article

High entropy materials based electrocatalysts for water splitting: Synthesis strategies, catalytic mechanisms, and prospects

Xiumin Li1Yifan Zhou2Changrui Feng3Ran Wei1Xiaogang Hao4Keyong Tang1( )Guoqing Guan2,3,5( )
School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
Graduate School of Sustainable Community Studies, Hirosaki University, 1-Bunkyocho, Hirosaki 036-8560, Japan
Graduate School of Science and Technology, Hirosaki University, 3-Bunkyocho, Hirosaki 036-8561, Japan
Department of Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
Energy Conversion Engineering Laboratory, Institute of Regional Innovation, Hirosaki University, 3-Bunkyocho, Hirosaki 036-8561, Japan
Show Author Information

Graphical Abstract

Recent advances in high entropy catalysts are analyzed on the basis of water electrolysis sorts, and the relationship of synthesis–structure–composition–property of high entropy catalysts is discussed.

Abstract

Among various electrocatalysts, high entropy materials (HEMs) have attracted great attention due to the distinctive designing concept and unique properties with captivating electrocatalytic activity and stability. To date, HEMs have been a new family of advanced electrocatalysts in the research field of water electrolysis. In this work, the structural features and synthesis strategies of high entropy catalysts are reviewed, especially, their performances for catalyzing hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) in water electrolysis are presented, in which the crucial roles of structure, composition, multi-sites synergy, and “four core effects” for enhancing catalytic activity, stability, and resistance of electrochemical corrosion are introduced. Besides, the design tactics, main challenges, and future prospects of HEM-based electrocatalysts for HER and OER are discussed. It is expected to provide valuable information for the development of low-cost efficient HEM-based electrocatalysts in the field of water electrolysis.

References

[1]

Guan, J. Q.; Bai, X.; Tang, T. M. Recent progress and prospect of carbon-free single-site catalysts for the hydrogen and oxygen evolution reactions. Nano Res. 2022, 15, 818–837.

[2]

Li, X. M.; Hao, X. G.; Abudula, A.; Guan, G. Q. Nanostructured catalysts for electrochemical water splitting: Current state and prospects. J. Mater. Chem. A 2016, 4, 11973–12000.

[3]

Gong, M.; Dai, H. J. A mini review of NiFe-based materials as highly active oxygen evolution reaction electrocatalysts. Nano Res. 2015, 8, 23–39.

[4]

Gong, M.; Wang, D. Y.; Chen, C. C.; Hwang, B. J.; Dai, H. J. A mini review on nickel-based electrocatalysts for alkaline hydrogen evolution reaction. Nano Res. 2016, 9, 28–46.

[5]

Li, X. M.; Hu, Q. Y.; Wang, H. Y.; Chen, M.; Hao, X. G.; Ma, Y. F.; Liu, J.; Tang, K. Y.; Abudula, A.; Guan, G. Q. Charge induced crystal distortion and morphology remodeling: Formation of Mn-CoP nanowire@Mn-CoOOH nanosheet electrocatalyst with rich edge dislocation defects. Appl. Catal. B: Environ. 2021, 292, 120172.

[6]

Wang, Y.; Yu, B.; He, M.; Zhai, Z. H.; Yin, K. B.; Kong, F. G.; Zhang, Z. H. Eutectic-derived high-entropy nanoporous nanowires for efficient and stable water-to-hydrogen conversion. Nano Res. 2022, 15, 4820–4826.

[7]

Zhu, E. B.; Li, Y. J.; Chiu, C. Y.; Huang, X. Q.; Li, M. F.; Zhao, Z. P.; Liu, Y.; Duan, X. F.; Huang, Y. In situ development of highly concave and composition-confined PtNi octahedra with high oxygen reduction reaction activity and durability. Nano Res. 2016, 9, 149–157.

[8]

Moradi, M.; Hasanvandian, F.; Bahadoran, A.; Shokri, A.; Zerangnasrabad, S.; Kakavandi, B. New high-entropy transition-metal sulfide nanoparticles for electrochemical oxygen evolution reaction. Electrochim. Acta 2022, 436, 141444.

[9]

Zhao, Z. F.; Chen, H.; Xiang, H. M.; Dai, F. Z.; Wang, X. H.; Peng, Z. J.; Zhou, Y. C. (La0.2Ce0.2Nd0.2Sm0.2Eu0.2)PO4: A high-entropy rare-earth phosphate monazite ceramic with low thermal conductivity and good compatibility with Al2O3. J. Mater. Sci. Technol. 2019, 35, 2892–2896.

[10]

Chen, H.; Jie, K. C.; Jafta, C. J.; Yang, Z. Z.; Yao, S. Y.; Liu, M. M.; Zhang, Z. H.; Liu, J. X.; Chi, M. F.; Fu, J. et al. An ultrastable heterostructured oxide catalyst based on high-entropy materials: A new strategy toward catalyst stabilization via synergistic interfacial interaction. Appl. Catal. B: Environ. 2020, 276, 119155.

[11]

He, S.; Somayaji, V.; Wang, M. D.; Lee, S. H.; Geng, Z. J.; Zhu, S. Y.; Novello, P.; Varanasi, C. V.; Liu, J. High entropy spinel oxide for efficient electrochemical oxidation of ammonia. Nano Res. 2022, 15, 4785–4791.

[12]

Kumar, A.; Sharma, G.; Aftab, A.; Ahmad, I. Flash assisted synthesis and densification of five component high entropy oxide (Mg, Co, Cu, Ni, Zn)O at 350 °C in 3 min. J. Eur. Ceram. Soc. 2020, 40, 3358–3362.

[13]

Wang, Q. Q.; Li, J. Q.; Li, Y. J.; Shao, G. M.; Jia, Z.; Shen, B. L. Non-noble metal-based amorphous high-entropy oxides as efficient and reliable electrocatalysts for oxygen evolution reaction. Nano Res. 2022, 15, 8751–8759.

[14]

Yeh, J. W. Alloy design strategies and future trends in high-entropy alloys. JOM 2013, 65, 1759–1771.

[15]

Zhang, H.; Chen, C.; Fan, Y. Z.; Yang, Y. X.; Liu, L.; Wei, R.; Wang, T.; Zhao, W. D.; Li, F. S. Phase formation and magnetic properties of high-entropy metallic glasses in (Fe, Co, Ni)-P-B alloy system with non-equiatomic ratio. J. Magn. Magn. Mater. 2020, 509, 166875.

[16]

Li, H. G.; Huang, Y. J.; Sun, J. F.; Lu, Y. Z. The relationship between thermo-mechanical history, microstructure and mechanical properties in additively manufactured CoCrFeMnNi high entropy alloy. J. Mater. Sci. Technol. 2021, 77, 187–195.

[17]

Yeh, J. W.; Chen, S. K.; Lin, S. J.; Gan, J. Y.; Chin, T. S.; Shun, T. T.; Tsau, C. H.; Chang, S. Y. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Adv. Eng. Mater. 2004, 6, 299–303.

[18]

Cantor, B.; Chang, I. T. H.; Knight, P.; Vincent, A. J. B. Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng. A 2004, 375–377, 213–218.

[19]

Lei, Z. F.; Liu, X. J.; Wu, Y.; Wang, H.; Jiang, S. H.; Wang, S. D.; Hui, X. D.; Wu, Y. D.; Gault, B.; Kontis, P. et al. Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes. Nature 2018, 563, 546–550.

[20]

Miracle, D. B.; Senkov, O. N. A critical review of high entropy alloys and related concepts. Acta Mater. 2017, 122, 448–511.

[21]

Gludovatz, B.; Hohenwarter, A.; Catoor, D.; Chang, E. H.; George, E. P.; Ritchie, R. O. A fracture-resistant high-entropy alloy for cryogenic applications. Science 2014, 345, 1153–1158.

[22]

Koželj, P.; Vrtnik, S.; Jelen, A.; Jazbec, S.; Jagličić, Z.; Maiti, S.; Feuerbacher, M.; Steurer, W.; Dolinšek, J. Discovery of a superconducting high-entropy alloy. Phys. Rev. Lett. 2014, 113, 107001.

[23]

Praveen, S.; Kim, H. S. High-entropy alloys: Potential candidates for high-temperature applications—An overview. Adv. Eng. Mater. 2018, 20, 1700645.

[24]

Xia, S. Q.; Wang, Z.; Yang, T. F.; Zhang, Y. Irradiation behavior in high entropy alloys. J. Iron Steel Res. Int. 2015, 22, 879–884.

[25]

Ye, Y. F.; Wang, Q.; Lu, J.; Liu, C. T.; Yang, Y. High-entropy alloy: Challenges and prospects. Mater. Today 2016, 19, 349–362.

[26]

Lv, Z. Y.; Liu, X. J.; Jia, B.; Wang, H.; Wu, Y.; Lu, Z. P. Development of a novel high-entropy alloy with eminent efficiency of degrading azo dye solutions. Sci. Rep. 2016, 6, 34213.

[27]

Qiu, H. J.; Fang, G.; Gao, J. J.; Wen, Y. R.; Lv, J.; Li, H. L.; Xie, G. Q.; Liu, X. J.; Sun, S. H. Noble metal-free nanoporous high-entropy alloys as highly efficient electrocatalysts for oxygen evolution reaction. ACS Mater. Lett. 2019, 1, 526–533.

[28]

Yusenko, K. V.; Riva, S.; Carvalho, P. A.; Yusenko, M. V.; Arnaboldi, S.; Sukhikh, A. S.; Hanfland, M.; Gromilov, S. A. First hexagonal close packed high-entropy alloy with outstanding stability under extreme conditions and electrocatalytic activity for methanol oxidation. Scr. Mater. 2017, 138, 22–27.

[29]

Zhang, G. L.; Ming, K. S.; Kang, J. L.; Huang, Q.; Zhang, Z. J.; Zheng, X. R.; Bi, X. F. High entropy alloy as a highly active and stable electrocatalyst for hydrogen evolution reaction. Electrochim. Acta 2018, 279, 19–23.

[30]

Bligaard, T.; Nørskov, J. K. Ligand effects in heterogeneous catalysis and electrochemistry. Electrochim. Acta 2007, 52, 5512–5516.

[31]

Kitchin, J. R.; Nørskov, J. K.; Barteau, M. A.; Chen, J. G. Role of strain and ligand effects in the modification of the electronic and chemical properties of bimetallic surfaces. Phys. Rev. Lett. 2004, 93, 156801.

[32]

Löffler, T.; Savan, A.; Garzón-Manjón, A.; Meischein, M.; Scheu, C.; Ludwig, A.; Schuhmann, W. Toward a paradigm shift in electrocatalysis using complex solid solution nanoparticles. ACS Energy Lett. 2019, 4, 1206–1214.

[33]

Löffler, T.; Ludwig, A.; Rossmeisl, J.; Schuhmann, W. What makes high-entropy alloys exceptional electrocatalysts? Angew. Chem., Int. Ed. 2021, 60, 26894–26903.

[34]

Li, H. D.; Lai, J. P.; Li, Z. J.; Wang L. Multi-sites electrocatalysis in high-entropy alloys. Adv. Funct. Mater. 2021, 31, 2106715.

[35]

Dai, W. J.; Lu, T.; Pan, Y. Novel and promising electrocatalyst for oxygen evolution reaction based on MnFeCoNi high entropy alloy. J. Power Sources 2019, 430, 104–111.

[36]

Xie, P. F.; Yao, Y. G.; Huang, Z. N.; Liu, Z. Y.; Zhang, J. L.; Li, T. Y.; Wang, G. F.; Shahbazian-Yassar, R.; Hu, L. B.; Wang, C. Highly efficient decomposition of ammonia using high-entropy alloy catalysts. Nat. Commun. 2019, 10, 4011.

[37]

Yao, Y. G.; Huang, Z. N.; Xie, P. F.; Lacey, S. D.; Jacob, R. J.; Xie, H.; Chen, F.; Nie, A. M.; Pu, T. C.; Rehwoldt, M. et al. Carbothermal shock synthesis of high-entropy-alloy nanoparticles. Science 2018, 359, 1489–1494.

[38]

Singh, M. P.; Srivastava, C. Synthesis and electron microscopy of high entropy alloy nanoparticles. Mater. Lett. 2015, 160, 419–422.

[39]

Li, S. Y.; Tang, X. W.; Jia, H. L.; Li, H. L.; Xie, G. Q.; Liu, X. J.; Lin, X.; Qiu, H. J. Nanoporous high-entropy alloys with low Pt loadings for high-performance electrochemical oxygen reduction. J. Catal. 2020, 383, 164–171.

[40]

Reier, T.; Oezaslan, M.; Strasser, P. Electrocatalytic oxygen evolution reaction (OER) on Ru, Ir, and Pt catalysts: A comparative study of nanoparticles and bulk materials. Acs Catal. 2012, 2, 1765–1772.

[41]

Zhang, Y. C.; Han, C.; Gao, J.; Pan, L.; Wu, J.; Zhu, X. D.; Zou, J. J. NiCo-based electrocatalysts for the alkaline oxygen evolution reaction: A review. ACS Catal. 2021, 11, 12485–12509.

[42]

Li, D.; Liu, H.; Feng, L. A review on advanced FeNi-based catalysts for water splitting reaction. Energy Fuels 2020, 34, 13491–13522.

[43]

Wang, C. P.; Wang, J.; Guo, S. H.; Liu, X. J.; Ohnuma, I.; Kainuma, R.; Ishida, K. Experimental investigation and thermodynamic calculation of the phase equilibria in the Co-Mo-W system. Intermetallics 2009, 17, 642–650.

[44]

Chang, X. J.; Zeng, M. Q.; Liu, K. L.; Fu, L. Phase engineering of high-entropy alloys. Adv. Mater. 2020, 32, 1907226.

[45]

Chen, R. R.; Qin, G.; Zheng, H. T.; Wang, L.; Su, Y. Q.; Chiu, Y.; Ding, H. S.; Guo, J. J.; Fu, H. Z. Composition design of high entropy alloys using the valence electron concentration to balance strength and ductility. Acta Mater. 2018, 144, 129–137.

[46]

Guo, S.; Ng, C.; Lu, J.; Liu, C. T. Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys. J. Appl. Phys. 2011, 109, 103505.

[47]

Zhang, Y.; Zhou, Y. J. Solid solution formation criteria for high entropy alloys. Mater. Sci. Forum 2007, 561–565, 1337–1339.

[48]

Hume-Rothery, W. The structure of metals and alloys. Indian J. Phys. 1969, 11, 74.

[49]

Sheng, G.; Liu, C. T. Phase stability in high entropy alloys: Formation of solid-solution phase or amorphous phase. Prog. Nat. Sci.: Mater. Int. 2011, 21, 433–446.

[50]

Zhang, Y.; Zuo, T. T.; Tang, Z.; Gao, M. C.; Dahmen, K. A.; Liaw, P. K.; Lu, Z. P. Microstructures and properties of high-entropy alloys. Prog. Mater. Sci. 2014, 61, 1–93.

[51]

Tong, C. J.; Chen, Y. L.; Yeh, J. W.; Lin, S. J.; Chen, S. K.; Shun, T. T.; Tsau, C. H.; Chang, S. Y. Microstructure characterization of AlxCoCrCuFeNi high-entropy alloy system with multiprincipal elements. Metall. Mater. Trans. A 2005, 36, 881–893.

[52]

Zhang, L. J.; Cai, W. W.; Bao, N. Z. Top-level design strategy to construct an advanced high-entropy Co-Cu-Fe-Mo (oxy)hydroxide electrocatalyst for the oxygen evolution reaction. Adv. Mater. 2021, 33, 2100745.

[53]

Wu, H. Y.; Qin, M. L.; Wang, W.; Cao, Z. Q.; Liu, Z. W.; Yu, Q. Y.; Lao, C. Y.; Zhang, D. Y.; Jia, B. R.; He, D. L. et al. Ultrafast synthesis of amorphous VOx embedded into 3D strutted amorphous carbon frameworks—Short-range order in dual-amorphous composites boosts lithium storage. J. Mater. Chem. A 2018, 6, 7053–7061.

[54]

Jia, Z.; Yang, T.; Sun, L. G.; Zhao, Y. L.; Li, W. P.; Luan, J. H.; Lyu, F. C.; Zhang, L. C.; Kruzic, J. J.; Kai, J. J. et al. A novel multinary intermetallic as an active electrocatalyst for hydrogen evolution. Adv. Mater. 2020, 32, 2000385.

[55]

Zhang, T.; Li, R.; Pang, S. J. Effect of similar elements on improving glass-forming ability of La-Ce-based alloys. J. Alloys Compd. 2009, 483, 60–63.

[56]

Broge, N. L.; Bondesgaard, M.; Søndergaard-Pedersen, F.; Roelsgaard, M.; Iversen, B. B. Autocatalytic formation of high-entropy alloy nanoparticles. Angew. Chem. 2020, 132, 22104–22108.

[57]

Kumar, N.; Tiwary, C. S.; Biswas, K. Preparation of nanocrystalline high-entropy alloys via cryomilling of cast ingots. J. Mater. Sci. 2018, 53, 13411–13423.

[58]
Nellaiappan, S.; Kumar, N.; Kumar, R.; Parui, A.; Deo Malviya, K.; Pradeep, K. G.; Singh, A. K.; Sharma, S.; Tiwary, C. S.; Biswas, K. Nobel metal based high entropy alloy for conversion of carbon dioxide (CO2) to hydrocarbon. Catalysis, in press, https://doi.org/10.26434/chemrxiv.9777218.v1.
[59]

Liu, M. M.; Zhang, Z. H.; Okejiri, F.; Yang, S. Z.; Zhou, S. H.; Dai, S. Entropy-maximized synthesis of multimetallic nanoparticle catalysts via a ultrasonication-assisted wet chemistry method under ambient conditions. Adv. Mater. Interfaces 2019, 6, 1900015.

[60]

Wang, J.; Gao, Y.; Kong, H.; Kim, J.; Choi, S.; Ciucci, F.; Hao, Y.; Yang, S. H.; Shao, Z. P.; Lim, J. Non-precious-metal catalysts for alkaline water electrolysis: Operando characterizations, theoretical calculations, and recent advances. Chem. Soc. Rev. 2020, 49, 9154–9196.

[61]

Wu, D. S.; Kusada, K.; Yamamoto, T.; Toriyama, T.; Matsumura, S.; Gueye, I.; Seo, O.; Kim, J.; Hiroi, S.; Sakata, O. et al. On the electronic structure and hydrogen evolution reaction activity of platinum group metal-based high-entropy-alloy nanoparticles. Chem. Sci. 2020, 11, 12731–12736.

[62]

Yin, B. L.; Curtin, W. A. First-principles-based prediction of yield strength in the RhIrPdPtNiCu high-entropy alloy. npj Comput. Mater. 2019, 5, 14.

[63]

Wang, H. Y.; Wei, R.; Li, X. M.; Ma, X. L.; Hao, X. G.; Guan, G. Q. Nanostructured amorphous Fe29Co27Ni23Si9B12 high-entropy-alloy: An efficient electrocatalyst for oxygen evolution reaction. J. Mater. Sci. Technol. 2021, 68, 191–198.

[64]

Biswas, K.; Yeh, J. W.; Bhattacharjee, P. P.; DeHosson, J. T. M. High entropy alloys: Key issues under passionate debate. Scr. Mater. 2020, 188, 54–58.

[65]

Akrami, S.; Murakami, Y.; Watanabe, M.; Ishihara, T.; Arita, M.; Fuji, M.; Edalati, K. Defective high-entropy oxide photocatalyst with high activity for CO2 conversion. Appl. Catal. B: Environ. 2022, 303, 120896.

[66]

Wei, R.; Zhang, K. S.; Zhao, P. J.; An, Y. P.; Tang, C.; Chen, C.; Li, X. M.; Ma, X. L.; Ma, Y. F.; Hao, X. G. Defect-rich FeCoNiPB/(FeCoNi)3O4−x high-entropy composite nanoparticles for oxygen evolution reaction: Impact of surface activation. Appl. Surf. Sci. 2021, 549, 149327.

[67]

Huang, K.; Zhang, B. W.; Wu, J. S.; Zhang, T. Y.; Peng, D. D.; Cao, X.; Zhang, Z.; Li, Z.; Huang, Y. Z. Exploring the impact of atomic lattice deformation on oxygen evolution reactions based on a sub-5 nm pure face-centred cubic high-entropy alloy electrocatalyst. J. Mater. Chem. A 2020, 8, 11938–11947.

[68]

Wang, S. Q.; Huo, W. Y.; Fang, F.; Xie, Z. H.; Shang, J. K.; Jiang, J. Q. High entropy alloy/C nanoparticles derived from polymetallic MOF as promising electrocatalysts for alkaline oxygen evolution reaction. Chem. Eng. J. 2022, 429, 132410.

[69]

Pickering, E. J.; Jones, N. G. High-entropy alloys: A critical assessment of their founding principles and future prospects. Int. Mater. Rev. 2016, 61, 183–202.

[70]

George, E. P.; Raabe, D.; Ritchie, R. O. High-entropy alloys. Nat. Rev. Mater. 2019, 4, 515–534.

[71]

Ranganathan, S. Alloyed pleasures: Multimetallic cocktails. Curr. Sci. 2003, 85, 1404–1406.

[72]

Sohn, S.; Liu, Y. H.; Liu, J. B.; Gong, P.; Prades-Rodel, S.; Blatter, A.; Scanley, B. E.; Broadbridge, C. C.; Schroers, J. Noble metal high entropy alloys. Scr. Mater. 2017, 126, 29–32.

[73]

Thiel, F.; Geissler, D.; Nielsch, K.; Kauffmann, A.; Seils, S.; Heilmaier, M.; Utt, D.; Albe, K.; Motylenko, M.; Rafaja, D. et al. Origins of strength and plasticity in the precious metal based high-entropy alloy AuCuNiPdPt. Acta Mater. 2020, 185, 400–411.

[74]

Winkler, B.; Juarez-Arellano, E. A.; Morgenroth, W.; Barkov, A.; Dippel, A. C.; Zimmermann, M. V.; Ivashko, O.; Gutowski, O. Pt2AuCuNiSn, a new noble metal single-phase high entropy alloy. J. Solid State Chem. 2021, 294, 121837.

[75]

Chen, X. T.; Si, C. H.; Gao, Y. L.; Frenzel, J.; Sun, J. Z.; Eggeler, G.; Zhang, Z. H. Multi-component nanoporous platinum-ruthenium-copper-osmium-iridium alloy with enhanced electrocatalytic activity towards methanol oxidation and oxygen reduction. J. Power Sources 2015, 273, 324–332.

[76]

Jin, B. Q.; Zhang, N. N.; Zhang, Y.; Li, D. Y. Microstructure, phase composition and wear resistance of low valence electron concentration AlxCoCrFeNiSi high-entropy alloys prepared by vacuum arc melting. J. Iron Steel Res. Int. 2021, 28, 181–189.

[77]

Zhang, J.; Hu, Y. Y.; Wei, Q. Q.; Xiao, Y.; Chen, P. G.; Luo, G. Q.; Shen, Q. Microstructure and mechanical properties of RexNbMoTaW high-entropy alloys prepared by arc melting using metal powders. J. Alloys Compd. 2020, 827, 154301.

[78]

Popov, V. V.; Katz-Demyanetz, A.; Koptyug, A.; Bamberger, M. Selective electron beam melting of Al0.5CrMoNbTa0.5 high entropy alloys using elemental powder blend. Heliyon 2019, 5, 01188.

[79]

Luo, S. C.; Zhao, C. Y.; Su, Y.; Liu, Q.; Wang, Z. M. Selective laser melting of dual phase AlCrCuFeNix high entropy alloys: Formability, heterogeneous microstructures and deformation mechanisms. Addit. Manuf. 2020, 31, 100925.

[80]

Xiang, S.; Li, J. F.; Luan, H. W.; Amar, A.; Lu, S. Y.; Li, K.; Zhang, L.; Liu, X.; Le, G. M.; Wang, X. Y. et al. Effects of process parameters on microstructures and tensile properties of laser melting deposited CrMnFeCoNi high entropy alloys. Mater. Sci. Eng. A 2019, 743, 412–417.

[81]

Li, X. P. Additive manufacturing of advanced multi-component alloys: Bulk metallic glasses and high entropy alloys. Adv. Eng. Mater. 2018, 20, 1700874.

[82]

Ocelík, V.; Janssen, N.; Smith, S. N.; De Hosson, J. T. M. Additive manufacturing of high-entropy alloys by laser processing. JOM 2016, 68, 1810–1818.

[83]

Chen, Y. Y.; Duval, T.; Hung, U. D.; Yeh, J. W.; Shih, H. C. Microstructure and electrochemical properties of high entropy alloys—A comparison with type-304 stainless steel. Corros. Sci. 2005, 47, 2257–2279.

[84]

Zhang, Y.; Zhang, B. L.; Li, K.; Zhao, G. L.; Guo, S. M. Electromagnetic interference shielding effectiveness of high entropy AlCoCrFeNi alloy powder laden composites. J. Alloys Compd. 2018, 734, 220–228.

[85]

Duan, Y. P.; Wen, X.; Zhang, B.; Ma, G. J.; Wang, T. M. Optimizing the electromagnetic properties of the FeCoNiAlCrx high entropy alloy powders by composition adjustment and annealing treatment. J. Magn. Magn. Mater. 2020, 497, 165947.

[86]

Fourmont, A.; Le Gallet, S.; Politano, O.; Desgranges, C.; Baras, F. Effects of planetary ball milling on AlCoCrFeNi high entropy alloys prepared by Spark Plasma Sintering: Experiments and molecular dynamics study. J. Alloys Compd. 2020, 820, 153448.

[87]

Suryanarayana, C. Mechanical alloying: A novel technique to synthesize advanced materials. Research (Wash. D C) 2019, 2019, 4219812.

[88]

Jin, Z. Y.; Lv, J.; Jia, H. L.; Liu, W. H.; Li, H. L.; Chen, Z. H.; Lin, X.; Xie, G. Q.; Liu, X. J.; Sun, S. H. et al. Nanoporous Al-Ni-Co-Ir-Mo high-entropy alloy for record-high water splitting activity in acidic environments. Small 2019, 15, 1904180.

[89]

Joo, S. H.; Bae, J. W.; Park, W. Y.; Shimada, Y.; Wada, T.; Kim, H. S.; Takeuchi, A.; Konno, T. J.; Kato, H.; Okulov, I. V. Beating thermal coarsening in nanoporous materials via high-entropy design. Adv. Mater. 2020, 32, 1906160.

[90]

Nellaiappan, S.; Katiyar, N. K.; Kumar, R.; Parui, A.; Deo Malviya, K.; Pradeep, K. G.; Singh, A. K.; Sharma, S.; Tiwary, C. S.; Biswas, K. High-entropy alloys as catalysts for the CO2 and CO reduction reactions: Experimental realization. ACS Catal. 2020, 10, 3658–3663.

[91]

Xu, W.; Chen, H.; Jie, K. C.; Yang, Z. Z.; Li, T. T.; Dai, S. Entropy-driven mechanochemical synthesis of polymetallic zeolitic imidazolate frameworks for CO2 fixation. Angew. Chem. 2019, 131, 5072–5076.

[92]

Redka, D.; Gadelmeier, C.; Winter, J.; Spellauge, M.; Eulenkamp, C.; Calta, P.; Glatzel, U.; Minár, J.; Huber, H. P. Sub-picosecond single-pulse laser ablation of the CrMnFeCoNi high entropy alloy and comparison to stainless steel AISI 304. Appl. Surf. Sci. 2021, 544, 148839.

[93]

Xin, Y.; Li, S. H.; Qian, Y. Y.; Zhu, W. K.; Yuan, H. B.; Jiang, P. Y.; Guo, R. H.; Wang, L. B. High-entropy alloys as a platform for catalysis: Progress, challenges, and opportunities. ACS Catal. 2020, 10, 11280–11306.

[94]

Qiu, H. J.; Fang, G.; Wen, Y. R.; Liu, P.; Xie, G. Q.; Liu, X. J.; Sun, S. H. Nanoporous high-entropy alloys for highly stable and efficient catalysts. J. Mater. Chem. A 2019, 7, 6499–6506.

[95]

Bondesgaard, M.; Broge, N. L. N.; Mamakhel, A.; Bremholm, M.; Iversen, B. B. General solvothermal synthesis method for complete solubility range bimetallic and high-entropy alloy nanocatalysts. Adv. Funct. Mater. 2019, 29, 1905933.

[96]

Ortega, S.; Ibáñez, M.; Liu, Y.; Zhang, Y.; Kovalenko, M. V.; Cadavid, D.; Cabot, A. Bottom–up engineering of thermoelectric nanomaterials and devices from solution-processed nanoparticle building blocks. Chem. Soc. Rev. 2017, 46, 3510–3528.

[97]

Yang, Y.; Song, B. A.; Ke, X.; Xu, F. Y.; Bozhilov, K. N.; Hu, L. B.; Shahbazian-Yassar, R.; Zachariah, M. R. Aerosol synthesis of high entropy alloy nanoparticles. Langmuir 2020, 36, 1985–1992.

[98]

Garzón-Manjón, A.; Meyer, H.; Grochla, D.; Löffler, T.; Schuhmann, W.; Ludwig, A.; Scheu, C. Controlling the amorphous and crystalline state of multinary alloy nanoparticles in an ionic liquid. Nanomaterials (Basel) 2018, 8, 903.

[99]

Löffler, T.; Meyer, H.; Savan, A.; Wilde, P.; Manjón, A. G.; Chen, Y. T.; Ventosa, E.; Scheu, C.; Ludwig, A.; Schuhmann, W. Discovery of a multinary noble metal-free oxygen reduction catalyst. Adv. Energy Mater. 2018, 8, 1802269.

[100]

Chen, P. C.; Liu, G.; Zhou, Y.; Brown, K. A.; Chernyak, N.; Hedrick, J. L.; He, S.; Xie, Z.; Lin, Q. Y.; Dravid, V. P.; et al. Tip-directed synthesis of multimetallic nanoparticles. J. Am. Chem. Soc. 2015, 137, 9167–9173.

[101]

Lacey, S. D.; Dong, Q.; Huang, Z. N.; Luo, J. R.; Xie, H.; Lin, Z. W.; Kirsch, D. J.; Vattipalli, V.; Povinelli, C.; Fan, W. et al. Stable multimetallic nanoparticles for oxygen electrocatalysis. Nano Lett. 2019, 19, 5149–5158.

[102]

Du, Z. G.; Wu, C.; Chen, Y. C.; Cao, Z. J.; Hu, R. M.; Zhang, Y. Z.; Gu, J. N.; Cui, Y. L. S.; Chen, H.; Shi, Y. Z. et al. High-entropy atomic layers of transition-metal carbides (MXenes). Adv. Mater. 2021, 33, 2101473.

[103]

Nemani, S. K.; Zhang, B. W.; Wyatt, B. C.; Hood, Z. D.; Manna, S.; Khaledialidusti, R.; Hong, W. C.; Sternberg, M. G.; Sankaranarayanan, S. K. R. S.; Anasori, B. High-entropy 2D carbide MXenes: TiVNbMoC3 and TiVCrMoC3. ACS Nano 2021, 15, 12815–12825.

[104]

Minamihara, H.; Kusada, K.; Wu, D. S.; Yamamoto, T.; Toriyama, T.; Matsumura, S.; Kumara, L. S. R.; Ohara, K.; Sakata, O.; Kawaguchi, S. et al. Continuous-flow reactor synthesis for homogeneous 1 nm-sized extremely small high-entropy alloy nanoparticles. J. Am. Chem. Soc. 2022, 144, 11525–11529.

[105]

Zhao, X. H.; Xue, Z. M.; Chen, W. J.; Bai, X. Y.; Shi, R. F.; Mu, T. C. Ambient fast, large-scale synthesis of entropy-stabilized metal-organic framework nanosheets for electrocatalytic oxygen evolution. J. Mater. Chem. A 2019, 7, 26238–26242.

[106]

Nguyen, T. X.; Su, Y. H.; Lin, C. C.; Ruan, J.; Ting, J. M. A new high entropy glycerate for high performance oxygen evolution reaction. Adv. Sci. 2021, 8, 2002446.

[107]

Wang, D. D.; Liu, Z. J.; Du, S. Q.; Zhang, Y. Q.; Li, H.; Xiao, Z. H.; Chen, W.; Chen, R.; Wang, Y. Y.; Zou, Y. Q. et al. Low-temperature synthesis of small-sized high-entropy oxides for water oxidation. J. Mater. Chem. A 2019, 7, 24211–24216.

[108]

Zhao, X. H.; Xue, Z. M.; Chen, W. J.; Wang, Y. Q.; Mu, T. C. Eutectic synthesis of high-entropy metal phosphides for electrocatalytic water splitting. ChemSusChem 2020, 13, 2038–2042.

[109]

Li, H. D.; Han, Y.; Zhao, H.; Qi, W. J.; Zhang, D.; Yu, Y. D.; Cai, W. W.; Li, S. X.; Lai, J. P.; Huang, B. L. et al. Fast site-to-site electron transfer of high-entropy alloy nanocatalyst driving redox electrocatalysis. Nat. Commun. 2020, 11, 5437.

[110]

Du, Z. G.; Wu, C.; Chen, Y. C.; Zhu, Q.; Cui, Y. L. S.; Wang, H. Y.; Zhang, Y. Z.; Chen, X.; Shang, J. X.; Li, B. et al. High-entropy carbonitride MAX phases and their derivative MXenes. Adv. Energy Mater. 2022, 12, 2103228.

[111]

Etman, A. S.; Zhou, J.; Rosen, J. Ti1.1V0. 7CrxNb1. 0Ta0. 6C3Tz high-entropy MXene freestanding films for charge storage applications. Electrochem. Commun. 2022, 137, 107264.

[112]

Wang, R.; Huang, J. Z.; Zhang, X. H.; Han, J. C.; Zhang, Z. H.; Gao, T. L.; Xu, L. L.; Liu, S. W.; Xu, P.; Song, B. Two-dimensional high-entropy metal phosphorus trichalcogenides for enhanced hydrogen evolution reaction. ACS Nano 2022, 16, 3593–3603.

[113]

Zhang, D.; Shi, Y.; Zhao, H.; Qi, W. J.; Chen, X. L.; Zhan, T. R.; Li, S. X.; Yang, B.; Sun, M. Z.; Lai, J. P. et al. The facile oil-phase synthesis of a multi-site synergistic high-entropy alloy to promote the alkaline hydrogen evolution reaction. J. Mater. Chem. A 2021, 9, 889–893.

[114]

Chen, Y. F.; Zhan, X.; Bueno, S. L. A.; Shafei, I. H.; Ashberry, H. M.; Chatterjee, K.; Xu, L.; Tang, Y. W.; Skrabalak, S. E. Synthesis of monodisperse high entropy alloy nanocatalysts from core@shell nanoparticles. Nanoscale Horiz. 2021, 6, 231–237.

[115]

Tao, L.; Sun, M. Z.; Zhou, Y.; Luo, M. C.; Lv, F.; Li, M. G.; Zhang, Q. H.; Gu, L.; Huang, B. L.; Guo, S. J. A general synthetic method for high-entropy alloy subnanometer ribbons. J. Am. Chem. Soc. 2022, 23, 10582–10590.

[116]

Niu, B.; Zhang, F.; Ping, H.; Li, N.; Zhou, J. Y.; Lei, L. W.; Xie, J. J.; Zhang, J. Y.; Wang, W. M.; Fu, Z. Y. Sol–gel autocombustion synthesis of nanocrystalline high-entropy alloys. Sci. Rep. 2017, 7, 3421.

[117]

Wang, A. L.; Wan, H. C.; Xu, H.; Tong, Y. X.; Li, G. R. Quinary PdNiCoCuFe alloy nanotube arrays as efficient electrocatalysts for methanol oxidation. Electrochim. Acta 2014, 127, 448–453.

[118]

Tench, D.; White, J. Enhanced tensile strength for electrodeposited nickel-copper multilayer composites. Metall. Mater. Trans. A 1984, 15, 2039–2040.

[119]

Gao, S. J.; Hao, S. Y.; Huang, Z. N.; Yuan, Y. F.; Han, S.; Lei, L. C.; Zhang, X. W.; Shahbazian-Yassar, R.; Lu, J. Synthesis of high-entropy alloy nanoparticles on supports by the fast moving bed pyrolysis. Nat. Commun. 2020, 11, 2016.

[120]

Kwon, S. G.; Krylova, G.; Phillips, P. J.; Klie, R. F.; Chattopadhyay, S.; Shibata, T.; Bunel, E. E.; Liu, Y. Z.; Prakapenka, V. B.; Lee, B. et al. Heterogeneous nucleation and shape transformation of multicomponent metallic nanostructures. Nat. Mater. 2015, 14, 215–223.

[121]

Yao, Y. G.; Huang, Z. N.; Li, T. Y.; Wang, H.; Liu, Y. F.; Stein, H. S.; Mao, Y. M.; Gao, J. L.; Jiao, M. L.; Dong, Q. et al. High-throughput, combinatorial synthesis of multimetallic nanoclusters. Proc. Natl. Acad. Sci. USA 2020, 117, 6316–6322.

[122]

Yao, Y. G.; Huang, Z. N.; Hughes, L. A.; Gao, J. L.; Li, T. Y.; Morris, D.; Zeltmann, S. E.; Savitzky, B. H.; Ophus, C.; Finfrock, Y. Z. et al. Extreme mixing in nanoscale transition metal alloys. Matter 2021, 4, 2340–2353.

[123]

Yao, Y. G.; Liu, Z. Y.; Xie, P. F.; Huang, Z. N.; Li, T. Y.; Morris, D.; Finfrock, Z.; Zhou, J. H.; Jiao, M. L.; Gao, J. L. et al. Computationally aided, entropy-driven synthesis of highly efficient and durable multi-elemental alloy catalysts. Sci. Adv. 2020, 6, eaaz0510.

[124]

Ding, Q. Q.; Zhang, Y.; Chen, X.; Fu, X. Q.; Chen, D. K.; Chen, S. J.; Gu, L.; Wei, F.; Bei, H. B.; Gao, Y. F. et al. Tuning element distribution, structure and properties by composition in high-entropy alloys. Nature 2019, 574, 223–227.

[125]

Savitzky, B. H.; Hughes, L.; Bustillo, K. C.; Deng, H. D.; Jin, N. L.; Lomeli, E. G.; Chueh, W. C.; Herring, P.; Minor, A.; Ophus, C. py4DSTEM: Open source software for 4D-STEM data analysis. Microsc. Microanal. 2019, 25, 124–125.

[126]

Miao, J. W.; Ercius, P.; Billinge, S. J. L. Atomic electron tomography: 3D structures without crystals. Science 2016, 353, aaf2157.

[127]

Wu, L. Y.; Hong, J. M.; Zhang, Q.; Chen, B. Y.; Wang, J.; Dong, Z. Y. Deciphering highly resistant characteristics to different pHs of oxygen vacancy-rich Fe2Co1-LDH/PS system for bisphenol A degradation. Chem. Eng. J. 2020, 385, 123620.

[128]

Yang, Y.; Zhou, J. H.; Zhu, F.; Yuan, Y. K.; Chang, D. J.; Kim, D. S.; Pham, M.; Rana, A.; Tian, X. Z.; Yao, Y. G. et al. Determining the three-dimensional atomic structure of an amorphous solid. Nature 2021, 592, 60–64.

[129]

Zhou, J. H.; Yang, Y.; Yang, Y.; Kim, D. S.; Yuan, A.; Tian, X. Z.; Ophus, C.; Sun, F.; Schmid, A. K.; Nathanson, M. et al. Observing crystal nucleation in four dimensions using atomic electron tomography. Nature 2019, 570, 500–503.

[130]

Greeley, J.; Stephens, I. E. L.; Bondarenko, A. S.; Johansson, T. P.; Hansen, H. A.; Jaramillo, T. F.; Rossmeisl, J.; Chorkendorff, I.; Nørskov, J. K. Alloys of platinum and early transition metals as oxygen reduction electrocatalysts. Nat. Chem. 2009, 1, 552–556.

[131]

Nørskov, J. K.; Bligaard, T.; Rossmeisl, J.; Christensen, C. H. Towards the computational design of solid catalysts. Nat. Chem. 2009, 1, 37–46.

[132]

Senkov, O. N.; Miller, J. D.; Miracle, D. B.; Woodward, C. Accelerated exploration of multi-principal element alloys with solid solution phases. Nat. Commun. 2015, 6, 6529.

[133]

Troparevsky, M. C.; Morris, J. R.; Kent, P. R. C.; Lupini, A. R.; Stocks, G. M. Criteria for predicting the formation of single-phase high-entropy alloys. Phys. Rev. X 2015, 5, 011041.

[134]

Haber, J. A.; Cai, Y.; Jung, S.; Xiang, C. X.; Mitrovic, S.; Jin, J.; Bell, A. T.; Gregoire, J. M. Discovering Ce-rich oxygen evolution catalysts, from high throughput screening to water electrolysis. Energ. Environ. Sci. 2014, 7, 682–688.

[135]

Attia, P. M.; Grover, A.; Jin, N.; Severson, K. A.; Markov, T. M.; Liao, Y. H.; Chen, M. H.; Cheong, B.; Perkins, N.; Yang, Z. et al. Closed-loop optimization of fast-charging protocols for batteries with machine learning. Nature 2020, 578, 397–402.

[136]

Aykol, M.; Herring, P.; Anapolsky, A. Machine learning for continuous innovation in battery technologies. Nat. Rev. Mater. 2020, 5, 725–727.

[137]

Batchelor, T. A. A.; Löffler, T.; Xiao, B.; Krysiak, O. A.; Strotkötter, V.; Pedersen, J. K.; Clausen, C. M.; Savan, A.; Li, Y. J.; Schuhmann, W. et al. Complex-solid-solution electrocatalyst discovery by computational prediction and high-throughput experimentation. Angew. Chem., Int. Ed. 2021, 60, 6932–6937.

[138]

Batchelor, T. A. A.; Pedersen, J. K.; Winther, S. H.; Castelli, I. E.; Jacobsen, K. W.; Rossmeisl, J. High-entropy alloys as a discovery platform for electrocatalysis. Joule 2019, 3, 834–845.

[139]

Pedersen, J. K.; Batchelor, T. A. A.; Bagger, A.; Rossmeisl, J. High-entropy alloys as catalysts for the CO2 and CO reduction reactions. ACS Catal. 2020, 10, 2169–2176.

[140]

Stein, H. S.; Guevarra, D.; Newhouse, P. F.; Soedarmadji, E.; Gregoire, J. M. Machine learning of optical properties of materials-predicting spectra from images and images from spectra. Chem. Sci. 2019, 10, 47–55.

[141]

Zhou, Z. Q.; Zhou, Y. J.; He, Q. F.; Ding, Z. Y.; Li, F. C.; Yang, Y. Machine learning guided appraisal and exploration of phase design for high entropy alloys. npj Comput. Mater. 2019, 5, 128.

[142]

Chun, H.; Lee, E.; Nam, K.; Jang, J. H.; Kyoung, W.; Noh, S. H.; Han, B. First-principle-data-integrated machine-learning approach for high-throughput searching of ternary electrocatalyst toward oxygen reduction reaction. Chem Catal. 2021, 1, 855–869.

[143]

Jiang, X.; Wang, Y.; Jia, B. R.; Qu, X. H.; Qin, M. L. Prediction of oxygen evolution activity for NiCoFe oxide catalysts via machine learning. ACS Omega 2022, 7, 14160–14164.

[144]

Li, X. M.; Guan, G. Q. Co-based electrocatalysts for hydrogen-evolution reaction. Mater. Res. Found. 2019, 59, 59–96.

[145]

Jakšić, M. M. Advances in electrocatalysis for hydrogen evolution in the light of the Brewer–Engel valence-bond theory. Int. J. Hydrog. Energy 1987, 12, 727–752.

[146]

Greeley, J.; Jaramillo, T. F.; Bonde, J.; Chorkendorff, I.; Nørskov, J. K. Computational high-throughput screening of electrocatalytic materials for hydrogen evolution. Nat. Mater. 2006, 5, 909–913.

[147]

Glasscott, M. W.; Pendergast, A. D.; Goines, S.; Bishop, A. R.; Hoang, A. T.; Renault, C.; Dick, J. E. Electrosynthesis of high-entropy metallic glass nanoparticles for designer, multi-functional electrocatalysis. Nat. Commun. 2019, 10, 2650.

[148]

Reddington, E.; Sapienza, A.; Gurau, B.; Viswanathan, R.; Sarangapani, S.; Smotkin, E. S.; Mallouk, T. E. Combinatorial electrochemistry: A highly parallel, optical screening method for discovery of better electrocatalysts. Science 1998, 280, 1735–1737.

[149]

Morales-Guio, C. G.; Stern, L. A.; Hu, X. L. Nanostructured hydrotreating catalysts for electrochemical hydrogen evolution. Chem. Soc. Rev. 2014, 43, 6555–6569.

[150]

Zhu, J.; Hu, L. S.; Zhao, P. X.; Lee, L. Y. S.; Wong, K. Y. Recent advances in electrocatalytic hydrogen evolution using nanoparticles. Chem. Rev. 2020, 120, 851–918.

[151]

Du, N. N.; Wang, C. M.; Wang, X. J.; Lin, Y.; Jiang, J.; Xiong, Y. J. Trimetallic TriStar nanostructures: Tuning electronic and surface structures for enhanced electrocatalytic hydrogen evolution. Adv. Mater. 2016, 28, 2077–2084.

[152]

Pan, Y.; Sun, K. A.; Lin, Y.; Cao, X.; Cheng, Y. S.; Liu, S. J.; Zeng, L. Y.; Cheong, W. C.; Zhao, D.; Wu, K. L. et al. Electronic structure and d-band center control engineering over M-doped CoP (M= Ni, Mn, Fe) hollow polyhedron frames for boosting hydrogen production. Nano Energy 2019, 56, 411–419.

[153]

Yao, R. Q.; Zhou, Y. T.; Shi, H.; Wan, W. B.; Zhang, Q. H.; Gu, L.; Zhu, Y. F.; Wen, Z.; Lang, X. Y.; Jiang, Q. Nanoporous surface high-entropy alloys as highly efficient multisite electrocatalysts for nonacidic hydrogen evolution reaction. Adv. Funct. Mater. 2021, 31, 2009613.

[154]

Subbaraman, R.; Tripkovic, D.; Strmcnik, D.; Chang, K. C.; Uchimura, M.; Paulikas, A. P.; Stamenkovic, V.; Markovic, N. M. Enhancing hydrogen evolution activity in water splitting by tailoring Li+-Ni(OH)2-Pt interfaces. Science 2011, 334, 1256–1260.

[155]

Xin, H. L.; Vojvodic, A.; Voss, J.; Nørskov, J. K.; Abild-Pedersen, F. Effects of d-band shape on the surface reactivity of transition-metal alloys. Phys. Rev. B 2014, 89, 115114.

[156]

Pérez-Ramírez, J.; López, N. Strategies to break linear scaling relationships. Nat. Catal. 2019, 2, 971–976.

[157]

Ma, P. Y.; Zhao, M. M.; Zhang, L.; Wang, H.; Gu, J. F.; Sun, Y. C.; Ji, W.; Fu, Z. Y. Self-supported high-entropy alloy electrocatalyst for highly efficient H2 evolution in acid condition. J. Materiomics 2020, 6, 736–742.

[158]

Jin, Z. Y.; Lyu, J.; Zhao, Y. L.; Li, H. L.; Lin, X.; Xie, G. Q.; Liu, X. J.; Kai, J. J.; Qiu, H. J. Rugged high-entropy alloy nanowires with in situ formed surface spinel oxide as highly stable electrocatalyst in Zn-air batteries. ACS Mater. Lett. 2020, 2, 1698–1706.

[159]

Song, J. J.; Wei, C.; Huang, Z. F.; Liu, C. T.; Zeng, L.; Wang, X.; Xu, Z. J. A review on fundamentals for designing oxygen evolution electrocatalysts. Chem. Soc. Rev. 2020, 49, 2196–2214.

[160]

Cui, X. D.; Zhang, B. L.; Zeng, C. Y.; Guo, S. M. Electrocatalytic activity of high-entropy alloys toward oxygen evolution reaction. MRS Commun. 2018, 8, 1230–1235.

[161]

Yang, C.; Wu, Y.; Wang, Y.; Zhang, H. N.; Zhu, L. H.; Wang, X. C. Electronic properties of double-atom catalysts for electrocatalytic oxygen evolution reaction in alkaline solution: A DFT study. Nanoscale 2022, 14, 187–195.

[162]

Jin, Z. Y.; Lyu, J.; Zhao, Y. L.; Li, H. L.; Chen, Z. H.; Lin, X.; Xie, G. Q.; Liu, X. J.; Kai, J. J.; Qiu, H. J. Top–down synthesis of noble metal particles on high-entropy oxide supports for electrocatalysis. Chem. Mater. 2021, 33, 1771–1780.

[163]

Johny, J.; Li, Y.; Kamp, M.; Prymak, O.; Liang, S. X.; Krekeler, T.; Ritter, M.; Kienle, L.; Rehbock, C.; Barcikowski, S. et al. Laser-generated high entropy metallic glass nanoparticles as bifunctional electrocatalysts. Nano Res. 2022, 15, 4807–4819.

[164]

Sharma, L.; Katiyar, N. K.; Parui, A.; Das, R.; Kumar, R.; Tiwary, C. S.; Singh, A. K.; Halder, A.; Biswas, K. Low-cost high entropy alloy (HEA) for high-efficiency oxygen evolution reaction (OER). Nano Res. 2022, 15, 4799–4806.

[165]

Zhang, B.; Zheng, X. L.; Voznyy, O.; Comin, R.; Bajdich, M.; García-Melchor, M.; Han, L. L.; Xu, J. X.; Liu, M.; Zheng, L. R. et al. Homogeneously dispersed multimetal oxygen-evolving catalysts. Science 2016, 352, 333–337.

[166]

Halck, N. B.; Petrykin, V.; Krtil, P.; Rossmeisl, J. Beyond the volcano limitations in electrocatalysis—Oxygen evolution reaction. Chem. Chem. Phys. 2014, 16, 13682–13688.

[167]

Jin, S. Are metal chalcogenides, nitrides, and phosphides oxygen evolution catalysts or bifunctional catalysts? ACS Energy Lett. 2017, 8, 1937–1938.

[168]

Song, B. A.; Yang, Y.; Rabbani, M.; Yang, T. T.; He, K.; Hu, X. B.; Yuan, Y. F.; Ghildiyal, P.; Dravid, V. P.; Zachariah, M. R. et al. In situ oxidation studies of high-entropy alloy nanoparticles. ACS Nano 2020, 14, 15131–15143.

[169]

Chen, Z. J.; Zhang, T.; Gao, X. Y.; Huang, Y. J.; Qin, X. H.; Wang, Y. F.; Zhao, K.; Peng, X.; Zhang, C.; Liu, L. et al. Engineering microdomains of oxides in high-entropy alloy electrodes toward efficient oxygen evolution. Adv. Mater. 2021, 33, 2101845.

[170]

Zhang, N.; Feng, X. B.; Rao, D. W.; Deng, X.; Cai, L. J.; Qiu, B. C.; Long, R.; Xiong, Y. J.; Lu, Y.; Chai, Y. Lattice oxygen activation enabled by high-valence metal sites for enhanced water oxidation. Nat. Commun. 2020, 11, 4066.

[171]

Ding, Z. Y.; Bian, J. J.; Shuang, S.; Liu, X. D.; Hu, Y. C.; Sun, C. W.; Yang, Y. High entropy intermetallic-oxide core–shell nanostructure as superb oxygen evolution reaction catalyst. Adv. Sustain. Syst. 2020, 4, 1900105.

[172]

Rost, C. M.; Sachet, E.; Borman, T.; Moballegh, A.; Dickey, E. C.; Hou, D.; Jones, J. L.; Curtarolo, S.; Maria, J. P. Entropy-stabilized oxides. Nat. Commun. 2015, 6, 8485.

[173]

Chellali, M. R.; Sarkar, A.; Nandam, S. H.; Bhattacharya, S. S.; Breitung, B.; Hahn, H.; Velasco, L. On the homogeneity of high entropy oxides: An investigation at the atomic scale. Scr. Mater. 2019, 166, 58–63.

[174]

Sarkar, A.; Wang, Q. S.; Schiele, A.; Chellali, M. R.; Bhattacharya, S. S.; Wang, D.; Brezesinski, T.; Hahn, H.; Velasco, L.; Breitung, B. High-entropy oxides: Fundamental aspects and electrochemical properties. Adv. Mater. 2019, 31, 1806236.

[175]

Chen, W.; Wang, H. T.; Li, Y. Z.; Liu, Y. Y.; Sun, J.; Lee, S.; Lee, J. S.; Cui, Y. In situ electrochemical oxidation tuning of transition metal disulfides to oxides for enhanced water oxidation. ACS Cent. Sci. 2015, 1, 244–251.

[176]

Fan, K.; Zou, H. Y.; Lu, Y.; Chen, H.; Li, F. S.; Liu, J. X.; Sun, L. C.; Tong, L. P.; Toney, M. F.; Sui, M. L. et al. Direct observation of structural evolution of metal chalcogenide in electrocatalytic water oxidation. ACS Nano 2018, 12, 12369–12379.

[177]

Gao, M.; He, L.; Guo, Z. Y.; Yuan, Y. R.; Li, W. W. Sulfate-functionalized nickel hydroxide nanobelts for sustained oxygen evolution. ACS Appl. Mater. Interfaces 2020, 12, 443–450.

[178]

Yu, L.; Wu, L. B.; McElhenny, B.; Song, S. W.; Luo, D.; Zhang, F. H.; Yu, Y.; Chen, S.; Ren, Z. F. Ultrafast room-temperature synthesis of porous S-doped Ni/Fe (oxy)hydroxide electrodes for oxygen evolution catalysis in seawater splitting. Energy Environ. Sci. 2020, 13, 3439–3446.

[179]

Nguyen, T. X.; Su, Y. H.; Lin, C. C.; Ting, J. M. Self-reconstruction of sulfate-containing high entropy sulfide for exceptionally high-performance oxygen evolution reaction electrocatalyst. Adv. Funct. Mater. 2021, 31, 2106229.

[180]

Cui, M. J.; Yang, C. P.; Li, B. Y.; Dong, Q.; Wu, M. L.; Hwang, S.; Xie, H.; Wang, X. Z.; Wang, G. F.; Hu, L. B. High-entropy metal sulfide nanoparticles promise high-performance oxygen evolution reaction. Adv. Energy Mater. 2021, 11, 2002887.

[181]

Zhang, Z. B.; Zhu, Y. L.; Zhong, Y. J.; Zhou, W.; Shao, Z. P. Anion doping: A new strategy for developing high-performance perovskite-type cathode materials of solid oxide fuel cells. Adv. Energy Mater. 2017, 7, 1700242.

[182]

Chen, P. Z.; Zhou, T. P.; Wang, S. B.; Zhang, N.; Tong, Y.; Ju, H. X.; Chu, W. S.; Wu, C. Z.; Xie, Y. Dynamic migration of surface fluorine anions on cobalt-based materials to achieve enhanced oxygen evolution catalysis. Angew. Chem., Int. Ed. 2018, 57, 15471–15475.

[183]

Wang, C. L.; Wei, S. Q.; Li, F.; Long, X. F.; Wang, T.; Wang, P.; Li, S. W.; Ma, J. T.; Jin, J. Activating a hematite nanorod photoanode via fluorine-doping and surface fluorination for enhanced oxygen evolution reaction. Nanoscale 2020, 12, 3259–3266.

[184]

Wang, T.; Chen, H.; Yang, Z. Z.; Liang, J. Y.; Dai, S. High-entropy perovskite fluorides: A new platform for oxygen evolution catalysis. J. Am. Chem. Soc. 2020, 142, 4550–4554.

[185]

Wang, S. Q.; Xu, B. L.; Huo, W. Y.; Feng, H. C.; Zhou, X. F.; Fang, F.; Xie, Z. H.; Shang, J. K.; Jiang, J. Q. Efficient FeCoNiCuPd thin-film electrocatalyst for alkaline oxygen and hydrogen evolution reactions. Appl. Catal. B: Environ. 2022, 313, 121472.

[186]

Lei, Y. T.; Zhang, L. L.; Xu, W. J.; Xiong, C. L.; Chen, W. X.; Xiang, X.; Zhang, B.; Shang, H. S. Carbon-supported high-entropy Co-Zn-Cd-Cu-Mn sulfide nanoarrays promise high-performance overall water splitting. Nano Res. 2022, 15, 6054–6061.

[187]

Lai, D. W.; Kang, Q. L.; Gao, F.; Lu, Q. Y. High-entropy effect of a metal phosphide on enhanced overall water splitting performance. J. Mater. Chem. A 2021, 9, 17913–17922.

[188]

Chang, S. Q.; Cheng, C. C.; Cheng, P. Y.; Huang, C. L.; Lu, S. Y. Pulse electrodeposited FeCoNiMnW high entropy alloys as efficient and stable bifunctional electrocatalysts for acidic water splitting. Chem. Eng. J. 2022, 446, 137452.

[189]

Sivanantham, A.; Lee, H.; Hwang, S. W.; Ahn, B.; Cho, I. S. Preparation, electrical and electrochemical characterizations of CuCoNiFeMn high-entropy-alloy for overall water splitting at neutral-pH. J. Mater. Chem. A 2021, 9, 16841–16851.

Nano Research
Pages 4411-4437
Cite this article:
Li X, Zhou Y, Feng C, et al. High entropy materials based electrocatalysts for water splitting: Synthesis strategies, catalytic mechanisms, and prospects. Nano Research, 2023, 16(4): 4411-4437. https://doi.org/10.1007/s12274-022-5207-4
Topics:

9728

Views

35

Crossref

15

Web of Science

34

Scopus

1

CSCD

Altmetrics

Received: 23 July 2022
Revised: 29 September 2022
Accepted: 16 October 2022
Published: 03 December 2022
© Tsinghua University Press 2022
Return