AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Ligand-induced, magic-size clusters enabled formation of colloidal all-inorganic II-VI nanoplatelets with controllable lateral dimensions

Xufeng ChenJunjun GePengwei XiaoYalei DengYuanyuan Wang( )
State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
Show Author Information

Graphical Abstract

The all-inorganic wurtzite-structured (WZ-) CdS, CdSe, CdTe, and alloy Cd1−xZnxSe nanoplatelets (NPLs) with controllable lateral dimensions were directly synthesized from magic-size clusters (MSCs) in the colloidal state at room temperature. Mechanism studies revealed that destabilization of MSCs and nanoconfined growth in templates facilitated the formation of NPLs.

Abstract

Achieving nanoconfinement-controlled synthesis of nanoplatelets (NPLs) via solution process under ambient condition remains a challenge. In this work, we developed a general ligand-induced strategy to synthesize colloidal stable all-inorganic semiconductor NPLs with controllable lateral dimensions. By introducing certain metal salts (cations: Zn2+ and In3+, anions: NO3, BF4, or triflate OTf), wurtzite-structured (WZ-) CdS, CdSe, CdTe, and alloy Cd1−xZnxSe NPLs were directly synthesized in solution through the controlled diffusion of magic-size clusters (MSCs) at room temperature. Mechanism studies revealed that destabilization of MSCs and nanoconfined growth in templates facilitated the formation of NPLs. The present study not only provides a new synthetic route for the preparation of NPLs but also helps to provide insight into their probable formation mechanism and presents an important advance toward the rational design of functional nanomaterials.

Electronic Supplementary Material

Download File(s)
12274_2022_5210_MOESM1_ESM.pdf (4.3 MB)

References

[1]

Christodoulou, S.; Climente, J. I.; Planelles, J.; Brescia, R.; Brescia, M.; Martín-García, B.; Khan, A. H.; Moreels, I. Chloride-induced thickness control in CdSe nanoplatelets. Nano Lett. 2018, 18, 6248–6254.

[2]

Naeem, A.; Masia, F.; Christodoulou, S.; Moreels, I.; Borri, P.; Langbein, W. Giant exciton oscillator strength and radiatively limited dephasing in two-dimensional platelets. Phys. Rev. B 2015, 91, 121302.

[3]

Kunneman, L. T.; Tessier, M. D.; Heuclin, H.; Dubertret, B.; Aulin, Y. V.; Grozema, F. C.; Schins, J. M.; Siebbeles, L. D. A. Bimolecular auger recombination of electron–hole pairs in two-dimensional CdSe and CdSe/CdZnS core/shell nanoplatelets. J. Phys. Chem. Lett. 2013, 4, 3574–3578.

[4]

Sharma, A.; Sharma, M.; Gungor, K.; Olutas, M.; Dede, D.; Demir, H. V. Near-infrared-emitting five-monolayer thick copper-doped CdSe nanoplatelets. Adv. Opt. Mater. 2019, 7, 1900831.

[5]

Sharma, M.; Gungor, K.; Yeltik, A.; Olutas, M.; Guzelturk, B.; Kelestemur, Y.; Erdem, T.; Delikanli, S.; McBride, J. R.; Demir, H. V. Near-unity emitting copper-doped colloidal semiconductor quantum wells for luminescent solar concentrators. Adv. Mater. 2017, 29, 1700821.

[6]

Yu, J. H.; Dang, C. Colloidal metal chalcogenide quantum wells for laser applications. Cell Rep. Phys. Sci. 2021, 2, 100308.

[7]

Zhang, J.; Sun, Y.; Ye, S.; Song, J.; Qu, J. L. Heterostructures in two-dimensional CdSe nanoplatelets: Synthesis, optical properties, and applications. Chem. Mater. 2020, 32, 9490–9507.

[8]

Altintas, Y.; Gungor, K.; Gao, Y.; Sak, M.; Quliyeva, U.; Bappi, G.; Mutlugun, E.; Sargent, E. H.; Demir, H. V. Giant alloyed hot injection shells enable ultralow optical gain threshold in colloidal quantum wells. ACS Nano 2019, 13, 10662–10670.

[9]

Giovanella, U.; Pasini, M.; Lorenzon, M.; Galeotti, F.; Lucchi, C.; Meinardi, F.; Luzzati, S.; Dubertret, B.; Brovelli, S. Efficient solution-processed nanoplatelet-based light-emitting diodes with high operational stability in air. Nano Lett. 2018, 18, 3441–3448.

[10]

İzmir, M.; Sharma, A.; Shendre, S.; Durmusoglu, E. G.; Sharma, V. K.; Shabani, F.; Baruj, H. D.; Delikanli, S.; Sharma, M.; Demir, H. V. Blue-emitting CdSe nanoplatelets enabled by sulfur-alloyed heterostructures for light-emitting diodes with low turn-on voltage. ACS Appl. Nano Mater. 2022, 5, 1367–1376.

[11]

Sun, H. C.; Buhro, W. E. Contrasting ligand-exchange behavior of wurtzite and zinc-blende cadmium telluride nanoplatelets. Chem. Mater. 2021, 33, 1683–1697.

[12]

Yao, Y. W.; DeKoster, G. T.; Buhro, W. E. Interchange of L-, Z-, and bound-ion-pair X-type ligation on cadmium selenide quantum belts. Chem. Mater. 2019, 31, 4299–4312.

[13]

Zhou, Y.; Buhro, W. E. Reversible exchange of L-type and bound-ion-pair X-type ligation on cadmium selenide quantum belts. J. Am. Chem. Soc. 2017, 139, 12887–12890.

[14]

Sun, H. C.; Buhro, W. E. Core–shell cadmium telluride quantum platelets with absorptions spanning the visible spectrum. ACS Nano 2019, 13, 6982–6991.

[15]

Wang, F. D.; Wang, Y. Y.; Liu, Y. H.; Morrison, P. J.; Loomis, R. A.; Buhro, W. E. Two-dimensional semiconductor nanocrystals: Properties, templated formation, and magic-size nanocluster intermediates. Acc. Chem. Res. 2015, 48, 13–21.

[16]

Liu, Y. H.; Wayman, V. L.; Gibbons, P. C.; Loomis, R. A.; Buhro, W. E. Origin of high photoluminescence efficiencies in CdSe quantum belts. Nano Lett. 2010, 10, 352–357.

[17]

Shen, J.; Luan, C. R.; Rowell, N.; Li, Y.; Zhang, M.; Chen, X. Q.; Yu, K. Size matters: Steric hindrance of precursor molecules controlling the evolution of CdSe magic-size clusters and quantum dots. Nano Res. 2022, 15, 8564–8572.

[18]

Zhang, J. X.; Qin, C. C.; Zhong, Y. S.; Wang, X.; Wang, W.; Hu, D. D.; Liu, X. S.; Xue, C. Z.; Zhou, R.; Shen, L. et al. Atomically precise metal-chalcogenide semiconductor molecular nanoclusters with high dispersibility: Designed synthesis and intracluster photocarrier dynamics. Nano Res. 2020, 13, 2828–2836.

[19]

Zhou, Y.; Wang, F. D.; Buhro, W. E. Reactivity of magic-size nanoclusters (CdSe)13 and (CdTe)13 with acids: Rapid, low-temperature formation of flat colloidal nanocrystals. Chem. Mater. 2020, 32, 8350–8360.

[20]

Son, J. S.; Park, K.; Kwon, S. G.; Yang, J.; Choi, M. K.; Kim, J.; Yu, J. H.; Joo, J.; Hyeon, T. Dimension-controlled synthesis of CdS nanocrystals: From 0D quantum dots to 2D nanoplates. Small 2012, 8, 2394–2402.

[21]

Liu, Y. H.; Wang, F. D.; Wang, Y. Y.; Gibbons, P. C.; Buhro, W. E. Lamellar assembly of cadmium selenide nanoclusters into quantum belts. J. Am. Chem. Soc. 2011, 133, 17005–17013.

[22]

Hsieh, T. E.; Yang, T. W.; Hsieh, C. Y.; Huang, S. J.; Yeh, Y. Q.; Chen, C. H.; Li, E. Y.; Liu, Y. H. Unraveling the structure of magic-size (CdSe)13 cluster pairs. Chem. Mater. 2018, 30, 5468–5477.

[23]

Palencia, C.; Yu, K.; Boldt, K. The future of colloidal semiconductor magic-size clusters. ACS Nano 2020, 14, 1227–1235.

[24]

Yang, J.; Muckel, F.; Baek, W.; Fainblat, R.; Chang, H.; Bacher, G.; Hyeon, T. Chemical synthesis, doping, and transformation of magic-sized semiconductor alloy nanoclusters. J. Am. Chem. Soc. 2017, 139, 6761–6770.

[25]

Di Giacomo, A.; Rodà, C.; Khan, A. H.; Moreels, I. Colloidal synthesis of laterally confined blue-emitting 3.5 monolayer CdSe nanoplatelets. Chem. Mater. 2020, 32, 9260–9267.

[26]

Failla, M.; Flórez, F. G.; Salzmann, B. B. V.; Vanmaekelbergh, D.; Stoof, H. T. C.; Siebbeles, L. D. A. Observation of the quantized motion of excitons in CdSe nanoplatelets. Phys. Rev. B 2020, 102, 195405.

[27]

Baek, W.; Bootharaju, M. S.; Lorenz, S.; Lee, S.; Stolte, S.; Fainblat, R.; Bacher, G.; Hyeon, T. Nanoconfinement-controlled synthesis of highly active, multinary nanoplatelet catalysts from lamellar magic-sized nanocluster templates. Adv. Funct. Mater. 2021, 31, 2107447.

[28]

Yang, J. L.; Li, X.; Zhang, J. R.; Zhou, Y.; Wang, Y. Y. Direct formation of colloidal all-inorganic metal nanocrystals from magic-size clusters. ACS Appl. Mater. Interfaces 2022, 14, 22838–22846.

[29]

Wang, Y. Y.; Liu, Y. H.; Zhang, Y.; Kowalski, P. J.; Rohrs, H. W.; Buhro, W. E. Preparation of primary amine derivatives of the magic-size nanocluster (CdSe)13. Inorg. Chem. 2013, 52, 2933–2938.

[30]

Son, J. S.; Wen, X. D.; Joo, J.; Chae, J.; Baek, S. I.; Park, K.; Kim, J. H.; An, K.; Yu, J. H.; Kwon, S. G. et al. Large-scale soft colloidal template synthesis of 1.4 nm thick CdSe nanosheets. Angew. Chem., Int. Ed. 2009, 48, 6861–6864.

[31]

Wang, Y. Y.; Liu, Y. H.; Zhang, Y.; Wang, F. D.; Kowalski, P. J.; Rohrs, H. W.; Loomis, R. A.; Gross, M. L.; Buhro, W. E. Isolation of the magic-size CdSe nanoclusters [(CdSe)13(n-octylamine)13] and [(CdSe)13(oleylamine)13]. Angew. Chem., Int. Ed. 2012, 51, 6154–6157.

[32]

Joo, J.; Son, J. S.; Kwon, S. G.; Yu, J. H.; Hyeon, T. Low-temperature solution-phase synthesis of quantum well structured CdSe nanoribbons. J. Am. Chem. Soc. 2006, 128, 5632–5633.

[33]

Li, H. B.; Brescia, R.; Povia, M.; Prato, M.; Bertoni, G.; Manna, L.; Moreels, I. Synthesis of uniform disk-shaped copper telluride nanocrystals and cation exchange to cadmium telluride quantum disks with stable red emission. J. Am. Chem. Soc. 2013, 135, 12270–12278.

[34]

Dong, A. G.; Ye, X. C.; Chen, J.; Kang, Y. J.; Gordon, T.; Kikkawa, J. M.; Murray, C. B. A generalized ligand-exchange strategy enabling sequential surface functionalization of colloidal nanocrystals. J. Am. Chem. Soc. 2011, 133, 998–1006.

[35]

Wang, W. R.; Pan, Z. X.; Rao, H. S.; Zhang, G. Z.; Song, H.; Zhang, Z. Y.; Zhong, X. H. Proton initiated ligand exchange reactions for colloidal nanocrystals functionalized by inorganic ligands with extremely weak coordination ability. Chem. Mater. 2020, 32, 630–637.

[36]

Zhou, Y.; Wang, F. D.; Buhro, W. E. Large exciton energy shifts by reversible surface exchange in 2D II-VI nanocrystals. J. Am. Chem. Soc. 2015, 137, 15198–15208.

[37]

Lin, S. X.; Li, J. Z.; Pu, C. D.; Lei, H. R.; Zhu, M. Y.; Qin, H. Y.; Peng, X. G. Surface and intrinsic contributions to extinction properties of ZnSe quantum dots. Nano Res. 2020, 13, 824–831.

[38]

Wang, Y. Y.; Zhang, Y.; Wang, F. D.; Giblin, D. E.; Hoy, J.; Rohrs, H. W.; Loomis, R. A.; Buhro, W. E. The magic-size nanocluster (CdSe)34 as a low-temperature nucleant for cadmium selenide nanocrystals; room-temperature growth of crystalline quantum platelets. Chem. Mater. 2014, 26, 2233–2243.

[39]

Wang, Y. Y.; Zhou, Y.; Zhang, Y.; Buhro, W. E. Magic-size II-VI nanoclusters as synthons for flat colloidal nanocrystals. Inorg. Chem. 2015, 54, 1165–1177.

[40]

Riedinger, A.; Ott, F. D.; Mule, A.; Mazzotti, S.; Knüsel, P. N.; Kress, S. J. P.; Prins, F.; Erwin, S. C.; Norris, D. J. An intrinsic growth instability in isotropic materials leads to quasi-two-dimensional nanoplatelets. Nat. Mater. 2017, 16, 743–748.

[41]

Cunningham, P. D.; Coropceanu, I.; Mulloy, K.; Cho, W.; Talapin, D. V. Quantized reaction pathways for solution synthesis of colloidal ZnSe nanostructures: A connection between clusters, nanowires, and two-dimensional nanoplatelets. ACS Nano 2020, 14, 3847–3857.

[42]

Pun, A. B.; Mazzotti, S.; Mule, A. S.; Norris, D. J. Understanding discrete growth in semiconductor nanocrystals: Nanoplatelets and magic-sized clusters. Acc. Chem. Res. 2021, 54, 1545–1554.

[43]

Yao, Y. W.; Buhro, W. E. Thiol versus thiolate ligation on cadmium selenide quantum belts. Chem. Mater. 2019, 32, 205–214.

[44]

Zhu, W.; Hu, Y. Y.; Wang, W.; Xie, Y. L.; Xue, W. N.; He, F. F.; Li, Y. Surface engineering boosting Al/Zn-coincorporated Cu-In-Se quantum dot-sensitized solar cell efficiency. ACS Appl. Energy Mater. 2021, 4, 5767–5774.

[45]

Wang, P.; Yang, Q. Q.; Xu, C.; Wang, B.; Wang, H.; Zhang, J. D.; Jin, Y. D. Magic-sized CdSe nanoclusters for efficient visible-light-driven hydrogen evolution. Nano Res. 2022, 15, 3106–3113.

[46]

Suh, Y. H.; Lee, S.; Jung, S. M.; Bang, S. Y.; Yang, J. J.; Fan, X. B.; Zhan, S. J.; Samarakoon, C.; Jo, J. W.; Kim, Y. et al. Engineering core size of InP quantum dot with incipient ZnS for blue emission. Adv. Opt. Mater. 2022, 10, 2102372.

[47]

Sanchez-Cano, C.; Alvarez-Puebla, R. A.; Abendroth, J. M.; Beck, T.; Blick, R.; Cao, Y.; Caruso, F.; Chakraborty, I.; Chapman, H. N.; Chen, C. Y. et al. X-ray-based techniques to study the nano–bio interface. ACS Nano 2021, 15, 3754–3807.

[48]

Li, C.; Hsu, S. C.; Lin, J. X.; Chen, J. Y.; Chuang, K. C.; Chang, Y. P.; Hsu, H. S.; Chen, C. H.; Lin, T. S.; Liu, Y. H. Giant Zeeman splitting for monolayer nanosheets at room temperature. J. Am. Chem. Soc. 2020, 142, 20616–20623.

Nano Research
Pages 3387-3394
Cite this article:
Chen X, Ge J, Xiao P, et al. Ligand-induced, magic-size clusters enabled formation of colloidal all-inorganic II-VI nanoplatelets with controllable lateral dimensions. Nano Research, 2023, 16(2): 3387-3394. https://doi.org/10.1007/s12274-022-5210-9
Topics:

6303

Views

7

Crossref

7

Web of Science

7

Scopus

0

CSCD

Altmetrics

Received: 18 August 2022
Revised: 13 October 2022
Accepted: 13 October 2022
Published: 05 December 2022
© Tsinghua University Press 2022
Return