AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Asymmetrically coordinated single-atom iron nanozymes with Fe-N1C2 structure: A peroxidase mimetic for melatonin detection

Lihong Lin1,§Heng Li2,§Hongfei Gu1,§Zhiyi Sun1Juan Huang2Zhenni Qian2Hang Li1Juzhe Liu3Hongyan Xi4Pengfei Wu4Qingqing Liu4Shuhu Liu5Lirong Zheng5Zhuo Chen1( )Zhengbo Chen2( )Juanjuan Qi3( )
Energy & Catalysis Center, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
Department of Chemistry, Capital Normal University, Beijing 100081, China
The Key Laboratory of Resources and Environmental System Optimization, Ministry of Education (MOE), College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
School of Chemistry, Beihang University, Beijing 100191, China
Institute of High Energy Physics, Chinese Academy of Science, Beijing 100049, China

§ Lihong Lin, Heng Li, and Hongfei Gu contributed equally to this work.

Show Author Information

Graphical Abstract

By introducing highly electronegative N atoms to optimize the local coordination environment of Fe atoms, it is expected to enhance the catalytic activity towards peroxide substrates. Compared with the single-atom Fe nanozyme anchored on undoped Ti3C2Tx (Fe SA/Ti3C2Tx), Fe SA/N-Ti3C2Tx with Fe-N1C2 structure exhibits higher catalytic activity and dynamics for 3,3’,5,5’-tetramethylbenzidine (TMB).

Abstract

Owing to the unique coordination environment and high atom utilization efficiency, single atom catalysts have been considered as an ideal artificial enzyme to mimic natural enzymes. Herein, single-atom Fe nanozyme anchored on N-doped Ti3C2Tx (Fe SA/N-Ti3C2Tx) with asymmetrically coordinated Fe-N1C2 configuration is synthesized by vacancy capture and heteroatom doping strategy, which exhibits excellent peroxidase-like activity. Based on the results of peroxidase catalytic kinetics and X-ray adsorption fine spectroscopy, the Fe-N1C2 active sites in Fe SA/N-Ti3C2Tx are responsible for the excellent performance. Furthermore, the developed Fe SA/N-Ti3C2Tx can be employed to quantitative detection of melatonin (MT), which shows a wide linear detection range (0.01–100 μM) and an excellent detection limit (7.3 nM) in buffer, 0.01–100 μM and 7.8 nM in serum samples. Our work proves that MXene-based single atoms can be promising nanozyme in the field of bioassays.

Electronic Supplementary Material

Download File(s)
12274_2022_5211_MOESM1_ESM.pdf (2.7 MB)

References

[1]

André, R.; Natálio, F.; Humanes, M.; Leppin, J.; Heinze, K.; Wever, R.; Schröder, H. C.; Müller, W. E. G.; Tremel, W. V2O5 nanowires with an intrinsic peroxidase-like activity. Adv. Funct. Mater. 2011, 21, 501–509.

[2]

Asati, A.; Santra, S.; Kaittanis, C.; Nath, S.; Perez, J. M. Oxidase-like activity of polymer-coated cerium oxide nanoparticles. Angew. Chem., Int. Ed. 2009, 48, 2308–2312.

[3]

Cao, F. F.; Zhang, Y.; Sun, Y. H.; Wang, Z. Z.; Zhang, L.; Huang, Y. Y.; Liu, C. Q.; Liu, Z.; Ren, J. S.; Qu, X. G. Ultrasmall nanozymes isolated within porous carbonaceous frameworks for synergistic cancer therapy: Enhanced oxidative damage and reduced energy supply. Chem. Mater. 2018, 30, 7831–7839.

[4]

Li, W.; Liu, Z.; Liu, C. Q.; Guan, Y. J.; Ren, J. S.; Qu, X. G. Manganese dioxide nanozymes as responsive cytoprotective shells for individual living cell encapsulation. Angew. Chem., Int. Ed. 2017, 56, 13661–13665.

[5]

Liu, B. W.; Liu, J. W. Surface modification of nanozymes. Nano Res. 2017, 10, 1125–1148.

[6]

Fang, G.; Li, W. F.; Shen, X. M.; Perez-Aguilar, J. M.; Chong, Y.; Gao, X. F.; Chai, Z. F.; Chen, C. Y.; Ge, C. C.; Zhou, R. H. Differential Pd-nanocrystal facets demonstrate distinct antibacterial activity against Gram-positive and Gram-negative bacteria. Nat. Commun. 2018, 9, 129.

[7]

Hou, S.; Hu, X. N.; Wen, T.; Liu, W. Q.; Wu, X. C. Core–shell noble metal nanostructures templated by gold nanorods. Adv. Mater. 2013, 25, 3857–3862.

[8]

Chen, M.; Zhou, H.; Liu, X. K.; Yuan, T. W.; Wang, W. Y.; Zhao, C.; Zhao, Y. F.; Zhou, F. Y.; Wang, X.; Xue, Z. G. et al. Single iron site nanozyme for ultrasensitive glucose detection. Small 2020, 16, 2002343.

[9]

Natalio, F.; André, R.; Hartog, A. F.; Stoll, B.; Jochum, K. P.; Wever, R.; Tremel, W. Vanadium pentoxide nanoparticles mimic vanadium haloperoxidases and thwart biofilm formation. Nat. Nanotechnol. 2012, 7, 530–535.

[10]

Cheng, N.; Li, J. C.; Liu, D.; Lin, Y. H.; Du, D. Single-atom nanozyme based on nanoengineered Fe-N-C catalyst with superior peroxidase-like activity for ultrasensitive bioassays. Small 2019, 15, 1901485.

[11]

Chen, Y. J.; Wang, P. X.; Hao, H. G.; Hong, J. J.; Li, H. J.; Ji, S. F.; Li, A.; Gao, R.; Dong, J. C.; Han, X. D. et al. Thermal atomization of platinum nanoparticles into single atoms: An effective strategy for engineering high-performance nanozymes. J. Am. Chem. Soc. 2021, 143, 18643–18651.

[12]

Kim, M. S.; Cho, S.; Joo, S. H.; Lee, J.; Kwak, S. K.; Kim, M. I.; Lee, J. N- and B-codoped graphene: A strong candidate to replace natural peroxidase in sensitive and selective bioassays. ACS Nano 2019, 13, 4312–4321.

[13]

Cheng, Q.; Yang, Y.; Peng, Y. S.; Liu, M. Pt nanoparticles with high oxidase-like activity and reusability for detection of ascorbic acid. Nanomaterials 2020, 10, 1015.

[14]

Liu, Y.; Wu, H. H.; Chong, Y.; Wamer, W. G.; Xia, Q. S.; Cai, L. N.; Nie, Z. H.; Fu, P. P.; Yin, J. J. Platinum nanoparticles: Efficient and stable catechol oxidase mimetics. ACS Appl. Mater. Interfaces 2015, 7, 19709–19717.

[15]

Wu, Y.; Wu, J. B.; Jiao, L.; Xu, W. Q.; Wang, H. J.; Wei, X. Q.; Gu, W. L.; Ren, G. X.; Zhang, N.; Zhang, Q. H. et al. Cascade reaction system integrating single-atom nanozymes with abundant Cu sites for enhanced biosensing. Anal. Chem. 2020, 92, 3373–3379.

[16]

Huang, Y. Y.; Liu, Z.; Liu, C. Q.; Ju, E. G.; Zhang, Y.; Ren, J. S.; Qu, X. G. Self-assembly of multi-nanozymes to mimic an intracellular antioxidant defense system. Angew. Chem., Int. Ed. 2016, 55, 6646–6650.

[17]

Wu, X. J.; Chen, T. M.; Chen, Y.; Yang, G. W. Modified Ti3C2 nanosheets as peroxidase mimetics for use in colorimetric detection and immunoassays. J. Mater. Chem. B 2020, 8, 2650–2659.

[18]

Wang, X. P.; Hou, C.; Qiu, W.; Ke, Y. P.; Xu, Q. C.; Liu, X. Y.; Lin, Y. H. Protein-directed synthesis of bifunctional adsorbent-catalytic hemin-graphene nanosheets for highly efficient removal of dye pollutants via synergistic adsorption and degradation. ACS Appl. Mater. Interfaces 2017, 9, 684–692.

[19]

Fan, K. L.; Xi, J. Q.; Fan, L.; Wang, P. X.; Zhu, C. H.; Tang, Y.; Xu, X. D.; Liang, M. M.; Jiang, B.; Yan, X. Y. et al. In vivo guiding nitrogen-doped carbon nanozyme for tumor catalytic therapy. Nat. Commun. 2018, 9, 1440.

[20]

Liu, J.; Wang, A.; Liu, S.; Yang, R.; Wang, L.; Gao, F.; Zhou, H.; Yu, X.; Liu, J.; Chen, C. A titanium nitride nanozyme for pH-responsive and irradiation-enhanced cascade-catalytic tumor therapy. Angew. Chem., Int. Ed. 2021, 60, 25328–25338.

[21]

Liu, J. B.; Hu, X. N.; Hou, S.; Wen, T.; Liu, W. Q.; Zhu, X.; Yin, J. J.; Wu, X. C. Au@Pt core/shell nanorods with peroxidase- and ascorbate oxidase-like activities for improved detection of glucose. Sens. Actuators B: Chem. 2012, 166–167, 708–714.

[22]

Song, Y. J.; Qu, K. G.; Zhao, C.; Ren, J. S.; Qu, X. G. Graphene oxide: Intrinsic peroxidase catalytic activity and its application to glucose detection. Adv. Mater. 2010, 22, 2206–2210.

[23]

Li, X.; Kong, C. Y.; Chen, Z. B. Colorimetric sensor arrays for antioxidant discrimination based on the inhibition of the oxidation reaction between 3,3’,5,5’-tetramethylbenzidine and hydrogen peroxides. ACS Appl. Mater. Interfaces 2019, 11, 9504–9509.

[24]

Carrillo-Vico, A.; Lardone, P. J.; Álvarez-Sánchez, N.; Rodríguez-Rodríguez, A.; Guerrero, J. M. Melatonin: Buffering the immune system. Int. J. Mol. Sci. 2013, 14, 8638–8683.

[25]

Ji, S. F.; Jiang, B.; Hao, H. G.; Chen, Y. J.; Dong, J. C.; Mao, Y.; Zhang, Z. D.; Gao, R.; Chen, W. X.; Zhang, R. F. et al. Matching the kinetics of natural enzymes with a single-atom iron nanozyme. Nat. Catal. 2021, 4, 407–417.

[26]

Wang, S.; Hu, Z. F.; Wei, Q. L.; Zhang, H. M.; Tang, W. N.; Sun, Y. Q.; Duan, H. Q.; Dai, Z. C.; Liu, Q. Y.; Zheng, X. W. Diatomic active sites nanozymes: Enhanced peroxidase-like activity for dopamine and intracellular H2O2 detection. Nano Res. 2022, 15, 4266–4273.

[27]

Xu, B. L.; Wang, H.; Wang, W. W.; Gao, L. Z.; Li, S. S.; Pan, X. T.; Wang, H. Y.; Yang, H. L.; Meng, X. Q.; Wu, Q. W. et al. A single-atom nanozyme for wound disinfection applications. Angew. Chem., Int. Ed. 2019, 58, 4911–4916.

[28]

Jiao, L.; Yan, H. Y.; Wu, Y.; Gu, W. L.; Zhu, C. Z.; Du, D.; Lin, Y. H. When nanozymes meet single-atom catalysis. Angew. Chem., Int. Ed. 2020, 59, 2565–2576.

[29]

Xiong, Y.; Wang, S. B.; Chen, W. X.; Zhang, J.; Li, Q. H.; Hu, H. S.; Zheng, L. R.; Yan, W. S.; Gu, L.; Wang, D. S. et al. Construction of dual-active-site copper catalyst containing both Cu-N3 and Cu-N4 sites. Small 2021, 17, 2006834.

[30]

Parastaev, A.; Muravev, V.; Huertas Osta, E.; Van Hoof, A. J. F.; Kimpel, T. F.; Kosinov, N.; Hensen, E. J. M. Boosting CO2 hydrogenation via size-dependent metal–support interactions in cobalt/ceria-based catalysts. Nat. Catal. 2020, 3, 526–533.

[31]

Yan, Q. Q.; Wu, D. X.; Chu, S. Q.; Chen, Z. Q.; Lin, Y.; Chen, M. X.; Zhang, J.; Wu, X. J.; Liang, H. W. Reversing the charge transfer between platinum and sulfur-doped carbon support for electrocatalytic hydrogen evolution. Nat. Commun. 2019, 10, 4977.

[32]

Xing, L. L.; Liu, R.; Gong, Z. C.; Liu, J. J.; Liu, J. B.; Gong, H. S.; Huang, K.; Fei, H. L. Ultrafast Joule heating synthesis of hierarchically porous graphene-based Co-NC single-atom monoliths. Nano Res. 2022, 15, 3913–3919.

[33]

Sang, X. H.; Xie, Y.; Lin, M. W.; Alhabeb, M.; Van Aken, K. L.; Gogotsi, Y.; Kent, P. R. C.; Xiao, K.; Unocic, R. R. Atomic defects in monolayer titanium carbide (Ti3C2Tx) MXene. ACS Nano 2016, 10, 9193–9200.

[34]

Zhao, D.; Chen, Z.; Yang, W. J.; Liu, S. J.; Zhang, X.; Yu, Y.; Cheong, W. C.; Zheng, L. R.; Ren, F. Q.; Ying, G. B. et al. MXene (Ti3C2) vacancy-confined single-atom catalyst for efficient functionalization of CO2. J. Am. Chem. Soc. 2019, 141, 4086–4093.

[35]

Wu, X. H.; Wang, J. H.; Wang, Z. Y.; Sun, F.; Liu, Y. Z.; Wu, K. F.; Meng, X. Y.; Qiu, J. S. Boosting the electrocatalysis of MXenes by plasmon-induced thermalization and hot-electron injection. Angew. Chem., Int. Ed. 2021, 60, 9416–9420.

[36]

Huang, B.; Li, N.; Ong, W. J.; Zhou, N. G. Single atom-supported MXene: How single-atomic-site catalysts tune the high activity and selectivity of electrochemical nitrogen fixation. J. Mater. Chem. A 2019, 7, 27620–27631.

[37]

Kuznetsov, D. A.; Chen, Z. X.; Abdala, P. M.; Safonova, O. V.; Fedorov, A.; Müller, C. R. Single-atom-substituted Mo2CTx: Fe-layered carbide for selective oxygen reduction to hydrogen peroxide: Tracking the evolution of the MXene phase. J. Am. Chem. Soc. 2021, 143, 5771–5778.

[38]

Zhang, D.; Wang, S.; Hu, R. M.; Gu, J. N.; Cui, Y. L. S.; Li, B.; Chen, W. H.; Liu, C. T.; Shang, J. X.; Yang, S. B. Catalytic conversion of polysulfides on single atom zinc implanted MXene toward high-rate lithium-sulfur batteries. Adv. Funct. Mater. 2020, 30, 2002471.

[39]

Zhang, X.; Lei, J. C.; Wu, D. H.; Zhao, X. D.; Jing, Y.; Zhou, Z. A Ti-anchored Ti2CO2 monolayer (MXene) as a single-atom catalyst for CO oxidation. J. Mater. Chem. A 2016, 4, 4871–4876.

[40]

Huang, L.; Chen, J. X.; Gan, L. F.; Wang, J.; Dong, S. J. Single-atom nanozymes. Sci. Adv. 2019, 5, eaav5490.

[41]

Hou, T. T.; Luo, Q. Q.; Li, Q.; Zu, H. L.; Cui, P. X.; Chen, S. W.; Lin, Y.; Chen, J. J.; Zheng, X. S.; Zhu, W. K. et al. Modulating oxygen coverage of Ti3C2Tx MXenes to boost catalytic activity for HCOOH dehydrogenation. Nat. Commun. 2020, 11, 4251.

[42]

Zhu, M. Z.; Zhao, C.; Liu, X. K.; Wang, X. L.; Zhou, F. Y.; Wang, J.; Hu, Y. M.; Zhao, Y. F.; Yao, T.; Yang, L. M. et al. Single atomic cerium sites with a high coordination number for efficient oxygen reduction in proton-exchange membrane fuel cells. ACS Catal. 2021, 11, 3923–3929.

[43]

Yu, M. Z.; Zhou, S.; Wang, Z. Y.; Zhao, J. J.; Qiu, J. S. Boosting electrocatalytic oxygen evolution by synergistically coupling layered double hydroxide with MXene. Nano Energy 2018, 44, 181–190.

[44]

Han, M. N.; Yang, J.; Jiang, J. T.; Jing, R. W.; Ren, S. J.; Yan, C. Efficient tuning the electronic structure of N-doped Ti-based MXene to enhance hydrogen evolution reaction. J. Colloid Interface Sci. 2021, 582, 1099–1106.

[45]

Wu, Y.; Jiao, L.; Luo, X.; Xu, W. Q.; Wei, X. Q.; Wang, H. J.; Yan, H. Y.; Gu, W. L.; Xu, B. Z.; Du, D. et al. Oxidase-like Fe-N-C single-atom nanozymes for the detection of acetylcholinesterase activity. Small. 2019, 15, 1903108.

[46]

Peng, J.; Zhang, W.; Wang, J. S.; Li, L.; Lai, W. H.; Yang, Q. R.; Zhang, B. W.; Li, X. N.; Du, Y. M.; Liu, H. W. et al. Processing rusty metals into versatile Prussian blue for sustainable energy storage. Adv. Energy Mater. 2021, 11, 2102356.

[47]

Hocking, R. K.; Wasinger, E. C.; De Groot, F. M. F.; Hodgson, K. O.; Hedman, B.; Solomon, E. I. Fe L-edge XAS studies of K4[Fe(CN)6] and K3[Fe(CN)6]: A direct probe of back-bonding. J. Am. Chem. Soc. 2006, 128, 10442–10451.

[48]
Sun, X. J.; Chen, C.; Xiong, C.; Zhang, C. M.; Zheng, X. S.; Wang, J.; Gao, X. P.; Yu, Z. Q.; Wu, Y. Surface modification of MoS2 nanosheets by single Ni atom for ultrasensitive dopamine detection. Nano Res., in press, https://doi.org/10.1007/s12274-022-4802-8.
[49]

Xu, H.; She, X. J.; Fei, T.; Song, Y. H.; Liu, D. B.; Li, H. P.; Yang, X. F.; Yang, J. M.; Li, H. M.; Song, L. et al. Metal-oxide-mediated subtractive manufacturing of two-dimensional carbon nitride for high-efficiency and high-yield photocatalytic H2 evolution. ACS Nano 2019, 13, 11294–11302.

[50]

Zeng, H.; Li, Z. H.; Li, G. S.; Cui, X. Q.; Jin, M. X.; Xie, T. F.; Liu, L. L.; Jiang, M. P.; Zhong, X.; Zhang, Y. W. et al. Interfacial engineering of TiO2/Ti3C2 MXene/carbon nitride hybrids boosting charge transfer for efficient photocatalytic hydrogen evolution. Adv. Energy Mater. 2022, 12, 2102765.

[51]

Chen, Y. F.; Jiao, L.; Yan, H. Y.; Xu, W. Q.; Wu, Y.; Wang, H. J.; Gu, W. L.; Zhu, C. Z. Hierarchically porous S/N codoped carbon nanozymes with enhanced peroxidase-like activity for total antioxidant capacity biosensing. Anal. Chem. 2020, 92, 13518–13524.

[52]

Zhao, C.; Xiong, C.; Liu, X. K.; Qiao, M.; Li, Z. J.; Yuan, T. W.; Wang, J.; Qu, Y. T.; Wang, X. Q.; Zhou, F. Y. et al. Unraveling the enzyme-like activity of heterogeneous single atom catalyst. Chem. Commun. 2019, 55, 2285–2288.

[53]

Jiang, B.; Duan, D. M.; Gao, L. Z.; Zhou, M. J.; Fan, K. L.; Tang, Y.; Xi, J. Q.; Bi, Y. H.; Tong, Z.; Gao, G. F. et al. Standardized assays for determining the catalytic activity and kinetics of peroxidase-like nanozymes. Nat. Protoc. 2018, 13, 1506–1520.

[54]

Chen, M.; Zhou, X. C.; Xiong, C.; Yuan, T. W.; Wang, W. Y.; Zhao, Y. F.; Xue, Z. G.; Guo, W. X.; Wang, Q. P.; Wang, H. J. et al. Facet engineering of nanoceria for enzyme-mimetic catalysis. ACS Appl. Mater. Interfaces 2022, 14, 21989–21995.

Nano Research
Pages 4751-4757
Cite this article:
Lin L, Li H, Gu H, et al. Asymmetrically coordinated single-atom iron nanozymes with Fe-N1C2 structure: A peroxidase mimetic for melatonin detection. Nano Research, 2023, 16(4): 4751-4757. https://doi.org/10.1007/s12274-022-5211-8
Topics:

9816

Views

10

Crossref

6

Web of Science

10

Scopus

0

CSCD

Altmetrics

Received: 03 September 2022
Revised: 11 October 2022
Accepted: 15 October 2022
Published: 19 November 2022
© Tsinghua University Press 2022
Return